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Abstract

An open question in mechanics is whether mechanical resonators can be made non-

linear with vibrations approaching the quantum ground state. This requires engineer-

ing a mechanical nonlinearity far beyond what has been realized thus far. Here we

discovered a mechanism to boost the Duffing nonlinearity by coupling the vibrations

of a nanotube resonator to single-electron tunneling and by operating the system

in the ultrastrong coupling regime. Remarkably, thermal vibrations become highly

nonlinear when lowering the temperature. The average vibration amplitude at the

lowest temperature is 13 times the zero-point motion, with approximately 42% of the

thermal energy stored in the anharmonic part of the potential. Our work paves the

way for realizing mechanical ‘Schrödinger cat’ states [1], mechanical qubits [2, 3], and

quantum simulators emulating the electron-phonon coupling [4].
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Mechanical resonators are perfect linear systems in experiments carried out in the quan-

tum regime. Such devices enable quantum squeezing of the mechanical motion [5–7], quan-

tum backaction evading measurements [8–10], and entanglement between mechanical res-

onators [11, 12]. Achieving nonlinear vibrations in resonators approaching the quantum

ground state would offer novel prospects for the quantum control of their motion. These

include the development of mechanical qubits [2, 3] and mechanical cat states [1]. However,

creating the strong nonlinearities required for this endeavour has been out of reach in all

the mechanical systems explored thus far.

Mechanical resonators become nonlinear at large vibration amplitude x, when the Duffing

(or Kerr) nonlinear term of the restoring force is sizable. Specifically, the restoring force reads

F = −mω2
mx−γx3 with m the mechanical eigenmode mass, ωm the resonance frequency, and

γ the Duffing constant. The Duffing constant is usually small but can be engineered using

a force field gradient or a two-level system [13]. Although mechanical systems have been

operated in large field gradients [14, 15] and strongly coupled to two-level systems [16–23],

it has not been possible to create sizeable Duffing nonlinearities for vibrations approaching

the quantum ground state.

We demonstrate a new mechanism to boost the vibration nonlinearity by coupling the

mechanical resonator to single-electron tunneling (SET) in a quantum dot (Figs. 1a,b). The

latter is operated as a degenerate two-level system fluctuating between two states with N

and N + 1 electrons. The capacitive coupling to the mechanical mode is described by the

Hamiltonian H = −~gnx/xzp, where g is the electromechanical coupling, n = 0, 1 the

additional electron number in the quantum dot, and xzp is the vibration zero-point motion.

In the adiabatic limit, when the electron fluctuation rate is faster than the bare mechanical

frequency (Γe > ωo
m), the fluctuations result in the nonlinear restoring force given by

Feff = −
[
mωo

m
2 − 1

4x2
zp

(~g)2

kBT

]
x− 1

48x4
zp

(~g)4

(kBT )3
x3 (1)

when the electronic two-level system is degenerate (Fig. 1b; Sup. Info. Sec. I.D). A striking

aspect of the nonlinearity is its temperature dependence, since the nonlinear Duffing constant

significantly increases when reducing temperature. The vibration potential can even become

purely quartic in displacement, since the linear part of the restoring force vanishes [24] at

low temperature when 2kBT = ~g2/ωo
m. This can be realized for mechanical systems not

in their motional ground state (kBT > ~ωo
m) by operating the system in the ultrastrong
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coupling regime when g >
√

2ωo
m. Equation 1 also indicates that the measurement of a large

decrease of ωm at low temperature is a direct indication of a strong nonlinearity. A large

number of experiments have been carried out where mechanical vibrations are coupled to

SET [25–33], but the decrease of ωm has always been modest.

Carbon nanotube electromechanical resonators (Fig. 1a) are uniquely suited for demon-

strating a strong vibration nonlinearity. Its ultra-low mass gives rise to a large coupling g,

which is directly proportional to xzp =
√
~/2ωo

mm. Moreover, high-quality quantum dots

can be defined along the nanotube by two p-n tunnel junctions that are controlled by elec-

trostatic means. Figure 1c shows a conductance trace featuring regular peaks associated

with SET through the system.

A large dip in ωm is observed when setting the system on a conductance peak (Figs. 2a,b)

where the electronic two-level system is degenerate. This is consistent with the vibration

potential becoming strongly anharmonic. The decrease of ωm is enhanced at lower temper-

atures (Fig. 2c), indicating that the high temperature harmonic potential smoothly evolves

into an increasingly anharmonic potential. These data are well reproduced by the universal

function predicted for ωm, which depends only on the ratio εP/kBT (Sup. Info. Eq. 44);

here εP = 2~g2/ωo
m. Similar decrease in ωm was observed in two other devices (Sup. Info.

Sec. II.H).

These measurements reveal that the system is deep in the ultrastrong coupling regime.

The universal temperature dependence of ωm enables us to quantify g with accuracy. The

largest coupling obtained from measurements at different conductance peaks is g/2π =

500 ± 36 MHz (black dots in Fig. 3a), corresponding to g/ωo
m = 16.5 ± 1.2. The coupling

is consistent with the estimation g/2π = 547 ± 185 MHz obtained from independent mea-

surements where the coupling is determined from the capacitive force associated with one

electron added onto the quantum dot (purple line in Fig. 3a). The large uncertainty of this

second estimation is related to the measurement of the eigenmode mass that enters the zero-

point motion expression. Figures 3a-c show that the device is operated in the ultrastrong

coupling regime g > ωo
m and the adiabatic limit Γe > ωo

m, which are necessary conditions to

realize strong vibration anharmonicity.

We now turn our attention to the driven nonlinear resonant response of the mechanical

mode (Figs. 4a,b). The spectral peak is asymmetric for vibration amplitudes as low as

x ' 40 × xzp. We do not observe the usual hysteresis in the nonlinear response when
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the driving frequency is swept back and forth. Moreover, the nonlinear resonator has a

decreasing responsivity for an increasing drive (Fig. 4c). These data agree with a model

that takes into account the strong nonlinearity and thermal fluctuations; see the red lines

in Figs. 4a,c. The lack of hysteresis is explained by the low amplitude of driven vibrations

compared to the thermal displacement amplitude, an unusual regime for driven nonlinear

response measurements [13]. The behaviour of the responsivity arises from the thermal

fluctuations that modify the spectral response of the driven nonlinear resonator [13]. By

comparing the model to the whole measured set of spectra spanning the linear-nonlinear

crossover (Figs. 4a,c), we determine the coupling g/2π = 646 ± 217 MHz. We obtain

g/2π = 757 ± 197 MHz from the quadratic dependence of the resonant frequency on the

driven vibrational amplitude for Duffing resonators (Fig. 4b), which remains approximately

valid in the presence of thermal fluctuations provided that the driven vibration amplitude

is sufficiently small. These two values of g are consistent with the two first estimates.

The vibrations become strongly nonlinear at low temperature for vibrations approaching

the quantum ground state. Figure 4d shows the fraction of the thermal energy stored in

the nonlinear part of the vibration potential UNL = [〈Ueff(x)〉 −mω2
m〈x2〉/2]/〈Ueff(x)〉 where

Ueff(x) is the total effective vibration potential created by the coupling. The fraction is

directly estimated from the measured decrease of ωm using the theory predictions of the

coupled system (Sup. Info. Sec. I.F). The effect of the nonlinearity on the vibrations

becomes increasingly important as the temperature is decreased, since a larger fraction of

the thermal energy is stored in the nonlinear part of the potential (Fig. 4d). The fraction

UNL becomes approximately 42% at the lowest measured temperature where the average

amplitude of thermal vibrations is xth ' 13×xzp. Having the nonlinear part of the restoring

force comparable to its linear part is extreme for mechanical resonators, especially when

considering that the thermal vibration amplitude is so close to the zero-point motion.

We have demonstrated a mechanism to create a strong mechanical nonlinearity by cou-

pling a mechanical resonator and a two-level system in the ultrastrong coupling regime.

Mechanical resonators endowed with a sizeable nonlinearity in the quantum regime enable

numerous applications. Novel qubits may be engineered where the information is stored

in the mechanical vibrations; such mechanical qubits are expected to inherit the long co-

herence time of the mechanical vibrations and may be used for manipulating quantum

information [2, 3]. Mechanical ‘Schrodinger cat’ states — non-classical superpositions of
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mechanical coherent states — can also be formed [1] with enhanced quantum sensing ca-

pabilities in the detection of force and mass. In practice, such systems may be realized by

coupling the mechanical vibrations to double-quantum dots [29]. This approach preserves

both the strong mechanical nonlinearities measured in this work [3] and high mechanical

quality factors [30, 34]. Coupling mechanical vibrations to yet more quantum dots in a

linear array may realize an analogue quantum simulator of small-size quantum materials [4].

Such a simulator could explore the rich physics of strongly correlated systems where the

electron-electron repulsion is competing with the electron-phonon interaction.
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Fig. 1: SET-based nonlinearity. (a) Schematics of the nanotube vibrating at ωm. A quantum dot

highlighted in red is formed along the suspended nanotube; the total electron tunnel rate to the

two leads is Γe. The vibrations are coupled to the electrons in the quantum dot via the capacitive

coupling between the nanotube and the gate electrode. (b) Origin of the SET-based nonlinearity.

The two linear force-displacement curves shown in black correspond to the dot filled with either

N or N + 1 electrons; the slope is given by the spring constant mωo
m

2 and the two curves are

separated by ∆x = 2(g/ωo
m)xzp caused by the force created by one electron tunnelling onto the

quantum dot. The force felt by the vibrations is an average of the two black forces weighted by

the Fermi-Dirac distribution when Γe > ωo
m. The resulting force in red is nonlinear for vibration

displacements smaller than ∼ kBT
~g xzp; the reduced slope at zero vibration displacement indicates

the decrease of ωm. (c) Gate voltage dependence of the conductance G of device I at T=6 K. The

average dot occupation increases by about one electron over the gate voltage range where a G peak

is observed. A voltage smaller than kBT/e is applied to measure G.
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Fig. 2: Enhanced mechanical vibration nonlinearity at low temperature. (a,b) Conductance and

mechanical resonance frequency as a function of gate voltage V dc
g at 300 mK. By counting the

number of observed conductance peaks from the nanotube energy gap, we estimate N = 22. The

red dashed line indicates ωo
m. (c) Temperature dependence of the resonance frequency. The red

solid line is the predicted universal function. The ωdip/ω
o
m reduction is expected to be about 0.75

when the potential is quartic; in this case, while the linear part of Feff is zero, the nonlinear part

of Feff combined with thermal vibrations significantly renormalizes ωm.
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Fig. 3: Electromechanical resonator in the ultrastrong coupling regime. (a) Coupling g as a function

of V dc
g . The black data points are obtained from the measured temperature dependence of ωm.

The purple line is estimated from g = e(C ′
g/CΣ)V dc

g /
√

2m~ωo
m where m is quantified from driven

spectral response measurements and where the spatial derivative of the dot-gate capacitance C ′
g and

the V dc
g -dependent total capacitance CΣ of the quantum dot are obtained from electron transport

measurements. The uncertainty in this second estimation of g is shown by the purple shaded area.

(b,c) Bare mechanical resonance frequency ωo
m and electron tunnel rate Γe as a function of V dc

g . The

ωo
m variation is due to the electrostatically-induced stress in the nanotube. We quantify Γe from

the temperature dependence of the resonance width ∆ω in the spectral response measurements.
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Fig. 4: Nonlinear mechanical vibrations at V dc
g = 757.2 mV. (a) Nonlinear resonant response to

the driving force at 6 K. The dashed black line corresponds to x = 40 × xzp. The red line is the

simultaneous fit of 10 spectra at different drives, which span the linear-nonlinear crossover, to the

theoretical prediction (Sup. Info. Sec. I.H). The response gets difficult to measure at lower T , since

the vibration dissipation is enhanced and the drive is set by the oscillating gate voltage that has

to be a few times smaller than the V dc
g width of the G peak to avoid electrical nonlinearities. (b)

Resonant frequency shift versus the driven vibration amplitude at 6 K. The red line is a linear fit to

the data. The driven vibration amplitude is set smaller or comparable to the averaged amplitude of

the thermal vibrations xth. (c) Responsivity x/Fd of the mechanical mode at 6 K, where Fd is the

driven force amplitude. The red line is the fit to the theoretical prediction (Sup. Info. Sec. I.H).

(d) Ratio UNL between the thermal vibration energy stored in the nonlinear part of the potential

and that in the total vibration potential.
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I. THEORETICAL DESCRIPTION

A. Central results

We first highlight the main theoretical results that
emerge from the coupling of a nanomechanical resonator
coupled to a quantum dot operated in the incoherent
single-electron tunneling regime. When the vibrations
are slow with respect to the typical electronic tunneling
rate, one finds that the effective force reads:

Feff(x) = −mωom2x+ FefF (ε− Fex), (1)

where m is the eigenmode mass, ωom is the bare resonance
frequency, Fe = ~g/xzp is the variation of the force acting
on the mechanical system when the number of electrons
in the dot varies by one unit, ε is the electron energy
level, and fF is the Fermi-Dirac function. One can define
a resonance frequency from the quadratic term of the
effective vibration potential obtained by the integration
of Feff . It reads ωQ = ωom(1 − εP /4kBT )1/2 where εP =
2~g2/ωom is the polaronic energy, T the temperature, and
kB the Boltzmann constant. Remarkably, the resonance
frequency ωQ associated with the linear restoring force
decreases when lowering the temperature and vanishes
at T = 4εP /kB . The dependence of ωQ as a function of
εP /kBT is shown as a dotted (yellow) line in Fig. S1.

Another striking effect of the coupling and of the sup-
pression of ωQ is that the nonlinear part of the restoring
force becomes dominant at low temperatures. Due to this
non-linearity, the period of oscillation becomes strongly
dependent on the oscillation amplitude. Thermal fluc-
tuations allow the oscillator to explore different ampli-
tudes, and thus different resonance frequencies: When
averaged, these fluctuations lead to an observed reso-
nance frequency that is much higher than ωQ (see the
red line in Fig. S1). In other words, the effect of the non-
linearity becomes more important when the vibrations
are cooled to low temperature. This is just the opposite
of what has been observed in mechanical resonators so
far.

Despite the rich physics at work, the temperature de-
pendence of the observed resonance frequency is a uni-
versal function of εP /kBT for weak damping. We find
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Fig. S1: Contour plot on the plane εP /kBT -ω of the intensity
of the spectrum Sxx(ω) in units of εP /mω

3
0 . The spectrum is

evaluated at a conductance peak; this is the well-known peak
arising from single-electron tunneling in quantum dots as the
gate voltage is swept. The thick continuous red line indicates
the maximum of the spectrum, the dashed black lines indi-
cates the values ω for which the intensity of the spectrum is
reduced by a factor of 2 with respect to the maximum. The
yellow dotted line is the prediction of Eq. (35) for the value
of ωQ.

this by calculating the displacement fluctuation spectrum
Sxx(ω) (shown as a density plot in Fig. S1). It has been
shown [1] that Sxx(ω) is proportional to the amplitude
response to a weak drive, which is what we measure in
this work. The temperature dependence of the measured
resonance frequency in Fig. 2c of the main text agrees
well with the prediction shown by the full red line in
Fig. S1. It is used to extract the value of εP and, there-
fore, g. In the remaining part of the section I, we use ω0

instead of ωom for the bare resonance frequency to make
the expressions more compact.

This section provides the basic theoretical description
of the problem. It is structured as follows. In Sec. I B
we will first recall the standard description of incoherent
transport in a single-electron transistor. We then derive
in Sec. I C the back-action of the electronic transport on
the oscillator, obtaining an expression for the damping
coefficient and the quadratic coefficient of the effective
potential. In Sec. I D we derive in the equilibrium case
the full non-linear effective potential of the oscillator. We
obtain ωQ from the quadratic term of the effective poten-
tial. In Sec. I E we derive the displacement fluctuation
spectrum Sxx(ω) for the oscillator at equilibrium and dis-
cuss its behaviour. In Sec. I F we derive expressions for
the first four coefficients in the expansion in the displace-
ment x of the effective potential and the average of the

full non-linearity. In Sec. I G we recall the main steps
of the derivation of the Fokker-Planck equation for the
oscillator quadratures in a Duffing description of the re-
sponse to a drive. We then describe how we have used its
numerical solution to fit the observed nonlinear spectra
(Sec.I H).

B. Electronic transport

Electronic transport measurements in the device are
described by incoherent tunnelling in the Coulomb block-
ade regime. This corresponds to the condition ~Γe �
kBT � ∆E � EC , where Γe is the tunneling rate of
the electrons to the quantum dot, EC = e2/CΣ is the
Coulomb energy (CΣ the total capacitance of the dot, ∆E
the electronic level spacing, e the electron charge). For
a description of transport in this regime see for instance
Ref. [2]. Concerning the oscillator we found that the sys-
tem lays in the regime ~ω0 � ~Γe � kBT , where we re-
call that ω0 is the (bare) mechanical resonance frequency
measured far from the conductance peaks. This implies
that the oscillator can be described by a classical ap-
proach and that it is much slower than the electronic de-
grees of freedom. We will use then a Born-Oppenheimer
kind of approximation, where one first solves the elec-
tronic problem for a given value of the displacement x of
the oscillator and then considers the back-action of the
electronic system on the oscillator [3–7].

We begin with the electronic description for the case of
Ns electronic degrees of freedom, where Ns = 1 describes
the spinless case, Ns = 2 the spin- or valley-degenerate
case, and Ns = 4 the case when both valley and spin de-
generacy are taken into account. We will find that most
results do not depend on the actual value of Ns. In the
incoherent transport regime (kBT � ~Γe) the system is
fully described by the probability that the electronic state
σ (for instance σ could be the spin projection) is occu-
pied: Pσ. We define also the probability that the dot is
empty P0, or occupied by one of the σ states P1 =

∑
σ Pσ.

We assume that Coulomb blockade forbids double occu-
pancy of the dot. One can then write a Pauli master
equation for these probabilities:

Ṗσ = Γ+P0 − Γ−Pσ. (2)

Here Γ± = Γ±L + Γ±R, and Γ±α is the rate at which an
electron is added (+) or removed (−) from the quantum
dot from the α (=L, R) lead. The probability satisfies
the sum-rule

∑
σ Pσ +P0 = 1. The explicit expression of

the rates depends on the Fermi distributions on the leads:
Γ+
α = Γαfα and Γ−α = Γα(1 − fα), where by symmetry

the rates do not depend on σ. The electric current at the
left lead and going from the left to the right lead, reads
then:

IL = −e
[
NsΓ

+
L(1− P1)− Γ−LP1

]
(3)

where we introduced the probability that the dot is occu-
pied with one electron of any species P1 =

∑
σ Pσ. The
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equation of motion for the probability simplifies to

Ṗ1 = NsΓ
+ − (NsΓ

+ + Γ−)P1. (4)

Using its stationary solution one finds that the current is

IL = −eNs(Γ−RΓ+
L − Γ−LΓ+

R)/Γe, (5)

where Γe = NsΓ
+ + Γ−. Setting the right lead to the

ground as in the experiment and using Vg and V as the
voltage potentials applied to the gate and the left lead,
one can write the dependence of the Fermi distributions
on these voltages: fL = fF (ε1 − e(Vg − V )Cg/CΣ +
eV CR/CΣ) and fR = fF (ε1 − eVgCg/CΣ − eV CR/CΣ),
where CL, CR, Cg are the left, right and gate capaci-

tances, CΣ = CL+CR+Cg, fF (ε) = 1/(eε/kBT + 1), and
ε1 = ε0 +(e2−2Qe)/2CΣ, with Q the total charge on the
dot, and ε0 the single electron energy.

We can now calculate the conductance for vanishing
bias voltage:

G = − ΓLΓRNse
2

(ΓL + ΓR)[1 + (Ns − 1)f0]

∂f0

∂ε1
(6)

where we introduced f0 = fL = fR for V = 0. The
conductance has a maximum when the argument of the
Fermi function equals kBT lnNs/2.

C. Back-action on the oscillator

We now consider the coupling of the quantum dot to
the oscillator. When one electron is added to the dot,
an additional electrostatic force Fe acts on the oscillator
leading to a term in the Hamiltonian −Fexn, where n is
the additional number of electrons on the dot. In the in-
coherent regime n can only take the integer values 0 or 1.
(In the main text we used the usual notation found in the
opto-mechanical literature for the coupling ~g = Fexzp,

where xzp =
√
~/2mω0 with m the mass of the oscil-

lator.) The presence of this coupling term changes the
previous equations in Sec. I B by introducing the follow-
ing substitution in the rate expressions:

ε0 → ε0 − Fex. (7)

We can then write a system of equations describing the
oscillator position and the probability of occupation of
the dot [8]:

mẍ = −mω2
0x−mγẋ+ FeP1(t) + F (t) (8)

Ṗ1(t) = NsΓ
+(x)− Γe(x)P1, (9)

here γ and F (t) are the intrinsic damping rate and a weak
external force driving the oscillator.

Assuming small displacements from the equilibrium
value of both x and P1 we can define

x = x0 + x̃(t) (10)

P1 = P
(0)
1 + P̃1(t). (11)

We obtain the following non-linear equations for x0 and

P
(0)
1 :

x0 =
Fe
mω2

0

P
(0)
1 (12)

P
(0)
1 =

NsΓ
+(x0)

Γe(x0)
, (13)

and a linear system for the small fluctuating parts x̃ and
P̃1:

¨̃x = −ω2
0 x̃− γ ˙̃x+ (Fe/m)P̃1 + F (t)/m (14)

P̃1 = [Ns∂xΓ+ − P (0)
1 ∂xΓe]x̃− ΓeP̃1. (15)

Introducing the Fourier transform x̃(ω) =
∫
dteiωtx̃(t)

and using the explicit form of P
(0)
1 we have:

P̃1(ω)(Γe− iω) = Ns(Γ
−∂xΓ+−Γ+∂xΓ−)x̃(ω). (16)

Substituting this expression into the equation for the dis-
placement we have

[−ω2 + ω2
Q − iωγR]x̃(ω) = F (ω)/m (17)

with the renormalized damping and frequency:

γR = γ − F 2
eNs
mΓe

Ξ, (18)

ω2
Q = ω2

0 +
F 2
eNs
m

Ξ, (19)

where we use the notation ωQ since it is related to the
quadratic coefficient of the effective potential. We de-
fined

Ξ =
Γ−∂ε1Γ+ − Γ+∂ε1Γ−

ω2 + Γ2
e

. (20)

More explicitly, we have:

Ξ = − 1

kBT

(ΓL + ΓR)[ΓLfL(1− fL) + ΓRfR(1− fR)]

ω2
0 + Γ2

e

,

(21)

where we substituted ω by the value of the unperturbed
resonance frequency ω0. Strictly speaking when the re-
duction of ωQ is large one should insert ωQ and obtain
a self-consistent equation, but since we are interested in
the limit of Γ � ω0 > ωQ this will have a negligible im-
pact on the final result. The expression simplifies further
in the relevant limit eV � kBT used in the experiment:

Ξ = − 1

kBT

(ΓL + ΓR)2f0(1− f0)

ω2
0 + (ΓL + ΓR)2[1 + (Ns − 1)f0]2

, (22)

where f0 = fL = fR is the Fermi distribution of the
leads. For the damping we thus obtain

γR = γ +
εP
kBT

Nsω
2
0(ΓL + ΓR)f0(1− f0)

k (ω2
0 + (ΓL + ΓR)2k2)

, (23)
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with k = 1 + (Ns − 1)f0. We introduced the polaronic
energy εP = F 2

e /mω
2
0 = 2~g2/ω0, which is the crucial

energy scale of the problem. For ω0 � ΓL + ΓR the
resonance frequency simplifies to

ω2
Q = ω2

0

[
1− εP

kBT
Ns

f0(1− f0)

[1 + (Ns − 1)f0]2

]
. (24)

The importance of the ratio εP /kBT it is clearly visible
here, since when this ratio is sufficiently large ω2

Q changes
sign, indicating the appearance of a bistability. Note that
f0 is the Fermi distribution of the metal electrodes. One
can readily verify that the resonance frequency associated
with the linear part of the restoring force is lowest when
f0 = 1/(1 +Ns). It reads

ω2
Q

∣∣
min

= ω2
0

[
1− εP

4kBT

]
, (25)

independently of Ns. Substituting the same value of f0 =
1/(Ns + 1) into the expression for the damping Eq. (23)
for ω0 � ΓL + ΓR one obtains

γR = γ +
εP
kBT

ω2
0

4Γe
, (26)

where Γe = (ΓL + ΓR)Ns/(Ns + 1). Thus in terms of
Γe the expression of the damping at the maximum of
reduction of the frequency does not depend on Ns. This
expression has been used to extract the value of Γe in the
main text.

D. Effective potential

The reduction of the resonance frequency is due to the
back-action of the electronic system on the oscillator.
This generates an effective force acting on the oscilla-
tor that depends on x in a non-linear fashion due to the
x-dependence of the tunnelling rate:

Feff(x) = −mω2
0x+ FeNsΓ

+(x)/Γe(x). (27)

Here Γ+(x) and Γe(x) are defined in Sec. I B using ε0 →
ε0 −Fex. In the equlilibrium case (eV � kBT ) the force
reads:

Feff(x) = −mω2
0x+

Fe
e(ε−Fex)/kBT−lnNs + 1

, (28)

where ε = ε1 − eVgCg/CΣ. The electronic contribution
is clearly non-linear. The interpretation is simple. The
force induced by the electrons is just Fe multiplied by
the probability that the dot is occupied by an additional
electron. In equilibrium this probability is given by the
Fermi function. Note however that it does not coincide
with the Fermi distribution of the metals (f0), since the
chemical potentials in the dot and in the leads differ. The
number of electronic degrees of freedoms Ns appear only

as a shift of the energy level. The equilibrium condition
for the mechanical oscillator Feff(x0) = 0 gives

mω2
0x0 =

Fe
e(ε−Fex0)/kBT−lnNs + 1

. (29)

The spring constant is proportional to the derivative with
respect to x0 of the right-hand side of this expression. It
is maximal for

(εM − Fex0)/kBT = lnNs. (30)

When sweeping the gate voltage, that is ε, the resonance
frequency reaches it minimum at εM . (One can show that
the energies ε corresponding to the maximum of the con-
ductance and to the the maximum of the reduction of the
frequency coincide only in the case of spin-less fermions
Ns = 1; the difference in ε is however of the order of
kBT lnNs and is thus difficult to resolve experimentally.)
In terms of the displacement from the equilibrium value,
x̃ = x − x0, the effective force acquires a particularly
simple form:

Feff(x̃) = −mω2
0 x̃+

Fe
2

tanh

[
Fex̃

2kBT

]
. (31)

We can then obtain the effective potential by integration:

Ueff(x̃) =
mω2

0 x̃
2

2
− kBT ln

[
cosh

[
Fex̃

2kBT

]]
, (32)

where we choose the arbitrary potential constant such
that Ueff(0) = 0. The potential is symmetric in this case
[when Eq. (30) holds], the general form can be readily
derived by integrating Eq. (31).

From Eq. (32) one can see that the effective potential
evolves from a purely parabolic behaviour for Fe small to
a double well for Fe sufficiently large. It is interesting to
write the potential in terms of the dimensionless variable
z = x̃/(Fe/mω

2
0), that measures the distances in units of

the displacement induced by the force Fe. The potential
reads:

Ueff

εP
=
z2

2
− 1

ε̃P
ln cosh(ε̃P z/2). (33)

One can see that its form depends now on a single param-
eter ε̃P = εP /kBT , that is the natural coupling constant
of the problem. We show in Fig. S2 the evolution of the
potential for ε̃P = 0.1, 2, 4, 6, 10. One can expand the
potential to order 4 to obtain:

Ueff

εP
=
z2

2

(
1− ε̃P

4

)
+

ε̃3P
192

z4 + . . . . (34)

For ε̃P � 1, one has a simple harmonic oscillator. For
ε̃P = 4 the quadratic term vanishes and for small dis-
placement the potential is quartic at leading order. For
ε̃P > 4 the system is bistable and features a double-well
potential.
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Fig. S2: Evolution of the effective potential for the oscillator
for different values of the ratio εP /kBT = 0.1, 2, 4, 6, 10 from
the upper to the lower curve. For εP /kBT = 4 the potential
is quartic at leading order.

The bistability is directly related to the two possi-
ble states of the dot, empty or filled with one electron.
The phase diagram and the crossover to the bistabil-
ity in the coherent tunnelling limit has been discussed
in Refs. [9, 10]. In the bistable region the current is
strongly reduced leading to a current blockade induced
by the electron-phonon coupling. Recently it has been
proposed to exploit this kind of bistability in a double-
dot coupled to an oscillator to design a nanomechanical
qubit[11].

E. Fluctuation spectrum and softening of the
mechanical mode

The first effect of the coupling is a reduction of the res-
onance frequency. For small ε̃P or for small displacement
this follows from the expression of the quadratic part of
the effective potential (Eq. 34) that leads to

ω2
Q

ω2
0

= 1− ε̃P
4

for ε̃P � 1. (35)

This effect has been observed by several groups [12–18].
For larger values of ε̃P one cannot rely anymore on just
the value of the quadratic part to quantify the observed
mechanical resonance frequency. The oscillator becomes
highly non-linear, so some care has to be taken to mea-
sure the resonance frequency of the system in equilib-
rium. This can be done by measuring the driven spec-
trum by keeping the driven vibration amplitude smaller
than the standard deviation of the thermal vibration am-
plitude. Otherwise, the resonance frequency depends on
the intensity of the drive used to detect it, see Sec. I G.
Even for infinitesimal drive, the thermal fluctuations al-
low to explore regions of different vibration amplitudes
for which the period of the oscillator takes values that
can be very different. In order to find an averaged value
for the observed resonance frequency for small drive we

will follow again Ref. [9] and calculate the displacement
fluctuation spectrum at equilibrium:

Sxx(ω) =

∫
dteiωt〈(x̃(t)− 〈x̃〉)(x̃(0)− 〈x̃〉)〉. (36)

For a small coupling constant Sxx(ω) reduces to a
Lorentzian function peaked at ωQ as defined in Eq. (35).
For a larger coupling constant the resanance peak broad-
ens and shifts to lower frequencies, but it remains well
identified, and the resonance frequency can be deter-
mined for instance, by measuring Sxx(ω) [19]. In Ref. [9]
it is shown that in the equilibrium limit Sxx(ω) coincides
with the response function for a weak drive, which is
what is measured in this work. In equilibrium and for in-
finitesimal damping, Sxx(ω) can be calculated following
the methods of statistical mechanics [20]:

Sxx(t) =

∫
dx̃odpoP (x̃o, po)

[
x̃(t)x̃(0)− 〈x̃〉2

]
, (37)

where x̃(t) is the solution to the time evolution of the
displacement when the force is given by Feff in Eq. (31)
with initial conditions for the displacement and the mo-
mentum x̃o and po. The quantity P is the Boltzman
distribution:

P (x̃o, po) = N e−
p2o/2m+Ueff (x̃o)

kBT (38)

where Ueff is given by Eq. (32) and N is a normalization
factor.

In order to perform the calculation it is convenient to
change the integration variables. Instead of using (x̃o, po)
we will use (E, τ), where E = p2

o/2m+U(x̃o) and τ is the
time along the trajectory of energy E. The Jacobian is
unitary dx̃odpo = dEdτ . We can now write the spectrum
as follows:

Sxx(t) =

∫
dE

∫ TE

0

dτEe
−E/kBTN x̃E(t+ τE)x̃E(τE)

(39)

where τE is the time along the trajectory with energy E
and TE is the period of the orbit. Note that one could
have more than one orbit for a given energy. We will
focus in the following on the stable case occurring when
ε̃P < 4 and for which only one orbit is present. We
can now perform the Fourier transform of Eq. (39) by
introducing the Fourier series of the orbit displacement:

x̃E(τ) =
+∞∑

n=−∞
e−inωEτ x̃n(E) (40)

x̃n(E) =

∫ TE

0

dτ

TE
einωEτxE(τ) (41)

with ωE = 2π/TE . Substituting these expressions into
Eq. (39) and performing the Fourier transform we obtain:

Sxx(ω) = N
∫
dEe−E/kBT

∑

n 6=0

|x̃n(E)|2 TE2πδ(ω−nωE).
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(42)

Note that dropping the n = 0 harmonics allows to sub-
tract the average of the trajectory.

We now perform the integral in the energy variable.
The equation nωEn(ω) = ω defines a function En(ω) for
each trajectory. We can then write:

Sxx(ω) = N e−En(ω)/kBT
∑

n 6=0

|x̃n(En(ω))|2 2πn

ω

2π

n
∣∣dωE

dE

∣∣

(43)

This expression can be used to compute the spectrum
either numerically for any value of the parameters, or
analytically in some limits. In Fig. S1 we show the result
of the numerical evalution of this expression for ε̃P < 4.
For ε̃P > 4 the system becomes bistable; the crossover
between the stable and the bistable regions occurs when
the quadratic term of the effective potential vanishes, see
the dotted yellow line in Fig. S1. Due to the strong non-
linearity of the potential combined with the thermal fluc-
tuations, the spectrum has a maximum corresponding
to the resonance frequency (thick red continuous line),
which approaches ≈ 0.75ω0 at ε̃P = 4. The spectrum in
Fig. S1 also shows a large broadening of the resonance
due to phase fluctuations. The effective quality factor
approaches Q ' 5.5 at ε̃P = 4. Note that there is no
direct contribution of the dissipation to the peak broad-
ening in the model. Taking into account the dissipation
induced by the coupling between vibrations and single-
electron tunneling (SET) changes only qualitatively the
peak broadening in Fig. S1.

The dependence of the maximum of this spectrum as
a function of ε̃P has been used in the main text (see Fig.
2c) to fit the temperature dependence of the resonance
frequency at the gate voltage corresponding to the con-
ductance peak and infer an estimate of εP . We do not
have an analytical expression, but fitting the numerical
result one obtains

ωM/ω0 = 1 +

5∑

n=1

anε̃
n
P (44)

with a1 = −0.127655, a2 = 0.010475, a3 = 0.0125029,
a4 = −0.00480876, and a5 = 0.000515142, which is
within 0.1% of the numerical result for 0 ≤ ε̃P ≤ 4.

F. Coefficients of a series expansion of the
potential in the displacement and estimation of the
thermal energy stored in the non-harmonic part of

the potential

In this section we derive explicit expressions for the
first 4 coefficients of the series expansion of the effective
potential for small x̃. We will express these nonlinear co-
efficients as well as the amount of thermal energy stored
in the nonlinearity as a function of εP . This allows us

to quantify the amount of thermal energy stored in the
nonlinearity shown in Fig. 4d from the suppression of
the resonance frequency measured at each temperature
in the main text using Eq. 44. We will use the standard
notation:

Ueff(x̃) = U0 +
mω2

Q

2
x̃2 +

mβD
3

x̃3 +
mγD

4
x̃4. (45)

Since the constant is irrelevant, we can obtain the other
coefficients directly from the expression of the effec-
tive force Eq. (31) using dUeff/dx = −Fen + mω2

0x,
d2Ueff/dx

2 = −Fedn/dx + mω2
0 , and so on. Here n =

1/ (exp{(ε− Fex)/kBT − lnNs}+ 1) and has to be eval-
uated at x = x0, that is, the equilibrium position. Using
the properties of n we have:

ω2
Q

ω2
0

= 1− εP
kBT

n(1− n) (46)

βD =
F 3
e

2m(kBT )2
n(1− n)(2n− 1) (47)

γD = − F 4
e

6m(kBT )3
n(1− n)(6n2 − 6n+ 1). (48)

We evaluate explicitly these expressions at the symmetric
point for which n = 1/2:

ω2
Q

ω2
0

= 1− εP
4kBT

, βD = 0, (49)

γD =
F 4
e

48m(kBT )3
=

ε2Pmω
4
0

48(kBT )3
. (50)

These expressions are independent of the value of Ns.
In order to quantify the degree of non-linearity of the

potential it is interesting to compare the contribution of
the average of the quadratic term of the potential to the
average of the full effective potential. For this we can use
the expression of the effective potential given by Eq. (33).
The average value of z2 reads:

〈z2〉 =

∫
dze−Ueff (z)/ε̃P z2

/∫
dze−Ueff (z)/ε̃P = 1/ε̃P+1/4.

(51)

Thus the average of the (dimensionless) quadratic part
of the potential reads:

U2 ≡
d2Ueff

dz2

〈
z2

2

〉
= (1− ε̃P /4)(1/ε̃P + 1/4)/2. (52)

In a similar way we can calculate the average of the full
potential

〈Ueff〉 =

∫
dze−Ueff (z)/ε̃PUeff(z)

/∫
dze−Ueff (z)/ε̃P . (53)

The quantity 〈Ueff〉−U2 corresponds to the average of
the sum of all the nonlinear terms of the potential, which
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could be interpreted as the amount of thermal energy
stored in the nonlinearity. One finds numerically that
〈Ueff〉−U2 ≈ 0.0169ε̃P+0.001ε̃2P in the region 0 < ε̃P ≤ 4.
This quantity is finite at ε̃P = 4 where U2 vanishes. Thus,
approaching this value the sum of the contribution of the
non-linear terms becomes dominant with respect to the
contribution of the quadratic term. A plot of (〈Ueff〉 −
U2)/U2 as a function of ε̃P is shown in Fig. S3. (〈Ueff〉 −
U2)/U2 ≈ 0.033ε̃2P for ε̃P → 0 and (〈Ueff〉 − U2)/U2 ≈
1.34/(4− ε̃P ) for ε̃P → 4, the bistability threshold.
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Fig. S3: Fraction of thermal energy stored in the non-
linearity, i.e. the ratio of the average of the sum of the non-
linear terms of the potential to the average of the quadratic
part U2.

G. Nonlinear Duffing response in presence of
thermal fluctuations

In this subsection we consider the response of the non-
linear oscillator to an external drive. The results of this
section are used to extract the value of the coupling g
from the measurement of the shift of the resonance fre-
quency as a function of the driven vibration amplitude
in Fig. 4b of the main text and to perform the fit of the
response spectrum. The measurements are performed as
close as possible to the symmetric point, for which the
potential is symmetric in x̃. We will thus focus on this
symmetric point, limiting the expansion to the quartic
term. This corresponds to the standard Duffing oscilla-
tor in presence of thermal fluctuations. We find that the
typical thermal amplitude of fluctuations of the oscilla-
tor are sufficiently large to induce a sizable change in the
resonance frequency. It is thus crucial to include these
fluctuations that modify quantitatively the nonlinear re-
sponse to an external drive.

We will follow standard methods to describe the sys-
tem [20, 21]. For clarity and uniformity of notation, we
derive the main equations that lead to a Fokker-Planck
description (see Eq. (70) in the following) of the slow de-
grees of freedoms: the two quadratures. We begin by

writing a Langevin equation for the displacement x̃:

¨̃x = −γ ˙̃x− ω2
0 x̃− γDx̃3 + fD cos(ωt) + fN (t), (54)

where γD is the non-linear Duffing coefficient, and fD
and fN (t) are the driving and thermal forces divided by
the mass. We assume

〈fN (t)fN (t′)〉 = 2Dδ(t− t′) (55)

with D = kBTγ/m. We now introduce the complex
(quadrature) variable z(t) as follows:

x̃(t) = z(t)eiωt + z(t)∗e−iωt (56)

˙̃x(t) = iω
[
z(t)eiωt − z(t)∗e−iωt

]
. (57)

We can now perform the derivative of the above two equa-
tions:

˙̃x(t) = iω
[
z(t)eiωt − z(t)∗e−iωt

]
(58)

¨̃x(t) = 2iωż(t)eiωt + (iω)2
[
z(t)eiωt + z(t)∗e−iωt

]

(59)

where we have used the condition ż(t)eiωt+ ż(t)∗e−iωt =
0 implicit in the definition of z. Substituting the equa-
tions for x̃, ˙̃x, and ¨̃x in the equation of motion, multipling
it by e−iωt, and averaging it over a period with the as-
sumption that z evolves slowly gives

2iωż(t) = ω2z(t)− iγωz(t)− ω2
0z(t)− 3γD|z|2z(t)

+
fD
2

+ 〈fN (t)e−iωt〉. (60)

We now introduce the time variable τ = γt/2 and scale

z as q(τ) =
√

3γD/ωγz(2τ/γ). This gives

q̇(τ) = −iΩq(τ)−q(τ)+ i|q|2q(τ)− iF0− iFN (τ), (61)

where we approximated ω2−ω2
0 ≈ 2ω(ω−ω0) and defined

Ω =
(ω − ω0)

γ/2
, F0 =

√
3γDfD

2 (ωγ)
3/2

, (62)

FN (t) =

〈√
3γDfN (t)e−iωt

(ωγ)
3/2

〉
. (63)

Neglecting the fluctuations, the stationary solution
reads

q0 = F0/(|q0|2 − Ω + i). (64)

This defines the usual Duffing response. In particular one
can express the dimensionless resonance frequency as a
function of the amplitude:

Ω = |q0|2 ±
√
F 2

0 /|q0|2 − 1. (65)

The first term defines what is called the ’back-bone’ of
the resonance. This corresponds roughly to the depen-
dence of the maximum of the amplitude oscillation on the
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driving frequency when measuring the spectra for differ-
ent drives. It depends quadratically on the dimension-
less oscillation amplitude. When the thermal fluctuations
are negligible this dependence can be used to extract the
value of the non-linear Duffing coefficient from the data.
We discuss in the following the validity of this relation in
presence of large thermal fluctuations.

We can now introduce q = u + iv, with u and v real.
We have then

u̇ = gu(u, v) + ξu(τ), v̇ = gv(u, v) + ξv(τ), (66)

with

ξu + iξv = −i
√

3γD
〈
fN (t)eiωt

〉
/ (ωγ)

3/2
. (67)

and

gu = −u−(u2+v2−Ω)v, gv = −v+(u2+v2−Ω)u−F0.

(68)

The correlation functions of the ξ-fields can be ap-
proximated by 〈ξu(τ)ξv(τ

′)〉 = 0, 〈ξu(τ)ξu(τ ′)〉 =
〈ξv(τ)ξv(τ

′)〉 = 2Dδ(τ − τ ′) where

D =
3γDD

4ω3γ2
=

3γDkBT

4mω3γ
. (69)

Finally from the two Langevin equations for u and v we
can derive a Fokker-Planck equation for the probability
W (u, v):

D(∂2
u + ∂2

v)W − ∂u(guW )− ∂v(gvW ) = ∂tW. (70)

The Fokker-Planck Eq. (70) can be solved numerically
for a given set of parameters to obtain the function

q0(F0,D,Ω) = u0 +iv0 =

∫
dudvW (u, v)(u+iv). (71)

This gives the average of the two quadratures in dimen-
sionless units.

As a first application of this equation we calculate
numerically the maximum of the response amplitude of
the oscillator |qmax

0 | and the value Ωmax for which this
maximum appears. When fluctuations are negligible, for
D → 0, from Eq. (65) one has Ωmax = |qmax

0 |2. In Fig. S4
we plot Ωmax as a function of |qmax

0 | for different values
of D. For the smallest value of D = 0.1 a good parabolic
behavior is observed. Increasing D the curves flatten and
deviations from the simple quadratic behavior are visible.
This shows that using the quadratic dependence of the
back-bone to extract the Duffing coefficient gives a quali-
tatively reasonable result when D < 1. In order to have a
more reliable estimate, in the next subsection we discuss
a fitting procedure that exploits the form of the response
spectrum as predicted by the Fokker-Planck approach.

��� ��� ��� ��� ��� ��� ���
�

�
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|��
���|
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Fig. S4: The Figure shows Ωmax as a function of |qmax
0 |

for D = .1, .2, .5, 1., 2., 3., 4., 5., from the lower to the upper
curve. The effect of the fluctuations is to shift the initial
value to higher frequency and to deform the dependence on
|qmax

0 |. In the case of D = .1 we show a fit with a quadratic
dependence that gives a coefficient of 0.9|qmax

0 |2. The small
steps are due to the discretization of the frequency in the
numerical calculation.

H. Procedure used to fit the nonlinear Duffing
response

Using the results described in the previous sub-section,
we now explain the procedure to determine the Duffing
constant, and thus the ratio εP /kBT and the coupling g,
from driven nonlinear spectra when the thermal fluctu-
ations are large. These data are shown in Figs. 4a,c in
main text and Fig. S5. We obtain the Duffing constant
by collectively fitting the whole set of measured spectra
spanning the linear-nonlinear crossover when sweeping
the drive intensity. The spectra are measured nearby
the conductance peak, that is, almost at the symmetric
point. From the experimentally measured spectra, the
two quadratures {Uni, Vni} are extracted for Nv different
values of the driving gate voltage V acn and for Nw differ-
ent values of the driving frequency ωni One has thus a set
of 2NvNw values with Nv = 10 and Nn = 300. Using the
expression of the nonlinear coefficient given by Eq. (50)
and the definition of D given by Eq. (69) we can write a
dimensionfull expression of the quadratures {ue, ve}:

ue =
1

ε̃P

√
kBTγ

mω3
0

u0(F0, ε̃
2
Pω0/64γ, (2ω − ω0)/γ),(72)

ve =
1

ε̃P

√
kBTγ

mω3
0

v0(F0, ε̃
2
Pω0/64γ, (2ω − ω0)/γ).(73)

Here u0(F0,D,Ω) and v0(F0,D,Ω) are the (average of
the) dimensionless quadratures obtained from the solu-
tion of the Fokker-Planck equation as defined by Eq. (71).
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Fig. S5: Driven nonlinear spectra spanning the linear-nonlinear crossover when increasing the drive at 6 K. We emphasize that
a single set of parameters is used to fit the data of 10 different spectra; the fit is shown by the red line.

We then define the χ2 function:

χ2 =

Nv∑

n=1

Nw∑

i=1

[
(ue(ωni, F0 = FvV

ac
n )− Uni)2

+

(ve(ωni, F0 = FvV
ac
n )− Vni)2

]
. (74)

The free parameters of the fit are {ω0, γ, ε̃P , Fv}. The
factor Fv is the relation between the dimensionless driv-
ing force intensity and the experimental driving voltage.
This only assumes that the driving force increases lin-
early with the amplitude of the injected ac drive. The
best fit for V dc

g = 0.7572 V gives the values εP /kBT =
0.22, ω0/2π = 29.7696 MHz, γ/2π = 13.229 kHz, Fv =
2.10897 · 105 V−1. The fit is shown in Fig. S5.

In order to determine the error bar of the estimated
value of εP /kBT , we find numerically the minimum of
χ2 for a given value of εP /kBT by tuning the other three
parameters ω0, γ, and Fv (see Fig. S6). We estimate this

���� ���� ���� ���� ����
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Fig. S6: Dependence of the χ2 on εP /kBT .

error by finding the range in εP /kBT for which χ2(εP ) <
1.5χ2

min, where χmin is the minimum value of χ2. The
value of 1.5 is chosen so that the probability of observing
a χ2 larger that this value is less than 1%. We find 0.15 <
εP /kBT < 0.32, which converts into a ±120 MHz error

in the estimation of g. In addition to this error, one
should include the imprecision in the calibration of the
displacement, since the fit is very sensitive to the absolute
value of the displacement. By performing the fit with
different values of the displacement calibration, we found
that ∆εP /kBT ≈ 0.15∆A/A, where ∆A is the systematic
error in the measurement of the displacement amplitude.
We estimate ∆A/A = 0.22, which gives an additional
±0.033 to the error bar for εP /kBT (and ±97 MHz error
for g/2π). Overall, we get the coupling constant g/2π =
646± 217 MHz.

II. EXPERIMENTAL SECTION

A. Device production

Carbon nanotubes are grown on high resistive silicon
substrates with prefabricated platinum electrodes and
trenches. The growth is done in the last step of the fab-
rication process to reduce surface contamination. Nan-
otubes are grown by the ‘fast heating’ chemical vapour
deposition (CVD) method, which consists in rapidly
moving the sample from a position outside of the oven
to the center of the oven, so that the temperature of the
sample rapidly grows from room temperature to about
850°C. This enables us to grow nanotubes over shallow
trenches [22]. We remove the contamination molecules
adsorbed on the nanotube surface during the transfer of
the nanotube between the CVD oven and the cryostat,
by applying a large current through the device under the
ultra-high vacuum at the base temperature of the dilu-
tion cryostat [23]. In the three measured devices, the
nanotube-gate separation is 150 nm and the length of
the suspended nanotube is between 1.2 µm and 1.4 µm.

B. Electrical characterization

We select ultra-clean, small-gap semiconducting nan-
otubes. Figures S7a-c show charge stability diagram
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Fig. S7: Differential conductance of device I measured as a function of the source-drain voltage Vs and the gate voltage V dc
g at

different temperatures. The temperature of the cryostat is 6 K, 1 K, and 15 mK.

measurements at 6 K, 1 K, and the base temperature of
the cryostat. The nanotube regions in contact with the
source and drain electrodes are p-doped [24]. For large
positive gate voltages, p-n junctions are formed along
the nanotube near the metal electrodes, forming a quan-
tum dot along the suspended nanotube. For gate voltage
values below 0.05 V, the suspended nanotube region is
p-doped and the p-n junctions disappear, resulting in a
higher conductance. The size of the Coulomb diamonds
decreases as the number of electrons in the nanotube
quantum dot increases. The charging energy Ec varies
approximately from 8.5 meV to 6.5 meV in the gate volt-
age range discussed in the main text, while the level spac-
ing ∆E changes from 0.97 meV to 0.73 meV. All the data
shown in the main text and supplementary materials are
in the regime kBT < ∆E,Ec. The short separation be-
tween the nanotube and the gate electrode enables us
to achieve a large capacitive coupling between the nan-
otube island and the gate electrode Cg � Cs, Cd, where
Cs and Cd are the capacitances between the nanotube
island and the source and drain electrode, respectively.
The diamonds in the charge stability diagram measure-
ments become distorted when lowering temperature due
to the mechanical self-oscillations of the suspended nan-
otube generated at finite source bias voltages [13, 16, 17].
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Fig. S8: Temperature calibration. (a) Gate voltage depen-
dence of the conductance of device I at T = 1 K. The red
solid line is the fit to the data using Eq. 75. (b) The elec-
tron temperature of the device measured as a function of the
cryostat temperature.

C. Temperature calibration

The temperature calibration in quantum dot de-
vices operated in the incoherent single-electron tunnel-
ing regime (~Γe < kBT < ∆E,Ec) is achieved by mea-
suring the electrical conductance peak (Fig. S8a) where
Γe is the electron coupling rate and T is the temper-
ature. The electron temperature is obtained from the
gate voltage V dc

g width of the conductance peak using the
standard incoherent single-electron tunnelling descrip-
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tion [see Eq. (6) in Sec. I B]:

G =
G0

cosh2
[
α(V dc

g − VP)/2kBT
] . (75)

Here G0 is the T -dependent peak conductance, α is the
lever arm, and VP is the gate voltage of the conduc-
tance peak. We checked with numerical calculations of
the Fokker-Planck equation that the modification of the
width of the conductance peak by the electromechani-
cal coupling is negligible over the measured temperature
range. Figure S8b shows that the electron temperature is
linear with the cryostat temperature except at low tem-
perature where it saturates at about 100 mK.

We cannot estimate the temperature of the mechani-
cal vibration fluctuations by measuring their spectrum as
a function of temperature, since the low mechanical Q-
factor due to the electron tunnelling in the SET regime
impedes us to resolve the resonance of thermal vibra-
tions. In Ref. [16] we measured the vibration fluctuation
temperature of a high-Q nanotube device as a function
of cryostat temperature using the same cryostat and the
same cabling, filters, and amplifier; we observed that the
vibration temperature is linear with the cryostat temper-
ature down to a saturation temperature that is similar to
the electron saturation temperature in Fig. S8b. This in-
dicates that the vibration temperature and the electron
temperature are similar.

D. Detection of mechanical vibrations and
estimation of the effective mass

We use a new two-source mixing method to measure
the spectral mechanical response of driven vibrations in
the linear and the nonlinear regimes. This method en-
ables us to extract the spectral mechanical response by
eliminating the inherent contribution of pure electrical
origin in electrical mixing measurements [25]. We de-
tect the vibrations by capacitively driving them with an
oscillating voltage with amplitude V ac

g and frequency ω,
applying the oscillating voltage with amplitude V ac

g with
a slightly detuned frequency ω + δω on the source elec-
trode, and measuring the current at frequency δω from
the drain electrode. To improve the sensitivity of the
current detection, we connect the drain electrode to a
RLC resonator placed nearby the device and a HEMT
amplifier at the 4 K stage of the dilution cryostat [22].
The RLC resonator enables us to measure the current at
a comparatively high frequency δω ' 1.2 MHz where the
1/f noise is significantly reduced. Without the induc-
tance L of the RLC resonator, the frequency δω has to
be set to a lower frequency, typically 1− 10 kHz, within
the bandwidth imposed by the resistance of the sample
and the capacitance of the electrical cables that connect
the device to the measurement instruments. To obtain
the spectral mechanical response of driven vibrations, we
separate the signal of the mechanical vibrations from the
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Fig. S9: Determination of the effective mass. (a) Spectral re-
sponse of the displacement amplitude of the driven vibrations
at T = 6 K. We chose the gate voltage close to the half max-
imum of the conductance peak, where the transconduction is
largest. The red solid line is the fit of the data to a Lorenzian
peak. (b) Force-displacement response curve at the mechan-
ical resonance frequency. (c) Effective modal mass measured
at different gate voltages. The black solid line indicates the
average effective mass of 4.5 ag.

signal of pure electrical origin inherent to the mixing
method by properly tuning the phase of the measured
current [25]. This is important since the measured cur-
rent is otherwise a non-trivial combination of the vibra-
tion displacement and the electrical contribution. The
pure electrical contribution is used as a resource to cal-
ibrate the signal of the vibrations into units of meters.
Figure S9a shows the spectral response of driven vibra-
tions, which can be well described by a Lorentzian peak.

The effective mass of the measured mechanical eigen-
mode can be reliably determined, since the driven vi-
bration amplitude can be calibrated with the two-source
mixing method described above and since the capacitive
force in quantum dot electromechanical devices can be
accurately quantified. The mass m is quantified from
the slope of the force-displacement (F -x) response at
the mechanical resonance frequency in Fig. S9b using
x = (Q/mω2

m)F where the quality factor Q is estimated
from the spectral response in Fig. S9a and the capacitive
force is given by

F = βC ′gV
dc
g V ac

g , (76)

β = 1− Cg

CΣ
+ f(1− f)

Cg

CΣ

e2/CΣ

kBT
, (77)
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Fig. S10: Determination of the electromechanical coupling and the electron tunnel rate. (a)-(d) Temperature dependence of
the mechanical resonance frequency ωdip for different conductance peaks. We define ωdip as the lowest resonance frequency
when sweeping the gate voltage over a conductance peak (Fig. 2b of main text). The gate voltage of the resonance frequency
dip matches the gate voltage of the conductance peak. The black solid lines indicate the SET-based predictions. (e)-(h)
Temperature dependence of the mechanical resonance width for different conductance peaks. The black solid lines indicate the
SET-based predictions in the high temperature limit.

in the incoherent SET regime [25]. The dot-gate capac-
itance Cg, the total capacitance CΣ of the dot, and the
average charge occupation number f (with value between
0 and 1) are all quantified by standard electron transport
measurements. The spatial derivative of the dot-gate ca-
pacitance C ′g is determined from Cg and the dot-gate sep-
aration d using the expression of the capacitance between
a cylinder and a plate that leads to C ′g = Cg/d ln (2d/r).
Figure S9c shows the effective mass measured at twelve
different conductance peaks. The average effective mass
is m = 4.5±1.5 ag. The uncertainty in the mass determi-
nation comes from the mass fluctuations in Fig. S9c and
the uncertainty in the estimation of the dot-gate separa-
tion. We estimate the nanotube radius r = 1.5 nm from
the measured mass and the suspended nanotube length
determined by scanning electron microscopy. This value
is consistent with the radii of the nanotubes produced
with our chemical vapour deposition growth.

E. Electromechanical coupling and electron tunnel
rate

Figures S10a-h show the temperature dependence of
both the resonance frequency and the resonance width
of driven vibrations measured at the conductance peaks
for different gate voltages. The fitting of these data to
the predictions of the theory enable us to determine the
coupling g and the total electron tunnel rate Γe for these
different conductance peaks. The values of g and Γe are
shown in Figs. 3a,c of the main text. In the fitting we
only select the black data points in Figs. S10a-d with
resonance frequency ratios ωdip/ω

o
m between 0.75 and 1,

since it is the range of values expected by the predictions
discussed in Sec. I E. The grey data points correspond to
data at lower temperature where a double-well potential
is expected to emerge, but further work in needed to char-
acterize this regime. The coupling of vibrations and SET
also results in dissipation. The mechanical resonance
width in the high temperature limit (kBT � ~g2/ωm)
is given by

∆ω = Γ0 +
1

2

~g2

kBT

ωo
m

Γe
(78)
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Fig. S11: Spring hardening and softening in the nonlinear spectral response of mechanical vibrations in Device I at 6 K. (a)
Gate voltage dependence of the conductance. (b) Nonlinear response showing spring softening when the system is set at the
base of the conductance peak (blue point). (c) Nonlinear response showing spring hardening when the system is set at the top
of the conductance peak (red point).

where Γ0 is the damping due to other dissipation mecha-
nisms, see Eq. 26. We fit the measured resonance width
in the high temperature limit with Eq. 78 in Fig. S10e-h.
The electron tunnel rates Γe obtained from the fits are
shown in Fig. 3c of the main text.

F. Nonlinear spectral response of mechanical
vibrations

We show here that the nonlinear Duffing constant mea-
sured at 6 K changes sign when sweeping the gate volt-
age through the conductance peak, in agreement with the
predictions of the theory in Sec. I F. This enables us to
rule out other possible origins for the nonlinearity, such
as the geometrical nonlinearity [26]. We observe both a
softening and hardening spring behaviour of the oscilla-
tor over a narrow range in gate voltage, see Figs. S11a-c.
Figure S11c shows the spectral response of the spring
hardening when the system is set at the conduction peak
as indicated by the red dot in Fig. S11a. By contrast,
Fig. S11b shows the spring softening effect at the base of
the conductance peak as highlighted by the blue dot in
Fig. S11a. The change of the nonlinear Duffing sign is
consistent with the predictions of the theory describing
the coupling of mechanical vibrations and SET in the in-
coherent regime. Indeed, Eq. 48 indicates that the Duff-
ing constant is positive at the conductance peak when
the average charge occupation fraction f = 1/2, while
it becomes negative at the base of the peak when f is
sufficiently close to zero.

G. Responsivity of mechanical vibrations
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Fig. S12: Responsivity of mechanical vibrations at 6 K. (a,b)
Resonance frequency and responsivity of the vibrations as a
function of the driving voltage with the system set at the
very base of the conductance peak in Fig. S11a (green dot).
(c,d) Same as (a,b) but with the system set on the top of the
conduction peak (red dot).
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We show that the observed reduction of the respon-
sivity at large drive is related to the thermal switching
between coexisting stable states in driven nonlinear oscil-
lators. Figures S12a,b show the drive dependence of both
the mechanical resonance frequency and the responsivity
of the mechanical vibrations when the system is set at
the very base of the conductance peak, see green dot in
Fig. S11a.

We do not observe any shift in resonance frequency,
indicating that the Duffing constant is becoming small.
This is expected from Eq. 48 when f ' 0, that is, when
the effect of the coupling between vibrations and SET
is suppressed. We do not observe any change of the re-
sponsivity either, showing that nonlinear damping plays
a negligible effect [27].

By contrast, Fig. S12d shows that the responsivity gets
lower when increasing the drive in the case where the
system is set at the top of the conductance peak, see red
dot in Fig. S11a. This reduction is well reproduced by
the SET-based predictions (Fig. 4d in main text), which
relates this behaviour to switching between coexisting
stable states in driven nonlinear oscillators, and not to
nonlinear damping.

H. Strong anharmonicity in two other devices

We demonstrate strong anharmonicity and ultra-
strong coupling regime in two other devices. Figure S13a
shows a conduction peak of Device II. The charging en-
ergy, the level spacing, and the electron tunnel rate are
Ec = 14 meV, ∆E = 2 meV, and ~Γe = 2 µeV, re-
spectively, showing that SET is in the incoherent regime
(~Γe < kBT < ∆E,Ec). The high lever arm α =
0.83 arises from the short separation between the nan-
otube and the gate electrode. Figure S13b shows a
dip with a large suppression of the mechanical reso-
nance frequency when sweeping the gate voltage through
the conductance peak; the bare resonance frequency is
ωo

m/2π = 35.1 MHz. Figure S13c shows the tempera-
ture dependence of the mechanical resonance frequency
at the dip. The ratio ωdip/ω

o
m approaches 0.75 at low

temperature, indicating that the potential of the vi-
brations becomes strongly anharmonic. The red solid
line is the fit of the data to the SET-based predic-
tions, enabling us to quantify g/2π = 384 MHz. This
value is similar to the value g/2π = 395 MHz obtained
with independently measured parameters and using g =
e(C ′g/CΣ)V dc

g /
√

2m~ωo
m. These data indicate that the

device is in the ultrastrong coupling (g > ωo
m) and the

adiabatic regime (Γe > ωo
m), which satisfy the conditions

to realize strong vibration anharmonicity. Figures S13d-f
show the data of Device III. We obtain g/2π = 529 MHz
and ωo

m/2π = 89 MHz, which shows that device is in
the ultrastrong coupling regime. The measured suppres-
sion of the resonance frequency ωdip/ω

o
m reaches 0.93 at

500 mK. The device could not be measured at lower tem-
perature due to technical problems unrelated to the de-
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Fig. S13: Strong anharmonicity and ultra-strong coupling
regime in two other devices. (a,b) Conductance and me-
chanical resonance frequency as a function of gate voltage
at 170 mK for Device II. (c) Suppression of the resonance fre-
quency as a function of temperature at the conduction peak.
The solid red line is the SET-base prediction. (d,e) Con-
ductance and mechanical resonance frequency as a function
of gate voltage at 6 K for Device III. (f) Suppression of the
resonance frequency as a function of temperature at the con-
duction peak.

vice itself. The anharmonicity is sizeable but not as large
as that in Devices I and II.

I. Estimation of error bars in the figures of the
main text

In Fig. 2 of the main text, the confidence interval
error bars in panels (b) and (c) arise primarily from
the standard deviation in ωm quantified from different
driven spectral response measurements. In Fig. 3 of the
main text, the confidence interval error bars in panels (a)
(black dots) and (c) arise primarily from the uncertainty
in the fit of the measured temperature dependence of ωm

and ∆ω, respectively, to the predictions of the theory.
The confidence interval in the estimation of g shown in
(a) (purple shaded area) mainly originates from the un-
certainty in the measurement of the mass. In Fig. 4 of
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the main text, the confidence interval error bars in panels
(b) and (c) arise from the uncertainty in the fitting of the
spectral response and the determination of the dot-gate
separation.

J. Parameters of Device I discussed in the main
text

Parameters Device I
Suspended nanotube
length (L)

1.2 µm

Nanotube radius (r) 1.5 nm
Effective mechanical
mode mass (m)

4.5 ag

Bare resonance frequency
(ωo

m/2π)
28.3-30.3 MHz

Nanotube-gate separation
(d)

150 nm

Zero point fluctuation
(xzp)

7.9 pm

Nanotube-gate
capacitance (Cg)

9.7 aF

Lever arm (α) 0.4− 0.5
Charging energy (Ec) 8.5− 6.5 meV
Level spacing (∆E) 0.97− 0.73 meV
Work function difference
between nanotube and
gate

120 mV
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[13] G. A. Steele, A. K. Hüttel, B. Witkamp, M. Poot, H. B.



16

Meerwaldt, L. P. Kouwenhoven, and H. S. J. van der
Zant, Science 325, 1103 (2009).

[14] A. Benyamini, A. Hamo, S. V. Kusminskiy, F. von Op-
pen, and S. Ilani, Nature Physics 10, 151 (2014).

[15] I. Khivrich, A. A. Clerk, and S. Ilani, Nature Nanotech-
nology 14, 161 (2019), ISSN 1748-3395.

[16] C. Urgell, W. Yang, S. L. De Bonis, C. Samanta, M. J.
Esplandiu, Q. Dong, Y. Jin, and A. Bachtold, Nat. Phys.
16, 32 (2020).

[17] Y. Wen, N. Ares, F. J. Schupp, T. Pei, G. A. D. Briggs,
and E. A. Laird, Nat. Phys. 16, 75 (2020).

[18] S. Blien, P. Steger, N. Hı́ttner, R. Graaf, and
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