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Abstract 

Photopolymerization is facing a revolution with the development of cheap and easily 

available LEDs that enable to polymerize in safe and energy-saving conditions. Bodipy 

constitutes a unique class of renowned dyes that are well-known for to their high 

photoluminescence quantum yields, their exceptional molar extinction coefficients combined 

with a narrow absorption and emission band. In the constant search for new photoinitiating 

systems activable under low-light intensity and in the visible range, bodipys have been 

identified as a promising scaffold for the design of photoinitiators. Recently, several 

difluoroborane derivatives such as boranils, squaraine-derived structures or 2-

phenacylbenzoxazole difluoroboranes have been proposed, expending the scope of 

application of photopolymerization. In this review, the different bodipys, boranils, 

squaraine-based difluoroborate complexes and 2-phenacylbenzoxazole difluoroboranes used 

to elaborate photoinitiating systems and reported to date are presented. Efficiency of the 

newly developed photoinitiators will be compared to that of reference photoinitiating 

systems. 
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 1. Introduction 

 During the past decades, visible light photopolymerization has been identified as a 

possible alternative with regards to the traditional UV photopolymerization.[1–18] At 

present, this historical approach is facing numerous criticisms, directly related to the range of 

wavelengths used to initiate the polymerization process. Indeed, UV light is known to cause 

skin cancers and eye damage. During polymerization, ozone is also produced, requiring 

specific safety conditions so that UV photopolymerization is now discarded in favor of 

visible light processes.[19,20] Intense research activity is supported by the numerous 

applications of photopolymerization, ranging from coatings and varnishes, solvent-free 

paints, dental restoration materials, adhesives, 3D and 4D printing or 
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microelectronics.[10,11,21–32] Interest for visible light photoinitiators is also supported by 

the higher light penetration that can be achieved in the visible range than in the UV 

range.[33] Notably, if the light penetration is limited to only a few hundreds of micrometres, 

this value can reach a few centimetres in the near-infrared range (See Figure 1), enabling to 

polymerize thick and filled samples.[34] If visible light photopolymerization constitutes an 

interesting approach, several drawbacks can be however mentioned. As the main drawback, 

visible light photoinitiators are strongly coloured compounds that often impose an 

undesired colour to the final polymers, what constitutes a severe limitation for industrial 

applications. Parallel to this, visible light photoinitiating systems are less reactive than the 

UV ones, and this lack of reactivity is directly related to the fact that visible light photons are 

less energetic than UV photons.  

 
Figure 1. Light penetration in a polystyrene latex with an average diameter of 112 nm. 

Reprinted with permission from Ref.[33] 

 In this context of lack of reactivity of visible light photoinitiators, a significant effort 

has been done to investigate a maximum of structures and pyrenes,[35–43] cyanines,[44–52] 

anthracenes,[53] naphthalimides,[54–72] iodonium salts,[54,73–82] bodipy,[73,83–87] 

camphorquinones,[88,89] phenothiazines,[90–93] benzylidene ketones,[94–101] 

curcumin,[102–105] cyclohexanones,[106–109] carbazoles,[110–125] furan derivatives,[126] 

perylenes,[127–130] push-pull dyes,[2,3,131–145] benzophenones,[146–153] 

triphenylamines,[154,155] quinoxalines,[156–170] coumarins,[171–184] thiophenes,[185,186] 

thioxanthones,[73,187–201] chalcones,[29,202–217] chromones and flavones,[218–220] 

glyoxylates,[221] photochroms,[222] diketopyrrolopyrroles[223,224] dithienophosphole 

derivatives,[225] acridine-1,8-diones,[226–228] NIR dyes,[45,229] naphthoquinones[230] and 

anthraquinones[231,232] have been examined to identify the most reactive structures. Search 

for efficient photoinitiating systems was not limited to purely organic compounds and metal 

complexes were also studied such as gold complexes[233] iridium complexes,[234–242] zinc 

complexes,[243] copper complexes,[244–262] gold complexes[233] or iron 

complexes.[246,263,264] Various structures have been examined as solar photoinitiators,[1,3–

7,140,169,265–267] as water-soluble structures,[66,71,125,200,211,268–271] or as 

photobleachable photoinitiators.[124,176,216,272] With aim at generating initiating species, 

two main mechanisms of photoinitiation exists. The first one relies on dyes capable to 



homolytically cleave upon photoexcitation. Such photoinitiators are named Type I 

photoinitiators. In this field, benzoin derivatives, acyloximino esters, trichloromethyl-S-

triazine glyoxylates, oxime esters, benzylketals, hexaaryl biimidazoles (HABIs), phosphine 

oxides, α-haloacetophenones, α-aminoalkylacetophenones, hydroxyacetophenones, or o-

acyl-α-oximino ketones were the most extensively studied.[273–275] Interest of this approach 

relies in the fact that Type I photoinitiators are monocomponent photoinitiating systems, 

greatly simplifying the elaboration of the photocurable resins. However, due to an 

irreversible cleavage upon irradiation and the consumption of photoinitiators during the 

polymerization process, a decrease of the photoinitiators concentration is detected over time, 

adversely affecting the efficiency of the polymerization process (See Scheme 1). This issue 

can be addressed with Type II photoinitiators as these photoinitiators can be used in catalytic 

amount. As drawback, Type II photoinitiators are not capable to initiate any polymerization 

alone so that the presence of additives is required to generate initiating species.[276] These 

molecules can produce radicals by hydrogen abstraction from aromatic ketones in the 

presence of hydrogen donors or by photoinduced electron transfer with onium 

salts.[106,188,193,277–281] 

 
Scheme 1. Radical generation with Type I and Type II photoinitiators. 

 In the search for new structures, bopidy i.e. boron dipyrromethene or 4,4-difluoro-4-

bora-3a,4a-diaza-s-indecene) have been identified as soon as 2000 as potential photoinitiators 

of polymerization.[282] These compounds are characterized by the presence of a BF2 group 

connected to the dipyrromethene core. Bodipys are extensively used as fluorescent dyes for 

bioimaging, chemosensing and photodynamic therapy.[283,284] Bodipys are also used in 

organic electronics such as light-absorbing materials for dye-sensitized solar cells,[285–287] 

chromophores for nonlinear optical applications,[288,289] or as light-emitting materials for 

organic light-emitting diodes [290–293] so that chemistry of bodipys is well established, 

facilitating the development of bodipys devoted to photopolymerization. In this review, an 

overview of the different bodipys reported to date is provided. Considering that bodipys are 

investigated since 2000 as photoinitiators of polymerization, numerous comparisons have 

been established with reference compounds, enabling to estimate the real interest of these 

structures. It has to be noticed that a few examples of surface patterning were also reported 



in the literature with bodipys conveniently modified for reacting via a click chemistry 

mechanism.[85,294,295] More recently, bodipys were also used as molecular rotors enabling 

to monitor two-photon polymerization using fluorescence lifetime measurements.[296] These 

points will not be discussed in this review. Parallel to bopidys which are the most recognized 

boron difluoride complexes, other difluoroborane derivatives were also examined as 

photoinitiators of polymerization such as 2-phenacylbenzoxazole difluoroboranes, boranils 

and squaraine-derived structures, evidencing the intense research activity existing around 

difluoroborane derivatives. 

 

2. Bodipys as visible light photoinitiators of polymerization 

2.1. Bodipys in multicomponent photoinitiating systems 

 The first reports mentioning the use of bodipys as photoinitiators of polymerization 

were concomitantly reported in 2000 by Yamaoka[282] and Kitamura.[297] Additional 

studies were subsequently carried out in 2003 by Sastre and coworkers on the same bodipys 

in order to get a deeper insight into the photophysical properties.[298] In combination with a 

radical generating reagent i.e. 3,3',4,4'-tetrakis(tert-butylperoxycarbonyl)benzophenone 

(BTTB), two bodipys were used as photosensitizers, namely 2,8-diethyl-1,3,5,7,9-

pentamethylbipyrromethene difluoroborate (EBP) and 1,3,5,7,9-pentamethylbipyrromethene 

difluoroborate (HBP) for the free radical polymerization of acrylates (See Figure 2). Using a 

laser emitting at 532 nm, photoresists polymers could be prepared. Interestingly, by 

replacing the peripheral hydrogens of HBP by ethyl groups in EBP, photosensitivity of the 

resins could be greatly improved. Comparison with benchmark photoinitiators also revealed 

the sensitivity of the two bodipys to be higher than that of 3,3’-carbonylbis(7,7’-

diethylaminocoumarin) (KCD) and 3-(2-benzimidazolyl)-7-(diethylamino)coumarin (C7) 

(See Figure 2), evidencing the interest to investigate such structures.[299] 

In 2003, Fimia and coworkers developed an interesting approach for the 

photopolymerization of dry polymeric films using EBP as the radical initiator.[300] 

Holographic recording materials could be prepared in a simple way using a laser as the light 

source, poly(methyl methacrylate) (PMMA) as the binder, 2-hydroxyethylmethacrylate 

(HEMA) as the monomer and EBP as the photoinitiator. In 2006, EBP and HBP were revisited 

with a new bodipy i.e. EPP and used as photosensitizers for another photoacid generator 

namely N-hydroxynaphthalimide (NIOTf) (See Figure 2).[301] In this work, evidence of an 

electron transfer occurring from the singlet excited state of bodipys towards NIOTf was 

demonstrated. By electron spin resonance (ESR), formation of the radical cations of bodipys 

was also detected, providing an additional proof of a photoinduced electron transfer 

occurring from the photosensitizer to NIOTf. By using the appropriate binder polymer, the 

two-component EPP/NIOTf system proved to be efficient for printing technology using an 

argon ion laser as the light source. 



 
Figure 2. Chemical structures of different EPP, different benchmark photoinitiators used as 

reference compounds and different additives. 

 In 2022, a new bodipy ABA exhibiting a long-living triplet excited state by mean of a 

spin-orbit charge transfer intersystem crossing (SOCT-ISC) was proposed for the design of 

holographic recording materials (See Figure 3).[302]  

 

Figure 3. Chemical structures of ABA and I2BDP. 

From the photophysical mechanism viewpoint, a photoinduced electron transfer can 

be promoted between the peripheral electron-donating anthracenyl groups of ABA towards 

the central electron-deficient bodipy core, leading to the formation of a charge-transfer state 

(1CT) which can be subsequently converted as a triplet excited state (T1) by charge 

recombination.[303,304] Using this strategy, a triplet excited state as long as 3.65 ns could be 

determined in toluene. Noticeably, this molecule exhibited a strong solvatochromism both in 

absorption and emission. Thus, if a Stokes shift of only 46 nm was determined in toluene, 

this value increased up to 125 nm in acetonitrile. Similarly, an important variation of the 

triplet excited state lifetimes was demonstrated since this value decreased to only 1.13 ns in 

acetonitrile contrarily to 3.65 ns in toluene. Such variations are indicative of an 

intramolecular electron transfer existing between the peripheral anthracene moiety and the 

electrodeficient bodipy core.[305,306] Interestingly, ABA was proposed as the first heavy-

atom-free SOCT-ISC photosensitizer that can efficiently operate in the solid state in 

combination with N-phenylglycine (NPG) for the free radical polymerization (FRP) of 

acrylates devoted to the holographic recording of diffractive structures. A high diffraction 



efficiency up to 87% with a 220–260 mm thickness was determined using an energy exposure 

of 35 J/cm² and the two-component ABA/NPG system. These values are comparable to that 

obtained with the reference diiodo compound (I2BDP). 

In 2010, the first bodipy-based photoinitiating systems activable in less energetic 

conditions were proposed by Fouassier and coworkers.[307] In this work, a Xe lamp (I = 200 

W) could be used to initiate the polymerization process. In order to reach a high monomer 

conversion, three-component systems based on HBP or EPP, ethyl 4-dimethylaminobenzoate 

(EDB) and triazine A (2-(4-methoxyphenyl)-4,6-bis(trichloromethyl)-1,3,5-triazine (TA) as the 

co-initiators were designed and tested as photoinitiating systems for the free radical 

polymerization (FRP) of ethoxylated bisphenol A diacrylate (EBPDA) (See Figure 2). 

Surprisingly, the two-component dye/EDB systems could promote the FRP of EBPDA using 

EPP and HBP as the photosensitizers, but only slow polymerization processes and low 

monomer conversions could be determined, despites the formation of α-aminoalkyl radicals 

on EDB. Better monomer conversions and higher polymerization rates were obtained with 

the two-component dye/TA systems. Considering that EPP and HBP can both interact with 

the two additives to form initiating radicals, the design of three-component photoinitiating 

systems was thus investigated. After optimization of the conditions, a molar ratio of 1/5 for 

EDB/TA was identified as the best ratio for the two additives. Using these conditions, 

conversions of 74.1 and 76.5% were respectively determined with the three-component 

EPP/EDB/TA (0.1%/0.4%/5.5% w/w/w) and HBP/EDB/TA (0.1%/0.4%/5.5% w/w/w) systems 

after 15 min. of irradiation with a Xe lamp (See Table 1). 

 

Table 1. Composition of the resins using different photoinitiators and two-component 

photoinitiating systems, final monomer conversions obtained after 15 min of irradiation and 

inhibition time during the polymerization experiments. 

Run 
Dye 

(%) 

EDB 

(%) 

TA 

(%) 

Molar Ratio 

EDB/TA 
Inhibition Time (s) 

Final  

Conversion (%) 

EPP 1 0.1 2.5 – – n.m.a 28.6 

EPP 2 0.1 – 1 – 10.7 42.1 

EPP 3 0.1 2.5 1 5/1 8.4 50.3 

EPP 4 0.1 1.1 2.3 1/1 4.0 56.6 

EPP 5 0.1 0.4 5.5 1/5 2.4 74.1 

HBP 1 0.1 2.5 – – n.m.a 18.2 

HBP 2 0.1 – 1 – 15.1 29.3 

HBP 3 0.1 2.5 1 5/1 6.3 58.6 



HBP 4 0.1 1.1 2.3 1/1 4.0 50.1 

HBP 5 0.1 0.4 5.5 1/5 1.5 76.5 

a n.m.: not measurable. 

 Considering that bodipys interact both with TA and EDB, two possible mechanisms 

were proposed by the authors (See Figure 4). First, an oxidative pathway resulting after 

photoexcitation to the formation of the dye•+ radical cation and TA•- radical anion 

(mechanism A). After cleavage of the TA•- radical anion, TA(-Cl)• radicals are formed, capable 

to initiate the FRP. In the presence of an amine (EDB), the dye•+ radical cation can be reduced 

to its initial redox state, regenerating the photosensitizer and enabling to introduce it in 

catalytic amount. Finally, EDB•+ can decompose, producing EDB(-H)• radicals. Parallel to this 

first mechanism, a second one was also proposed, consisting in a reductive pathway 

(mechanism B). If the radical anion of the dye (dye•-) is produced in first step, the same 

initiating radicals (EDB(-H)• and TA(-Cl)•) than that proposed in the mechanism A are in turn 

formed. 

 

Figure 4. The two possible three-component photoinitiating systems occurring with the 

dye/EDB/TA systems. Reproduced with permission of Ref. [307] 

This is only in 2012 that Fouassier and coworkers investigated the first bodipy-based 

photoinitiating system activated under low light intensity for the polymerization of cationic 

monomers and acrylate/divinyl ether blends (See Figure 5).[87] In that work, a laser diode 

emitting at 473 nm and displaying an intensity of 100 mW/cm² was used. The bodipy (PM) 

used in this study exhibited a broad absorption extending between 400 and 550 nm, with an 

absorption maximum peaking at 495 nm. When tested as a photosensitizer in combination 

with Iod1 and Iod2 for the cationic polymerization (CP) of (3,4-epoxycyclohexane)methyl 

3,4-epoxycyclohexyl-carboxylate (EPOX), excellent polymerization profiles could be obtained 

with the two-component systems whereas no polymerization could be obtained with PM, 

Iod1 or Iod2 alone, evidencing the crucial role of the photosensitizer in the mechanism of 

radical generation. 

Mechanism A                                                                          Mechanism B



 

Figure 5. Chemical structures of PM, different monomers and additives. 

 Using the two-component PM/Iod1 (0.2%/3.5% w/w) system, a conversion of 40% 

could be obtained after 400 s of irradiation. By using the PM/Iod2 (0.2%/3% w/w) system, a 

conversion of 55% could be determined. Interestingly, higher EPOX conversions could be 

obtained with Iod2 compared to Iod1 and this improvement of monomer conversions was 

assigned to the lower nucleophilicity of tetrakis(pentafluorophenyl)borate ((C6F5)4B−) 

compared to hexafluorophosphate (PF6−), enabling a faster propagation of the polymerization 

reaction. This trend of reactivity was confirmed with another monomer, namely 

(epoxycyclohexylethyl)methylsiloxane-dimethylsiloxane copolymer (EPOX-Si). Finally, a 

breakthrough could be obtained in terms of monomer conversion by adding 

tris(trimethylsilyl)silane ((TMS)3SiH) as a second additive. In the case of the PM/Iod2 

(0.2%/3% w/w) system, addition of 3 wt% of (TMS)3SiH enabled to increase the EPOX 

conversion from 55% up to 90% (See Figure 6). This improvement of monomer conversion 

was assigned to the presence of an additional source of cationic species i.e. the silylium 

cations (in addition to the PM•+ radical cation formed by the two-component system) in the 

case of the three-component systems that can be produced according to the mechanism 

depicted below.  

PM → *PM(hν)      (1) 

*PM + Ar2I+ → PM•+ + ArI +Ar•    (2) 

Ar• + (TMS)3Si-H → Ar-H + (TMS)3Si•   (3) 

(TMS)3Si• + Ar2I+ → (TMS)3Si+ + ArI + Ar•  (4)  

  



 

Figure 6. Photopolymerization profiles of EPOX using a laser diode emitting at 473 nm with 

different photoinitiating systems: (1) PM (0.2% w/w); (2) Iod1 (2% w/w); (3) PM/Iod1 

(0.2%/2% w/w); (4) PM/Iod1 (0.2%/3.5% w/w); (5) PM/Iod2 (0.2%/3% w/w); and (6) 

PM/Iod2/(TMS)3SiH (0.2%/3%/3% w/w). Reproduced with permission of Ref.[87] 

 By using triethyleneglycol divinyl ether (DVE-3) as the monomer, high monomer 

conversions could be obtained with the two-component PM/Iod1 (0.2%/2% w/w) system. In 

this case, a conversion as high as 95% could be determined within 25 s upon irradiation with 

a laser diode at 473 nm in laminate. Among the most interesting results and considering that 

radicals and cations are concomitantly produced by the photoinitiating system, the 

formation of interpenetrated polymer networks resulting from both the FRP of 

trimethylolpropane triacrylate (TMPTA) and the CP of DVE-3 was examined. Interestingly, 

crosslinked TMPTA/DVE-3 polymer networks could be produced while maintaining a 

remarkable DVE-3 conversion (around 85% vs. 100% when polymerized alone) (See Figure 

7). In the case of TMPTA, an improvement of the monomer conversion was even detected 

(55% vs 30% alone) during the formation of interpenetrated polymer networks (IPNs). To 

support the enhancement of the TMPTA conversion during the formation of the 

TMPTA/DVE-3 polymer networks, formation of a vinyl ether/acrylate copolymer resulting 

from the electrophilic character of the acrylate radicals that can add on the electron rich vinyl 

ether was suggested. By this dual polymerization mode and this additional consumption of 

TMPTA by copolymerization with DVE-3, a higher TMPTA conversion could thus be 

observed. 

 



Figure 7. Photopolymerization profiles of a TMPTA/DVE-3 blend (50%/50%) using the 

PM/Iod1 initiating system (0.2%/3% w/w): (1) conversion of TMPTA and (2) conversion of 

DVE-3. Laser diode at 473 nm in laminate. Reproduced with permission of Ref.[87] 

 In 2013, an interesting structure/performance relationship was proposed for a series 

of seven bodipys (BDP-1-BDP-7) differing by the substitution pattern of the aromatic ring but 

also by the substituents introduced on the pyrromethene sides (See Figure 8).[86] By varying 

the substitution, dyes displaying absorption maxima located at 496 nm in acetonitrile for 

BDP-2 and BDP-4 up to 532 nm for BDP-6 could be determined (See Table 2). Considering 

that all dyes absorb in the 400-600 nm range, these bodipys were thus ideal candidates for 

the CP of epoxy, vinyl ether and epoxy-silicone monomers upon irradiation at 457, 473 and 

532 nm. Influence of the substitution pattern was notably evidenced during the 

determination of the free energy changes ΔG. Indeed, if negative values of ΔG were 

determined for the dye/Iod2 systems, highly favorable electron transfers were determined 

for BDP-2 (-1.07 eV) whereas the ΔG values were reduced to only -0.5 eV for BDP-1 and 

BDP-6. By modifying the substitution pattern, structures of bodipys were determined as 

having a higher influence on the oxidation potentials than on the absorption properties. 

Using the dye/Iod2 systems at 473 nm, excellent DVE-3 conversions of 90, 80 and 65% were 

respectively obtained with BDP-2, BDP-1 and BDP-6. Conversely, low conversions were 

determined with BDP-3 and BDP-4, the conversions not exceeding 25% after 200 s of 

irradiation with the laser diode. These trends were confirmed during the 

photopolymerization experiments done at 457 and 532 nm. Here again, no polymerization 

processes could be initiated with the dyes alone or Iod2.  Considering that no polymerization 

process could be initiated with the dyes alone, the formation of Ar-VE+ (with VE standing for 

vinyl ether group) as the initiating species with the two-component dye/Iod2 system was 

proposed and formed according to the mechanism depicted below (see equations 5-8, for 

clarity acronym of DVE-3 has been reduced to vinyl ether (VE) in the mechanism). 

dye → *dye(hν)      (5) 

*dye + Ar2I+ → dye•+ + ArI +Ar•    (6) 

Ar• + VE → Ar-VE•      (7) 

Ar-VE• + Ar2I+ → Ar-VE+ + ArI + Ar•  (8)  

Especially, the participation of a radical pathway in equations 6-8 is in agreement 

with the higher monomer conversions obtained in laminate than under air. Indeed, oxygen 

can contribute to convert carbon-centered radicals as inactive peroxyls radicals, adversely 

affecting the polymerization process.[308–311] 



 

Figure 8. Chemical structures of dyes BDP-1- BDP-7. 

Table 2. Absorption maxima of dyes 1-7 in acetonitrile. 

Dye BDP-1 BDP-2 BDP-3 BDP-4 BDP-5 BDP-6 BDP-7 

λmax (nm) 504 496 498 496 512 532 508 

 

 Upon addition of N-vinylcarbazole (NVK), an improvement of the monomer 

conversion was detected for the different three-component dye/Iod2/NVK systems and 

assigned to the formation of an additional source of cations. As shown in equations 9 and 10, 

aryl radicals can react with NVK, producing Ar-NVK• radicals that can be subsequently 

oxidized by the iodonium salt, producing Ar-NVK+ cations. The concomitant presence of Ar-

NVK+ and Ar-VE+ both contribute to improve the monomer conversion. 

Ar• + NVK → Ar-NVK•      (9) 

Ar-NVK• + Ar2I+ → Ar-NVK+ + ArI + Ar•   (10)  

 As interesting properties of these photoinitiating systems, a good photobleaching 

could be evidenced with these systems, demonstrating the interest of this family of bodipys 

to produce colorless coatings. Indeed, from the industrial viewpoint, the possibility to 

produce colorless coatings is determinant for numerous applications.[124,176,272] Finally, 

the cationic polymerization of EPOX was also examined under air, still upon irradiation at 

473 nm with a laser diode. Using BDP-2 in the two-component BDP-2/Iod2 (0.2%/2% w/w) 

system, a conversion of 65% was determined after 200 s of irradiation. 



 The bodipy/iodonium salt combination was extensively studied in the literature and 

different monomers were used. For instance, by using BODIPY-1 and BODIPY-2, the cationic 

polymerization of bisphenol-A epoxy resin (diglycidyl ether of bisphenol A (DGEBA)) could 

be efficiently promoted upon irradiation with a halogen lamp (25 mW/cm²) but also upon 

irradiation at 460 and 540 nm using filters (See Figure 9).[312] Indeed, despites different 

substitutions, BODIPY-1 and BODIPY-2 showed similar absorption maxima located at 504 

and 511 nm in dichloromethane respectively, with an absorption spectrum extending up to 

550 nm. 

 
Figure 9. Chemical structures of BODIPY-1, BODIPY-2 and DGEBA. 

 Using the two-component dye/Iod1 (1%/2% w/w) systems for the CP of DGEBA, 

higher monomer conversions were obtained with BODIPY-1 than with BODIPY-2. Indeed, 

after 700 s of irradiation with a halogen lamp, a conversion of ca 65% could be obtained with 

BODIPY-1 whereas this value decreased to only 50% for BODIPY-2. Upon irradiation at 460 

nm (I = 17.5 mW/cm²) and 540 nm (I = 15 mW/cm²), lower monomer conversions were 

obtained than with the halogen lamp and conversions around 20% were determined after 

700 s of irradiation with the two-component BODIPY-1/Iod1 (1%/2% w/w) system. 

 In 2022, Ortyl and coworkers revisited HBP as an additive for a photocurable resin 

dedicated to 3D printing and already containing a photosensitizer i.e. diphenyl(2,4,6-

trimethyl-benzoyl)phosphine oxide (TPO) (See Figure 10). Notably, the authors examined the 

influence of HBP on the polymerization rate, the polymerization shrinkage as well as the 

resolution of the final 3D-printed objects.[313] For the photopolymerization experiments 

done at 405 nm, a mixture of monomers was used, namely, trimethylolpropane triacrylate 

(TMPTA), ethoxylated bisphenol A diacrylate (EBPDA) and isobornyl acrylate (IBOA) in a 

weight ratio of 1:2:7 (See Figure 10). Interestingly, in thin films (25 µm), an increase of the 

acrylate conversions was obtained upon addition of HBP. The conversions increased from 

55% for the reference photoinitiating system up to 61.5% upon addition of HBP (0.1 wt%). 

An opposite situation was found for thick films (0.5 mm), attributable to an inner filter effect 

adversely affecting the light penetration within the photocurable resin. In this case, a 

conversion of 74.5% was obtained for the resin containing HBP contrarily to 82% for the 

reference system. As a result of this slower polymerization rate combined with a lower 



monomer conversion, a severe reduction of the polymerization shrinkage was also 

evidenced for the sample containing HBP (4.6% vs 5.4% shrinkage for the reference resin). 

Considering that the volumetric shrinkage is responsible of a decrease in the precision of the 

printed models, all 3D printed objects prepared with the resin containing HBP as an additive 

exhibited lower deformations than the objects prepared with the reference resin. 

 

Figure 10. Chemical structures of different monomers and TPO. 

 Among the most interesting results of these last few years, the possibility to initiate a 

polymerization in the near infrared range with bodipys was examined. This point was 

notably examined in 2019 by Lalevée and coworkers with two different bodipys i.e. 

Bodipy_1 and Bodipy_2 (See Figure 11).[229] In order to reach a sufficient monomer 

conversion, a four-component photoinitiating system was used, namely dye/iodonium 

salt/phosphine/thermal initiator (0.1%/3%/2%/2% w/w/w/w). In that work, Blockbuilder® 

MA was selected as the thermal initiator, bis(4-tert-butylphenyl)iodonium 

hexafluorophosphate (Iod3) as the iodonium salt and 4-(diphenylphosphino)benzoic acid 

(dppba) as the phosphine. Indeed, the FRP of acrylate being exothermic, addition of a 

thermal initiator in the resin enabled to take advantage of the exothermicity of the 

polymerization process, inducing the thermal decomposition of Blocbuilder® MA and 

introducing an additional source of initiating radicals within the resin. By the concomitant 

occurrence of the photochemical and the thermal modes, high monomer conversions could 

be achieved. From the absorption viewpoint, the two dyes exhibited similar absorption 

maxima, located at 500 and 492 nm respectively in acetonitrile (See Table 3 and Figure 12). 

Once again, it demonstrates that the group introduced at the bridgehead position of bodipys 

has only a slight influence on the position of the absorption maxima. 

 
Figure 11. Chemical structures of Bodipy_1, Bodipy_2, 4-dppba, Iod3, Blocbuilder® MA and 

the mixture of monomers Mix-MA. 



Noticeably, by replacing acetonitrile as the solvent by the mixture of monomers (Mix-

MA) and additives used during the polymerization process, nearly a 3-fold enhancement of 

the molar extinction coefficients could be determined at 785 nm, whereas a twofold increase 

of the molar extinction coefficients was detected at 940 nm for Bodipy_1. It therefore 

demonstrates the crucial importance to determine the optical properties of the 

photoinitiating systems in conditions as close as those used during the polymerization 

process. 

 

Figure 12. UV-visible absorption spectra of Bodipy_1 (1) and Bodipy_2 (2) in acetonitrile. 

Reproduced with permission of Ref. [229] 

Table 3.  Maximum absorption wavelengths in acetonitrile and molar extinction coefficients 

at different wavelengths in acetonitrile or in Mix-MA in the presence of the different 

additives.  

 λmax 

(nm) 

ɛ (λmax) 

(L.mol-1.cm-1) 

ɛ (785 nm) 

in ACN 

(L.mol-1.cm-1) 

ɛ (940 nm) 

in ACN 

(L.mol-1.cm-1) 

ɛ (785 nm)a 

in Mix-MA 

(L.mol-1.cm-1) 

ɛ (940 nm)a 

in Mix-MA 

(L.mol-1.cm-1) 

Bodipy_1 500 18980 300 250 840 510 

Bodipy_2 492 68080 170 100 n.d.b n.d.b 
a: in presence of the polymerization additives: Iod3 (3 w%), 4-dppba (2 w%), BlocBuilder® 

MA (2w%). b n.d.: not determined. 

 Despites the low molar extinction coefficients both at 785 and 940 nm, this absorption 

was however sufficient to initiate a polymerization and the two dyes could promote the FRP 

of Mix-MA (a mixture composed of 33.3 wt% of (hydroxypropyl)methacrylate (HPMA), 33.3 

wt% of 1,4-butanediol dimethacrylate (1,4-BDMA) and 33.3 wt% of a urethane 

dimethacrylate monomer (UDMA)). As shown in the Table 4, higher monomer conversions 

were determined at 785 nm than at 940 nm, consistent with a reduction of the molar 

extinction coefficients for the two dyes at longer wavelength. Interestingly, if the two 

bodipys could be used as photosensitizers for initiating the FRP of Mix-MA, the 
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photothermic effect that can produce NIR dyes was also beneficial for inducing the cleavage 

of a thermal initiator. Considering that the polymerization of acrylates is exothermic, the 

decomposition of Blocbuilder® MA could be induced. Parallel to this, phosphines are well-

known to exhibit excellent properties to overcome oxygen inhibition.[308,309,314] In the 

present case, dppba can convert the unreactive peroxyl radicals ROO● as alkoxyl radicals 

RO●, enabling in turn to regenerate initiating species (See equations 11-16). 

dye → *dye (hν)    (11) 

*dye + Ar2I+ → dye●+ + Ar● + ArI  (12) 

Ar● + monomer → polymer + Δ  (13)   

Blocbuilder + Δ → free radicals  (14) 

ROO● + PAr3 → ROO-P●Ar3 (r4)  (15) 

ROO-P●Ar3 → RO● + O=PAr3 (r5)  (16) 

 

Table 4. Final monomer conversions obtained during the FRP of Mix-MA under air in the 

presence of dye/Iod3/4-dppba/BlocBuilder® MA (0.1%/3%/2%/2% w/w/w/w) upon 

irradiation with a Laser Diode at 785 nm or 940 nm; thickness = 1.4 mm. 

 785 nm 940 nm 

 Final 

conversion 

Time to reach the 

final conversion 

Final conversion Time to reach the 

final conversion 

Bodipy_1 86% 196 s 84% 85 s 

Bodipy_2 92% 356 s 60% 405 s 

 

Recently, Page and coworkers examined different bodipys as photocatalysts of 

polymerization and this approach is relatively unusual for this family of compounds.[315] A 

structure/performance relationship could be established with a series of four bodipys bearing 

a mesitylene group at the bridgehead position and different halogens on the dipyrromethene 

sides (See Figure 13). It has to be noticed that BDP-4 and BDP-6 were previously examined in 

photopolymerization but not in the context of catalytic photoinitiating systems. 



 

Figure 13. Chemical structures of different bodipys used as photocatalysts of polymerization. 

Notably, the authors focused on halogens as the substituents for bodipys due to the 

well-known “heavy atom effect” attributed to halogen atoms that enables to enhance the 

spin-orbit coupling and thus favor the intersystem crossing (ISC) between the singlet and 

triplet excited state, resulting in long-lived triplet excited states.[316] In fact, triplet lifetimes 

of 370 ns could be determined for all halogenated bodipys. Parallel to this, halogens were 

also used as substituents enabling to efficiently tune the absorption properties of the dyes. 

Thus, a redshift of the absorption could be evidenced for all halogenated bodipys compared 

to the reference compound and absorption maxima located at 497, 523, 523 and 529 nm could 

be respectively determined for BDP-4, Mes-Cl, BDP-6 and Mes-I. To evidence the interest of 

these structures, isobornyl acrylate (IBOA), 2-hydroxyethyl acrylate and N,N-

dimethylacrylamide were used as the monomers. The different dyes were mixed with 2-

(butyryloxy)-N,N,N-trimethylethan-1-aminium butyltriphenylborate (BTEAB) as a donor 

initiator and [4-(octyloxy)phenyl](phenyl)iodonium hexafluoroantimonate (Iod4) as the 

acceptor initiator (See Figure 13). Noticeably, by using the three-component system for the 

FRP of IBOA upon irradiation at 530 nm with a LED (I = 16 mW/cm²), a two-fold 

enhancement of the polymerization rate was detected with the halogenated bodipys 

compared to the none-halogenated one. Additionally, a good correlation was established 

between the atomic number of the heavy atom and the polymerization rate. Thus, 

polymerization rates of 0.43, 0.91 and 0.95 M/s were determined for the three-component 

systems comprising Mes-Cl, BDP-6 and Mes-I. With the four tested photoinitiating systems, 

final monomer conversions of 80% were determined with IBOA, corresponding to the 

maximum conversion for this monomer. Fluorescence quenching experiments enabled to 

elucidate the mechanism and the different bodipys showed a higher ability to accept an 

electron from a donor than to donate an electron to an acceptor. It was thus concluded that 

the reductive pathway was the main mechanism producing initiating radicals, namely a 

radical anion of the bodipy and a butyl radical issued from the oxidization of the 



triphenylalkylborate salt.[317] The mechanism depicted in the Figure 14 was proposed by the 

authors.  

 

Figure 14. Photocatalytic system occurring with the three-component photoinitiating system. 

 Two aza-bodipys were also designed and synthesized, namely Aza-H and Aza-Br, in 

which the mesityl group at the meso bridgehead position of the Mes-X series was replaced 

by a nitrogen atom and electron donating groups were also introduced as peripheral groups 

(See Figure 15).[315] By applying this structural modification, a redshift of the absorption 

maxima by ca 135 nm could be achieved compared to the previous series. Thus, an 

absorption maximum at 660 nm was determined for Aza-Br, redshifted compared to that of 

the analogue BDP-6 (525 nm). Consequently, polymerization tests could be carried out at 656 

and 740 nm. Here again, the benefits of the heavy atom effect in Aza-Br were confirmed. 

Impressively, the polymerization rate of IBOA was eight times faster at 740 nm compared to 

that obtained with Aza-H (0.66 ± 0.03 M/s with Aza-Br vs 0.08 ± 0.02 M/s for Aza-H), by 

using the three-component dye/BTEAB/Iod4 system at 740 nm. Halogenation thus 

constitutes a simple approach to increase the polymerization rate without requiring 

extensive synthetic work. Indeed, halogens can be introduced in good yields in a one-step 

synthesis starting from Aza-H. 

 

Figure 15. Chemical structures of Aza-H and Aza-Br. 

 The remarkable reactivity of Mes-I and Aza-Br in three-component systems were 

confirmed with the low light intensity that could be used to initiate the FRP of IBOA (0.01 

mW/cm² and 1 mW/cm² respectively). Considering that the system is catalytic, low 

photosensitizer contents could also be used and efficient polymerization processes could be 
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maintained for catalyst loadings as low as 0.001 mol% and 0.004 mol% for Mes-I and Aza-Br 

respectively. Such low photocatalyst loadings are exceptional in photopolymerization. 

Finally, interest of these resins was demonstrated by mean of 3D printing experiments. As 

shown in the Figure 16, 3D objects displaying a remarkable spatial resolution could be 

prepared.  

 

Figure 16. 3D objects prepared upon irradiation at 530 nm with a LED using BDP-6 as the 

photosensitizer for the three-component system BDP-6/BTEAB/Iod4 (0.1%/0.2%/2% w/w/w) 

and a mixture of N,N-dimethylacrylamide (DMA)/ trimethylolpropane triacrylate (TMPTA) 

(4/1 w/w) as the resin. (a) photo under room light (b) photo under UV light. Reproduced 

with permission of Ref.[315] 

2.2. Bodipys in monocomponent systems. 

 In all the abovementioned examples, efficient photoinitiating systems could be 

prepared by using multicomponent systems. If the efficiency can’t be denied, the use of three 

or even four-component systems can complexify the elaboration of the resin. Ideally, the use 

of monocomponent photoinitiators is preferred and this goal can be achieved with Type I 

photoinitiators.[117,122,183,221,274,318–328] Concerning Type II photoinitiators, this issue 

can be addressed by designing multifunctional compounds. This point was notably 

investigated by Ortyl and coworkers who developed a series of bodipy-substituted 

iodonium salts differing by the counteranions that could act as one-component systems and 

exhibited panchromatic properties (See Figure 17).[73] 

 

Figure 17. Chemical structures of BOPIDY-based iodonium salts. 



Absorption properties of these iodonium salts were remarkable by the broadness of 

the absorption spectra as well as the molar extinction coefficients at absorption maxima. 

Indeed, all BODIPYs exhibited an absorption extending between 250 and 600 nm so that 

photopolymerization experiments could be performed at 365, 405, 420, 450, 455, 470, 490, 505 

and 530 nm (See Figure 18 and Table 5). Molar extinction coefficients as high as 28 076 M-

1.cm-1 for HBP-IOD-TsO up to 31 620 M-1.cm-1 for HBP-IOD-PF6 could be determined in 

acetonitrile. 

 

Figure 18. UV-visible absorption spectra of mono-component iodonium salts recorded in 

acetonitrile. Reproduced with permission of Ref. [73] 

Table 5. Optical characteristics of a series of monocomponent iodonium salts at the 

absorption maximum and at different irradiation wavelengths. 

 λmax 

(nm) 

εmax 

(M-1.cm-1) 

ε365 ε405 ε420 ε450 ε455 ε470 ε490 ε505 ε530 

chromophore used to conjugate iodonium salts 

HBP 486 22115 2955 547 1070 6399 9025 15332 21585 7703 149 

Cationic photoinitiators 

HBP -IOD-TSO 474 28076 3861 4257 7145 19209 21218 27227 22515 11979 2997 

HBP -IOD-PF6 476 31620 4204 4657 7699 20412 22442 30047 21650 11454 5536 

HBP -IOD-SbF6 475 30869 3950 4629 7570 20040 22122 29748 20393 10770 4057 

HBP -IOD-

CF3SO3 

474 28599 3757 4461 7308 19165 21012 27663 18677 10021 4089 

 

 Photolysis experiments revealed several important trends. First, the photolysis rates 

were determined as being directly related to the molar extinction coefficients of the salts at 

the irradiation wavelengths. Thus, at 530 nm, no photolysis could be detected at 530 nm for 

the different salts due to their low molar extinction coefficients at this wavelength (See 

Figure 19). Secondly, photolysis rates were strongly influenced by the counter-anions used to 

prepare the iodonium salts. Notably, by increasing the anion size, nucleophilicity of the 

HBP

HBP-IOD-TsO

HBP-IOD-PF6

HBP-IOD-SbF6

HBP-IOD-CF3SO3



anion could be reduced, speeding up the photolysis. This trend evidenced during the 

photolysis experiments was confirmed during the polymerization experiments. 

 

Figure 19. Dependence A/A0 at 476 nm during the photolysis of HBP-IOD-PF6 upon 

irradiation with different diodes emitting at 365, 405, 420, 455, 470, 490, 505 and 530 nm. 

Reproduced with permission of Ref. [73] 

 Considering that the iodonium salts are asymmetrically substituted, the 

fragmentation mechanism was investigated by theoretical calculations. These calculations 

revealed the photodissociation of the different iodonium salts to occur on the phenyl side as 

a result of a lower bond dissociation energy (BDE) (32.44 kcal/mol on the phenyl side vs. 

69.25 kcal/mol on the BODIPY side) (See Figure 20).  

 

Figure 20. Dissociation mechanism of the BODIPY-based iodonium salts. Reproduced with 

permission of Ref. [73] 

 During the photopolymerization experiments, the cationic polymerization (CP) of 3,4-

epoxycyclohexylmethyl-3’,4'-epoxycyclohexanecarboxylate (EPOX) and triethylene glycol 

divinyl ether (TEGDVE) was examined. A good correlation between monomer conversions 

and molar extinction coefficients at the irradiation wavelengths was determined. In the case 

of EPOX, the highest conversions were obtained at 405 and 450 nm, with conversions of 79 

and 70% respectively after 900 s of irradiation using HBP-Iod-PF6 (3 wt%) as the 

photoinitiator. As interesting feature, a dark polymerization process could be detected and 

7.5% of additional conversion could be determined 700 s after the irradiation was interrupted 

using HBP-IOD-PF6 (3 wt%) and upon irradiation at 505 nm for only 200 s. While examining 



the CP of TEGDVE, monomer conversions higher than 90% could be obtained at 365 and 455 

nm (See Table 6). 

Table 6. Monomer conversions obtained during the CP of EPOX and TEGDVE using HBP-

Iod-PF6 (3 wt%) with different light sources. 

monomer ε 

(M-1.cm-1) 

Light sources Intensity of 

LEDs (mW/cm²) 

Conversion (%) 

EPOX 4204 365 nm HP 22.8 64.6 

EPOX 4657 405 nm HP 22.8 79.0 

EPOX 20412 450 nm HP 22.8 70.0 

EPOX 30047 470 nm 12.9 57.2 

EPOX 11454 505 nm 7.9 63.0 

TEGDVE 30047 470 nm 12.9 83.4 

TEGDVE 22442 455 nm 12.9 90.8 

TEGDVE 7699 420 nm 12.9 92.8 

TEGDVE 4657 405 nm 12.9 88.7 

TEGDVE 4204 365 nm HP 12.9 90.8 

TEGDVE 21650 490 nm 5.1 90.5 

TEGDVE 5536 530 nm 6.9 81.6 

TEGDVE 22454 505 nm 7.9 69.3 

Influence of the anions on the polymerization process and the final monomer 

conversions has been extensively reported in the literature. From these different works, a 

scale of reactivity has been proposed for the iodonium salts : BF4- < PF6- < AsF6- < SbF6- < 

B(C6F5)4- < Ga(C6F5)4- [329], and the monomer conversions obtained with the bodipy-based 

iodonium salts were consistent with this scale. As shown in the Figure 21 during the CP of 

TEGDVE, the highest conversion was obtained with HBP-IOD-SbF6 whereas the lowest one 

was determined for HBP-IOD-TsO possessing the most nucleophilic anion of the series. 

Finally, the one-component bodipy-based iodonium salts have been obtained at the cost of 

extensive synthetic works. For this reason, a comparison of the photoinitiating abilities of the 

one-component iodonium salts with the reference two-component HBP/Iod1 system was 

carried out. Comparison of the monomer conversions obtained for HBP-IOD-PF6 at different 

wavelengths with that of the HBP/Iod1 system revealed the monomer conversion to be 

improved by ca 5% for the monocomponent system, therefore justifying the synthetic effort 

done in this work. By the concomitant presence of both the photosensitizer and the iodonium 

salt on a unique molecule, photoinduced electron transfer was facilitated by mean of 

intramolecular interactions. 



 

Figure 21. Polymerization profiles of: (A) TEGDVE and (B) EPOX upon irradiation at 470 nm 

using BODIPY-based iodonium salts differing by the counter-anions. Reproduced with 

permission of Ref. [73] 

 

2.3. Bodipy-based photoacid generators 

 The cationic polymerization of epoxides can be promoted by the generation of cations 

or protons. Molecules that are capable to produce protons upon irradiation are named 

photoacid generators (PAGs) and this family of compounds has been extensively studied in 

the literature.[54,75,76,80,301,318,319,330–337] The first bodipy-based photoacid generators 

(PAG-1 and PAG-2) were proposed in 2020 by Zhang and coworkers (See Figure 22).[338] To 

achieve this goal, sulfonium salts were covalently linked to the bodipy scaffolds. The two 

PAGs showed absorption maxima at 509 and 566 nm in methanol. Due to the extended 

conjugation of PAG-2 compared to PAG-1, a redshift of the absorption maximum was 

logically detected. As drawback, a severe reduction of the photoluminescence quantum 

yields was determined for PAG-2 (ϕ = 0.02), far from that obtained for PAG-1 (ϕ = 0.11). 

Investigations of the photoacid generation quantum yield revealed PAG-1 to be a better 

candidate for photoinitiation since a yield of 7 and 4% were respectively determined. 
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Figure 22. Chemical structures of bodipy-based photoacid generators. 

 Examination of the photoinitiating ability of PAG-2 during the CP of cyclohexene 

oxide revealed the polymerization process to be slow. Indeed, after 30 min. of irradiation at 

595 nm (I = 80 mW/cm²), a conversion of only 21% was determined. However, PAG-1 and 

PAG-2 can be cited as the PAGs exhibiting the most redshifted absorption ever reported in 

the literature, what is remarkable. The proof of concept was done. 

 

 3. Difluoroborane structures other than bodipys 

 3.1. Boranils as visible light photoinitiators of polymerization 

Boranils belongs to the family of borate complexes based on an aniline-imine or a 

salicylaldimine ligand and these compounds have been identified as a promising alternative 

to the traditional bodipys owing to their facile multi-gram scale syntheses and the facile 

tunability of their optical properties.[339,340] The first boranil derivative to be published as 

photoinitiator of polymerization was proposed by Lalevée and coworkers (See Figure 

23).[86] A comparison of its photoinitiating ability with that of BDP-1-BDP-7 was established. 

 

Figure 23. Chemical structure of BRN-1. 

 Compared to BDP-1-BDP-7 that exhibit absorption maxima between 496 and 532 nm, 

BRN-1 showed an absorption spectra blueshifted compared to the previous dyes and an 

absorption maximum located at 400 nm was determined. Polymerization tests revealed BRN-

1 to be more reactive than BDP-1-BDP-7 during the photopolymerization of DVE-3. Indeed, 

if the best conversion was obtained with BDP-2 (90% conversion upon excitation at 473 nm 

for 200 s), a conversion of 100% could be obtained within 10 s at 405 nm with BRN-1 using 

the two-component dye/Iod2 system (See Figure 24). This remarkable photoinitiating ability 

can be put in parallel with the highly favorable free energy change determined for BRN-1 (-

1.15 eV) compared to BDP-2 (-1.07 eV). As observed for BDP-1-BDP-7, a good 

photobleaching could be detected during the polymerization process. This trend was 

confirmed during the CP of EPOX and a conversion of 80% was obtained within the two-

component BRN-1/Iod2 (0.2%/2% w/w) system at 405 nm, higher than that obtained with 

BDP-2 (65% after 200 s of irradiation at 473 nm under air).  



 

Figure 24. Polymerization profiles obtained with (1) Iod2 (2 wt%) and (2) BRN-1/Iod2 

(0.2%/2% w/w) upon irradiation at 473 nm. Reproduced with permission of Ref.[86] 

3.2 2-Phenacylbenzoxazole difluoroboranes 

 Boranils were not the only difluoroborane derivatives to be studied as photoinitiators. 

In 2022, a series of eight boron coordination compounds derived from benzoxazole bidentate 

ligands was proposed by Kabatc and coworkers for the free radical polymerization of 

acrylate monomers (See Figure 25).[84] 

 

Figure 25. Chemical structures of PBX-1-PBX-8 and different additives. 

2-Phenacylbenzoxazole difluoroboranes are a class of fluorescent dyes that are 

extensively used for biomedical applications such as biolabeling[341–343] and 

chemodosimetry.[344] From the absorption viewpoint, the absorption range of 2-

phenacylbenzoxazole difluoroboranes is comparable to that of boranils, with absorption 

maxima ranging between 349 nm for PBX-5 up to 415 nm for PBX-1 comprising the most 

electron donating group of the series (See Table 7 and Figure 26). 

Table 7. Absorption maxima of dyes PBX-1-PBX-8 in acetonitrile. 



Dyes PBX-1 PBX-2 PBX-3 PBX-4 PBX-5 PBX-6 PBX-7 PBX-8 

Substituents 4-NMe2 4-OMe 4-Me 3-Me H 3-OMe 4-Cl 3-Cl 

λmax (nm) 415 359 351 350 349 351 352 350 

 

 

Figure 26. UV-visible absorption spectra of PBX-1-PBX-8 in acetonitrile. Reproduced with 

permission of Ref.[84] 

 Examination of the photoinitiating ability of PBX-1-PBX-8 with different co-initiators 

(tetramethylammonium n-butyltriphenylborate (Bor), Iod1 and N-methoxy-4-

phenylpyridinium tetrafluoroborate (Pyr)) revealed the two-component dye/Pyr to furnish 

the highest monomer conversions, irrespective of the dyes during the FRP of TMPTA upon 

irradiation in the UV–visible range (300-500 nm). The highest monomer conversions (around 

47%) were obtained with PBX-2, PBX-3 and PBX-4 as the photosensitizers.  

 Table 8. Monomer conversions determined with different two-component dye/co-

initiator photoinitiating systems. 

Dyes Bor Iod1 Pyr 

PBX-1 28.2 35.6 39.2 

PBX-2 34.4 25.9 47.7 

PBX-3 38.2 23.3 47.1 

PBX-4 38.3 24.5 47.4 

PBX-5 27.8 25.5 41.4 

PBX-6 35.2 22.6 45.1 

PBX-7 32.3 22.5 36.7 

PBX-8 37.1 21.3 39.2 

 

  Comparison with the reference camphorquinone/N-phenylglycine system[88,345–

347] revealed the different PBX/Pyr systems to furnish slower polymerization rates. 

However, higher monomer conversions could be obtained with the PBX/Pyr systems. Thus, a 



conversion of ca 20% could be obtained with the reference camphorquinone/N-phenylglycine 

system contrarily to 50% of the PBX-1/Pyr system. 

 

3.3. Squaraine-based difluoroborate complexes as visible light photoinitiators of 

polymerization 

 Squaraines have been extensively studied by Kabatc and coworkers as visible light 

photoinitiators of polymerization.[145,348–350] In 2022, they proposed for the first time two 

squaraine-based difluoroborate complexes (BPSQ1 and BPSQ2) and compared their 

photoinitiating abilities to that of their corresponding squaraines (PSQ1 and PSQ2) (See 

Figure 27).[351] Three different co-initiators were used, namely Bor, Iod1 and Pyr. Upon 

formation of the difluoroborate complexes, no significant modification of the absorption 

properties was found since absorption maxima at 560, 569, 560 and 569 nm were respectively 

determined for PSQ1, PSQ2, BPSQ1 and BPSQ2 in THF. Noticeably, examination of their 

solvatochromic properties revealed all dyes to exhibit a negative solvatochromism meaning 

that the excited state is less polar than the ground state due to transfer of electron density 

from donor to acceptor after excitation. Due to this unusual behavior, it was concluded that 

more energy would be required for the excitation of the dyes. 

 

Figure 27. A series of squaraine derivatives used as visible light photoinitiators. 

 This unexpected behavior was confirmed during the FRP of TMPTA. Using PSQ1 and 

PSQ2 as the photosensitizers in combination with the different additives, the highest 

monomer conversions were obtained with the PSQ1/Iod1 and PSQ2/Iod1 combinations. 

However, the conversion was extremely low, around 12% after 20 min. of irradiation with a 

high-pressure mercury lamp. By using the difluoroborate complexes, worse results were 

obtained and the best monomer conversion of 10% was obtained with the BPSQ2/Iod1 

system. Squaraine-based difluoroborate complexes were thus identified as poor candidates 

for photoinitiation, consistent with their unusual negative solvatochromism detected in 

solution. 

 



 

3. Conclusion 

 To conclude, bodipys have been identified as candidates for photopolymerization 

processes done at long wavelengths. Over the years, several strategies have been established 

to design photoinitiating systems. Notably, mono-component systems have been prepared 

by combining within a unique molecule the chromophore and the iodonium moiety. By 

connecting sulfonium groups, photoacid generators could be prepared. The design of 

photobleachable photoinitiating systems could also be obtained, constituting a major 

achievement in the design of visible light photoinitiating systems. However, all 

difluoroborane derivatives are not excellent candidates for photoinitiation. Notably, 

squaraine derivatives and 2-phenacylbenzoxazole difluoroboranes only proved to be poor 

candidates for photoinitiation. Future works will consist in the simplification of the 

photocurable resins. Notably, no Type I photoinitiators have been reported to date with 

bodipys. However, several photocleavable groups can be easily introduced such as oxime 

esters that can be prepared in two steps after introduction of the aldehyde group. In the same 

spirit, glyoxylates can be introduced in one step by a Friedel-Craft reaction while offering a 

high photochemical reactivity. No water-soluble bodipys have been reported yet. In this 

field, several groups can be envisioned for providing water solubility such as 

sulfonates[171,182,269,352] or phosphonic acids.[270,271] Indeed, recent works have 

evidenced these two groups to be the best candidates for water-solubility and to outperform 

other groups such as carboxylates or ammonium groups. By rendering the photoinitiators 

water-soluble, it could pave the way towards greener polymerization conditions. Such 

structures will certainly be proposed in the coming years. 
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