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Abstract—Energy efficiency is key in many embedded systems
in order to reach the best performance on a limited power
budget. In addition, new applications based on neural networks
integrate various processing requirements, leading to the use
of dedicated hardware functions to optimize energy efficiency.
Heterogeneous system-on-chips (SoC) bring together different
computing capabilities, such as the Nvidia Jetson AGX Orin.
This type of SoC includes a CPU for general-purpose processing,
a GPU for intensive data parallelism, and a Deep Learning
Accelerator (DLA) dedicated to neural network processing

Together, these three components enable new latency and
energy consumption trade-offs for Deep-Learning-based applica-
tions. But finding the right configuration to reach the best energy
efficiency is difficult and sometimes counterintuitive. To take this
into account, this paper studies deep neural network design and
inference options for each accelerator. Altogether, the study forms
guidelines to specifically make the best use of the computing and
energy-efficiency capabilities published by manufacturers with
the default TensorRT mapping.

Index Terms—Heterogeneous computing, Convolution Neural
Networks, Low-power inference, DLA, Computer vision, Jetson
AGX Orin

I. INTRODUCTION

Deep Neural Networks (DNNs) applications are constantly
increasing their complexity and integrating new specific layers
for better application performance. While GPUs are widely
used as hardware computing platforms for the inference of
DNNs, they lack the energy efficiency needed to be de-
ployed in embedded systems. Even if GPUs nicely combine
high-performance and programmability, their designs are not
dedicated to AI computing and the resulting energy effi-
ciency would need to be improved. In particular, some high-
performance AI embedded applications require a very high
throughput (hundreds of Tera Operations per Second - TOP/s)
within a constrained power budget, typically below 50 W.

For this reason, we decided to study a heterogeneous
System-on-Chip (SoC) composed of various computing ca-
pabilities in order to respond to the different application
needs and reach better energy efficiency. Among new AI
SoC platforms, the Nvidia Jetson AGX Orin can deliver up
to 270 TOP/s within 50 W and meet the needs of most AI-
embedded systems. This heterogeneous architecture comprises
a CPU for general-purpose processing, a GP-GPU for intensive
data parallelism, and two last-generation fixed-function Deep
Learning Accelerators (DLA). The DLA is an AI accelerator

dedicated to the processing of neural networks. Thus, it is
particularly energy efficient for the execution of DNNs, but
offers less programmability and does not support as many
machine-learning operations as the GPU.

Together, the CPU, the GPU, and the DLA offer new
interesting latency and energy consumption trade-offs for the
inference of DNNs. This paper identifies these potential trade-
offs for different CNN inferences on Jetson AGX Orin depend-
ing on the used accelerator, showing that optimizing energy
efficiency on such a platform is complex and sometimes
counterintuitive.

The contributions of this paper are (1) a benchmark of
various CNNs inferences on the Jetson AGX Orin with a focus
on the energy consumption and latency performances, and (2)
findings on neural network design and inference options to
maximize the latency or the energy for inference on a given
accelerator with the default TensorRT mapping.

The paper is organized as follows. Section II provides an
overview of the leading AI accelerators operating with power
consumption below 60W and describes the Jetson AGX Orin
architecture. Section III introduces each step of the general
neural network deployment workflow, from a high-level lan-
guage description to the inference stage on accelerators. The
measurements and benchmarking methodology is defined in
section IV. The results from different tests are detailed in
section V. Lastly, a conclusion in section VI summarizes the
contributions.

II. AI EMBEDDED ACCELERATORS

A. Related AI hardware accelerators

An AI embedded accelerator is an architecture designed
to accelerate artificial intelligence and machine learning ap-
plications, including DNNs [1], considering SWaP (Size,
Weight, and Power) constraints. Since early computing sys-
tems, application-specific hardware accelerators have been
deployed to complement general-purpose CPUs to perform
specialized tasks more efficiently. Notable hardware accel-
erators include, for instance, Graphics Processing Units or
video decompression accelerators. As deep learning and ar-
tificial intelligence workloads began to have more impact on
global performances, specialized hardware units were devel-
oped or adapted from existing products to accelerate them.
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In the 1990s, Digital Signal Processors (DSPs) [2] and Field-
Programmable Gate Arrays (FPGAs) [3] were used as neural
network accelerators for inference, and Qualcomm began
introducing AI accelerators in smartphones.

CPUs are processors more adapted to thread-level paral-
lelism but can be used for the inference of neural networks.
Because of their genericity and memory hierarchy, they cannot
reach the best energy efficiency, but they remain a very
programmable solution. Some CPU solutions multiply the
number of available cores and can even integrate a specific ISA
extension or data parallel processing units in order to increase
performance. The Kalray MPPA many-core architecture [4]
can be used for the inference of DNNs through OpenCL
programming, even if the best performances are reached when
using their dedicated accelerator.

Embedded GPUs are General-Purpose Graphics Processing
Units (GP-GPUs) adapted to the embedded world with lower
energy consumption. They are specialized hardware for han-
dling image processing and massive data parallel tasks, such
as matrix multiplication. Since their introduction in the 2010s,
they have become increasingly used for machine learning and
the inference of neural networks. GP-GPUs continue evolving
to better execute DNNs by integrating, for instance, more
computing units such as Tensor Cores, and low-precision
operators. The Jetson Orin Nano is currently the most energy-
efficient available Nvidia’s embedded GPU [5].

FPGAs allow fine-grained spatial parallelism and the im-
plementation of dedicated operators. Many computing archi-
tectures can be implemented on a FPGA [6], such as 1D or 2D
arrays [7], SIMD processors [8], or systolic arrays [9]. Direct
mapping of CNN topologies into FPGAs is also possible
through dedicated frameworks such as fpgaConvNets [10].
Depending on the implemented architecture, it will remain a
trade-off between programmability, scaling to complex DNNs,
operators’ accuracy, and frequency performance. FPGAs can
reach high performances in a reduced power budget (inferior
to 30W), leading to better energy efficiency than GP-GPUs.

Neural Processing Units (NPUs) are IP accelerators for
AI that can be found in a hardware component (e.g., Intel
Movidius VPU) or an IP integrated into a SoC (e.g. Apple
Neural Engine). While GPUs and FPGAs perform better than
CPUs for AI processing, dedicated hardware functions can be
10x more energy efficient [11]. Thanks to the integration of
specialized operators, it offers the lowest possible latency and
energy consumption for the inference of a given model. Their
only drawback remains in their programmability and the few
DNN models they can support.

Heterogeneous SoCs composed of a CPU, a GPU, and a
NPU are then interesting to find a better trade-off between
performance/programmability/models support and maximizing
energy efficiency. Nvidia’s Jetson modules family offers many
GPUs combined with more or fewer accelerators to cover low-
powered application use cases. The Jetson AGX Orin module
is described in the next section.

B. Nvidia’s Jetson AGX Orin

Before the Orin series, Jetson Xavier modules were the first
generation of embedded Nvidia boards to work with both GPU
and other AI accelerators. All planned Jetson Orin modules are
now equipped with the latest generations of Nvidia’s Ampere
GPU architecture and AI accelerators. The Jetson Orin has two
versions: with 64 and 32 GB of LPDDR5 RAM at a bandwidth
of 204 GB/s. The 64 GB variant is the one referred to in the
rest of this paper.

The Jetson Orin comprises a 12-core A78 Arm Arch v8.2
CPU at a maximum frequency of 2.2 GHz. It also integrates
one Ampere GP-GPU organized in two Graphic Processing
Clusters (GPCs), each with 16 Streaming Multiprocessors
(SMs). There are 128 CUDA cores and 4 Tensor cores per
SM, for a total of 2048 CUDA cores and 64 Tensor cores
with up to 170 Sparse TOP/s of INT8 Tensor compute, and
up to 5.3 FP32 TFLOP/s of CUDA compute. The CUDA
cores allow Multiply-And-Accumulate (MAC) operations for
general parallel computing tasks and the Tensor cores single
precision MAC operations that can concurrently run with the
CUDA cores for accelerating Deep Learning workload. The
GPU can be programmed through the CUDA library or directly
with CUDA programming language [12].

Moreover, the Jetson Orin integrates two Deep Learning
Accelerators (DLAs), which are fixed-function accelerators
optimized for deep learning operations. The Jetson board’s
2 DLAs are configurable SIMD (Single Instruction, Multi-
ple Data) fixed-point functions capable of 2.5 more power-
efficiency (TOPs/Watt) than the GPU despite a lower compute
capability (105 INT8 Dense TOP/s) [13]. Each DLA 2.0 brings
six computing blocks to support specific operations: convo-
lution, single data point (activation), planar data (pooling),
multi-plane (normalization), and data memory and reshape
operations. Compared to the GPU, the DLA only supports
INT8 and FP16 operations for inference [14].

The Orin consumes between 15 and 60 W and supports
different operating modes. As presented in Table I, it is
possible to adapt the computing power to the maximum energy
constraint of a system. Depending on the activated mode, the
user can vary the number of cores of the CPU and GPU, or
the maximum frequency. This freedom allows more trade-offs
to optimize the energy efficiency for a given application but
makes it more complex to find the right configuration.

TABLE I: Power modes of Jetson AGX Orin

Modes 15W 30W 50W MAXN∗

cores
CPU 4 8 12 12
GPU 3 4 8 8
DLA 2 2 2 2

Maximum
CPU 1113.6 1728 1497.6 2201.6
GPU 420.75 624.75 828.75 1301

frequency (MHz)
DLA 614.4 1369.6 1369.6 1600

∗ Default mode
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III. NEURAL NETWORKS DEPLOYMENT WORKFLOW

The following section describes the tools and strategies
used to infer CNNs on the Jetson AGX Orin. For Nvidia
products, TensorRT framework ensures this deployment to the
final hardware target.

A. TensorRT principles

TensorRT is a Deep Learning inference optimizer and
runtime framework for deep learning applications on all Nvidia
products [15], [16]. To deploy a CNN on the Jetson AGX
Orin, the network goes through successive high-level to low-
level representations with the tools depicted in Figure 1.
The TensorRT tool is involved at the end of the inference
preparation process. A binary engine is built for the inference
invocation with the TensorRT Runtime.

PyTorch

Definition,
Training

ONNX

Standard
definition

TensorRT Builder
+ DLA Compiler

Hardware-specific
optimizations

TensorRT Runtime
+ DLA Runtime

Executable
model

Weights +

Topology

ONNX

format

Binary

Engine

Fig. 1: Inference workflow steps to the Jetson AGX Orin.

During the building phase, TensorRT performs multiple
automatic optimizations depending on the final hardware
targets (GPU or DLA). Table II summarizes the available
optimizations specific to the GPU and DLA with TensorRT.
These optimizations lead to lower inference latency and energy
consumption, more throughput, less memory storage, and
fewer data movements [17]. By default, both the CUDA and
Tensor cores of the GPU are used for the inference. If the
DLA is enabled, TensorRT calls the DLA Compiler Library,
which provides a DLA loadable that will be encapsulated
in the inference engine. In this case, TensorRT makes all
DLA-supported layers run on one DLA and the remaining
unsupported layers fall back on the GPU. Therefore, and
because TensorRT plans executions on only one processing
element at a time, TensorRT builder produces an optimized
inference engine running either: (1) entirely on the DLA (fully
DLA-compatible), (2) sequentially on one DLA and the GPU
(partially DLA-compatible), or (3) on the GPU alone (no
DLA-compatibility or DLA disabled).

DLA 2.0 integrates new capabilities such as softmax activa-
tion, depth-wise convolution, and a hardware scheduler. The
following CNN layers are supported:

• Convolutions (basic, dilated, depth-wise, deconvolution),
• Fully connected layers,
• Pooling layers (max, average),
• Activation layers (ReLUs, Tanh, Sigmoı̈d, Softmax),
• Scale (Batchnorm) and resize layers,
• And other layers such as concatenation, mult, add, sub,

max, shuffle.

This allows the execution of full CNNs as long as it remains
compatible with supported layers and configurations.

B. Existing strategies to leverage TensorRT

Compared to basic inferences with Pytorch, TensorRT op-
timizations bring a significant gain in terms of throughput,
latency, and energy consumption [15]. But optimizing an
application over a very heterogeneous hardware architecture
remains challenging for an automatic workflow. Based on
previous Jetson architectures, the literature shows that cus-
tom strategies and additional optimizations can better meet
application constraints. The proposed solutions are manual or
algorithmic, work on only one or several CNN models, and
imply sequential or parallel executions.

For instance, in [18], the authors manually optimize CNN
inferences on a Jetson Nano’s GPU and CPU. Scenarios on
four hardware settings are analyzed: the number of CPU cores,
GPU and CPU frequencies, and synchronization modes (paral-
lel or sequential inferences). From the results, they summarize
the parameters’ optimal settings to reach the lowest energy
consumption, power consumption, or latency. This manual
approach gives insight into each parameter’s influence on the
criteria. However, due to the lack of automation, they remain
difficult to scale to other CNNs or hardware platforms.

In addition, the authors of [19] implement an algorithm-
based framework to maximize the inference throughput of
a unique neural network on Jetson AGX Xavier’s GPU
and DLAs. Their JEDI TensorRT-based framework relies on
applying diverse parallelization techniques (multi-threading,
pipelining, buffer assignment, and network duplication on the
DLAs) to find a low-latency allocation of subnetwork parts
to the different processing elements. Through global and local
search heuristics, pipelined cutting points inside the model are
searched for a given hardware mapping. Then, parallelization
strategies parameters are fined-tuned on the best-found map-
ping. Depending on the neural network models, some of found
DLA-based solutions were more energy-intensive and slower
than the CPU-GPU-based solutions but still more interesting
than the basic TensorRT GPU implementation ones.

Kim and Ha [20] developed an energy-aware algorithm-
based optimization methodology to map and schedule different
Deep Leaning applications on Jetson AGX Xavier’s CPU,
GPU, and DLAs. They notably highlight the importance of
preserving specific layer sequences that could match layer-

TABLE II: HW-specific TensorRT optimizations [13][17]

TensorRT GPU DLA 2.0optimizations

fp32, fp16, fp16,
Accuracy

int8 (implicita or explicitb) int8 (implicita)
Layers and Mathematical equivalents,

tensors fusion Fused operations kernels
Fused operations

Operation Auto-tuning from CuDLA Compiler
instructions kernel libraries Library

Memory Dynamic tensor Contiguous subgraphs
accesses/reuse memory without DRAM access

Sparsity Supported Supported
Custom layers Only with CUDA Unsupported
a Model-wise rescaling b Layer-wise rescaling
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fusion patterns offered by the GPU and the DLA. Their
methodology employs a first genetic algorithm to identify the
Pareto-optimal mapping of a given network through network
pipelined cutting points and a second genetic algorithm to find
a working scheduled mapping of all neural networks at an
optimal frequency. The found mappings and scheduling led to
a 31% reduction in energy consumption and a 40% margin for
additional latency objectives.

In [21], Dagli et al. characterize execution and inter-layer
transition times between the Jetson Xavier AGX’s GPU and
DLA. This fined-grained empirical modeling allows the au-
thors to solve the GPU-DLA layer-mapping problem as a
linear programming optimization constraint. Best mappings
under energy constraints use both the GPU and the DLA.

Finally, Bouzidi et al. propose Map-and-Conquer [22], an
execution scheme for mapping dynamic multi-exit networks
among the CPU, the GPU, and the DLA of the Jetson AGX
Xavier. The mapping occurs at the layers’ channels level for
each CNN or Transformer to leverage the underlying pro-
cessing concurrency. Through an evolutionary algorithm, the
author obtained DNNs with high accuracy and reduced latency
and energy consumption by using all available accelerators.

In this paper, we only consider the default TensorRT map-
ping as it is available to all users, but we are aware that
optimization-based method could provide better mapping.

C. Current limitations of the DLA

Since introducing of the DLA in Nvidia SoCs, several
limitations have made it difficult to leverage all its computing
potential. The Jetson AGX Orin’s DLA 2.0 brings many new
interesting features compared to the previous version, but again
it comes with some restrictions [17].

First, Nvidia does not allow an easy and efficient way
to communicate with the DLA. Contrary to communications
between the CPU and the GPU that use a physically uni-
fied memory, communications with the DLAs are performed
through explicit TensorRT data transfers [19]. This adds a
consequential execution overhead that directly impacts global
performances. With DLA 2.0, this effect has been reduced by
the increase of its internal SRAM memory. It allows more data
fusion into one subgraph and then entire CNN subgraphs can
be accelerated by staying in the SRAM without accessing the
DRAM.

Besides, each DLA has only 1 MB of dedicated SRAM
used as cache memory, which is smaller than all combined
caches of GPU cores. If this SRAM is unavailable, a DLA
can still run by falling back to the local DRAM, but it will be
slower. Therefore, sub-networks larger than 1 MB cannot be
executed in one run with the SRAM and benefit from its high-
speed processing. DNNs with numerous layers or cumbersome
operations are not well suited for the DLA design.

In addition, the supported layers come with a rather com-
plex parameter acceptance range. For example, a convolution
operation is valid for a limited range of kernel sizes, padding
sizes, and group numbers, and the whole combination should

respect the buffer limitations. Consequently, computationally-
heavy convolutions, convolutions on enormous images, or
convolutions with padding higher than the kernel are not com-
patible with the DLA compute units. Other incompatibilities
could come from a batch size higher than 4096 or some layer
combinations causing a DLA internal state overhead. In this
case, TensorRT makes the layer fall back to the GPU.

Moreover, the Orin DLA can significantly increase latency
when using FP16 convolution operations compared to the
1.0 version. DLA 2.0 has been much more optimized for
INT8 operations, and using FP16 can increase the DLA
loadable size. Graph optimization may unintentionally trigger
this behavior by changing the type of a layer.

Therefore, to improve the deployment of a CNN on the
DLA, the model should avoid computation-intensive opera-
tions, its layers should respect the restrictions imposed by
Nvidia, its weights should be preferably represented in INT8,
and continuous sequences of compatible layers should be pri-
oritized to reduce expensive back and forths communications
between the GPU and the DLA.

According to Nvidia, typical models supported on the
DLA are backbones (classification CNN) such as MobileNet-
EdgeTPU, EfficientNet-Lite, EfficientNet-EdgeTPU, or Incep-
tion, ResNets, and YOLO (object detection) family models.
Finally, Nvidia suggests that models with high arithmetic
intensity are best suited to maximize the DLA’s resource
utilization. Therefore, a CNN topology may somehow impact
the energy-efficiency of the computing platform.

IV. METHODOLOGY

In order to identify what are the best configurations of the
Jetson AGX Orin leading to optimized energy efficiency for a
given application with TensorRT default mapping, many exper-
iments have been carried out to characterize and verify claims
and behaviors of the DLA and the GPU. Multiple parameters
are evaluated, such as the power modes, the CPU/GPU/DLA
frequencies, the batch and image sizes, and the precision
format (INT8, FP16, FP32). We decided to focus on two
main criteria since we targeted embedded SoC: the latency
and the average energy consumption during the inference.
The Jetson AGX Orin 64 GB development kit is used in our
experimentations.

A. Application benchmarking

TABLE III: Benchmarked CNNs characteristics

Name Task Input size GMAC # Params # Conv
(M) layers

MobileNetV2 Classification 3x224x224 0.39 3.4 52
MobileNet Object

-SSD detection 3x300x300 1.3 86.8 35

Inception Classification 3x32x32 1.5 6.2 64
ResNet50 Classificaiton 3x224x224 4.2 25.5 48

SemanticUNet segmentation 3x128x128 10.6 7.8 15

ResNet34 Object
-SSD detection 3x1200x1200 216.8 20.1 51

SemanticDeepLabV3 segmentation 3x512x512 241.8 58.5 112
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In order to carry out a representative study of typical AI
applications, we considered different well-known CNNs for
classification, object detection, and semantic segmentation.
The first set of CNN applications selected for our study
gathers 3 DLA-compatible CNNs implemented on the DLA
by NVidia: ResNet50 for classification, ResNet34-SSD, and
MobileNet-SSD for object detection. The second set puts
together 3 DLA-compatible CNNs that we manually modified
to be supported by the DLA: UNet for semantic segmentation,
MobileNet-V2, and Inception for classification. The last group
is only composed of 1 model incompatible with the DLA due
to unsupported Atrous Spatial Pyramid Pooling (ASPP) layers.
The DeepLabV3 model for semantic segmentation belongs to
this group. This makes 7 different CNN applications for our
study, as described in Table III.

B. CNN adaptations for the DLA

The deployment of a CNN with TensorRT often requires
extra modifications of its topology to ensure compatibility
all over the workflow described in Figure 1. For the DLA,
frequent sources of unsupported layers may come at three
levels: either during the Pytorch definition step, the ONNX
transcription phase, or during the inference engine creation
with TensorRT.

At the Pytorch network definition step, obvious DLA-
unsupported layers of a model can be replaced with
algorithmic-equivalent functions. Thus, a flatten operation
followed by a fully-connected layer can be fused into a 1x1
convolution without bias. Besides, default available parame-
ters options or layer functions evolve with versions to offer
optimized state-of-the-art last findings to the user. The DLA-
incompatibilities can occur here from implicit layer definitions
and options or dynamic shape dependencies.

These implicit mechanisms are unveiled with the ONNX
transcription step. Possible solutions are redefining the Pytorch
model or modifying the ONNX representation with ONNX’s
Graph Surgeon and TensorRT’s Polygraphy tools. For exam-
ple, in MobileNetV2 definition provided in the Torchvision
library, the original Average-Pooling layer was replaced with
Adaptative-Average-Pooling, which the DLA does not support.

Finally, when using TensorRT builder to create the engine,
the building reports highlight potential memory overheads
from big image sizes and input/output DLA impossible con-
figurations options.

C. Energy measurement methodology

The latency can be easily retrieved with good precision from
the performance summary report printed by TensorRT at the
end of each inference experiment. The energy consumption,
however, is not directly provided.

Several software-based power consumption modelings are
described in the literature. In [23], authors implement a CPU-
GPU energy consumption model based solely on MAC counts.
The authors of [18] and [24] use the tegrastats utility, or a
derived version, and estimate the average energy consumption
on multiple end-to-end executions. Finally, the authors of

[25] read CPU and GPU instant powers directly from the
power monitor unit through the sysfs filesystem and can then
correlate the energy consumption to a specific layer with
timestamps markers. Then, the power monitor filesystem is a
faster solution than the tegrastats/Jtop tools and can reflect the
general power activity despite not being as exact as employing
board-level meters (e.g., 1 W difference measured in [26]).

We suggest to update this last existing work by considering
the DLA energy consumption during several inferences. In
this paper, we estimate the mean power consumption with the
instant voltage and current provided through the reading of the
following I2C power rails [27] :

• VDD GPU SOC: for the GPU and the SOC cores,
• VDD CPU CV: for the CPU, the DLA, and the PVA,
• VIN SYS 5V0: for the system 5V rail.

We define the mean power as the sum of the instant powers of
the three previous power rails. A comparison with the tegrastat
tool’s estimated power shows similar estimated values for
the two methods. Finally, one should note that the power
consumptions of the CPU, the GPU, and the DLA cannot be
retrieved separately.

The main measurement workflow is the following. Each
neural network is first defined with Pytorch 1.13.1, then its
weights and topology are standardized with ONNX 1.13.1. If
the network has DLA-incompatible elements, they are replaced
with equivalent allowed ones. The inference engines are cre-
ated on the embedded target under TensorRT 8.4.0.1 through
the trtexec command line, with a memory pooling size set to
1 MB for the DLA, and I/O format sets to INT8/FP16 when
using the DLA (to prevent reformatting overhead). During
runtime, latency and energy measurements are performed on
500 consecutive inferences after a warmup of 10 seconds to
stabilize the performances.

Fig. 2: Overall execution latencies and corresponding
overheads on 500 inferences of DeepLabV3 when varying

the sampling period (for MAXN power mode).

We implemented a bash script to collect the power monitor’s
values directly at I2C drivers’ addresses. Our new method can
retrieve the needed modules’ internal power rails (GPU and
logic rails, CPU and DLA, Data handling, Input and Output
ports) at a maximum sampling rate of 4 ms, closer to some
inference duration times compared to the 13 ms of tegrastats.
Despite being less precise than measuring the board’s external
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Fig. 3: Influence of the the CPU frequency (a), the CPU cores number (b), the GPU frequency (c) and the DLA frequency
(d) on the power consumption and the mean latency for 500 ResNet-50 INT8 inferences (all other parameters are set to their

MAXN mode configuration).

power supply value, the method still gives an insight into
general power activity.

To quantify the impact of these reading accesses on the
latency, inferences have been run with and without energy
consumption measurements for many configurations, including
different CNN applications, power modes, precision, accel-
erators (GPU/DLA), and sampling periods. As reported in
Figure 2 as an example, the maximal latency overhead we
could obtain remains beyond 4 ms compared to the same
inference without energy measurements. It is acceptable for
our experiments, and the minimum sampling rate of 4 ms will
be kept in all our experimentations.

V. EXPERIMENTS AND ANALYSIS

The next section compares the impact of accelerators’
settings and CNN topologies on the energy consumption and
latency of inferences. The observations are valid for all the
benchmarked CNNs.

A. Impact of the CPU cores number and frequency

This subsection studies the impact of CPU frequencies and
cores number on the energy consumption and the latency of
inferences. In addition to the multiple available power modes,
Nvidia allows further configuration of each computing unit
with the nvpmodel configuration file to explore other settings,
thus enabling the evaluation of one parameter at a time. All
the fixed parameters are based on the MAXN power mode
values and only INT8 accuracy is considered.

With the DLA, the CPU makes some data parallel pro-
cessing before and/or after exchanging data. Thus, increasing
the number of CPU cores or their frequency improves the
inference time on the DLA, contrary to the GPU. This behavior
is illustrated in Figures 3a and 3b for the ResNet50 model.

It can be noticed that the DLA latency slightly decreases
with the CPU frequency and the number of cores. The mean
power logically increases when rising the CPU cores number
or frequency.

Finding 1: Increasing the frequency of the CPU or its number of
cores generally improves the DLA inference latency, whereas it
has no impact on the GPU one.

B. Impact of GPU and DLA frequencies

This subsection evaluates the influence of the GPU and the
DLA frequencies over the inference performances. Again, we
will consider an INT8 accuracy and all other settings to their
MAXN power mode values.

Increasing the frequency of the two accelerators separately
should decrease the latency and raises the general energy
consumption. Also, increasing the frequency of one accelerator
should not disrupt the inferences performed on the other one.
These expectations are verified for all the benchmark models.
It is what Figures 3c and 3d show for the ResNet50, for
instance. However, we can notice that the GPU inference
energy consumption is more impacted by the GPU frequency
changes, than it is for the DLA (approximately 45 % vs 10 %).
In addition, above a certain DLA frequency (1,369 MHz for the
ResNet50), the performance of some CNNs is not improved
despite an increase in frequency, possibly explained by a lack
of memory bandwidth.

Finding 2: Contrary to the DLA, reducing the GPU frequency has
an important impact on the GPU inference energy consumption
and latency.
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Fig. 4: Study of the different power modes on the latency and the energy consumption of 500 INT8 inferences on
MobileNet-SSD (a), Inception (b), MobileNetV2 (c), ResNet50 (d), UNet (e), ResNet34-SSD (f), and DeepLabV3 (f) DNNs.

C. Impact of models’ topology

The selected DNNs have different architectures that mainly
differ in the number of layers, the type of operations (presence
of application-specific layers), and the computation complex-
ity. The present section analyzes their impact on the inference
latency and energy. To this end, the 7 previously adapted CNN
models of section IV.A are deployed for different precision
formats and all power modes configurations on the GPU and,
when possible, on the DLA. For clarity, the FP32 and FP16
formats results on the GPU are not studied since they always
lead to less energy-efficient inferences than INT8 on GPU.

1) DLA-incompatible CNN
Inferences of partially DLA-incompatible CNNs on the

DLA are possible if they rely on both the GPU and the
DLA. This kind of setup may be actually problematic as the
TensorRT framework may not be able to optimize inference as
much as for a single accelerator. In the end, extra communica-
tions and missed TensorRT optimizations may lead to longer

and energy-intensive inferences compared to the ones on the
GPU alone. This case is partially observed with DeepLabV3
model for example.

The DeepLabV3 CNN is a particularly incompatible model
for the DLA because of the location of its DLA-unsupported
layers. When deployed on the DLA-GPU, these incompati-
bilities create different subgraphs, each made of a continuous
sequence of DLA-supported operations, generating six extra
data movements between the GPU and the DLA. With the
lowest power mode and precision, the GPU-DLA inference of
DeepLabV3 brings little gains in power consumption (-3%)
but is significantly longer (+28%). Here, the GPU solution is
more interesting for all criteria.

However, voluntarily adding incompatible layers to an ini-
tially DLA-compatible network shows different results from
DeepLabV3 ones. For example, adding an incompatible op-
tion to the 3 upsample layers of the UNet model leads to
a power reduction on the inference compared to the GPU
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Fig. 5: Benchmark analysis of all considered DNNs in terms of latency and energy efficiency (15W mode and INT8 accuracy)

(-60%) despite a higher latency (+300%). Moreover, when
compared to the DLA solution, the GPU-DLA inference is
a better choice since it is much faster for equivalent energy
consumption (-28% latency, +1% power). So, in this case,
adding incompatibilities brings benefits.

Finding 3: Depending on the topology and the nature of incom-
patibilities, GPU-DLA inferences CNNs may be an interesting
compromise to GPU-only inferences.

2) DLA-compatible CNN
When using a DLA-compatible neural network, the DLA

is expected to offer better energy efficiency when the GPU
reaches the best latency. Indeed, the DLA is a dedicated
hardware for the inference of neural networks. On the other
hand, the GPU may allow very fast inferences thanks to its
numerous computing cores, but at the cost of more energy
consumed.

Such a trend is indeed observed and is illustrated with
MobileNet-SDD inferences shown in Figure 4a. For example,
with the 15W power mode, if there is a need to optimize
latency first, the inference on the GPU should be selected.
Otherwise, if the energy efficiency must be optimized, the
inference on the DLA is the best choice.

Still, some exceptions occur for which only one accelerator
configuration is better. Sometimes, either the DLA or the
GPU can provide both the fastest and most energy-efficient
inference. This is the case for the manually modified Inception
model, in Figure 4b. Here, the inference on the DLA for the
30W power mode is both faster and more energy-efficient than
the GPU inference. Then, there is no reason to use the GPU
in this configuration for topologies with a low-memory need.

Finding 4: Whatever the power mode, inferring a CNN model
fully on the GPU is not necessarily much faster than inferring on
the DLA.

Changing the power mode is also expected to control the
power and the latency ranges. Choosing a low power mode
should reduce the energy and increase the latency compared
to a higher power mode. Indeed, as shown with MobileNet-

SSD in Figure 4a, lowering the power mode from MAXN
to 15W makes the GPU inferences longer and less energy-
intensive. Yet, in some cases lowering the power mode may
bring irregularities for the DLA inferences. For example, for
MobileNet-SSD (Figure 4a), the 30W mode DLA inference
is not more energy-efficient than the 50W one. The 50W
mode DLA inference is a preferable solution to the 30W
inference because it uses less power and has less latency These
irregularities partly come from the power modes characteristics
of the CPU, where the 30 W and 50 W configurations make the
number of cores and the frequency vary oppositely. No clear
link could be established between these irregularities and the
CNN architecture characteristics.

Finding 5: Lowering the power mode configuration of the DLA
may not decrease the energy consumption. Notably, 50W mode
can be preferred to 30W to save energy and time.

Finally, for all the models, the DLA and GPU energy
disparities are narrowed for the lowest power mode (15 W). In
the case of the MobileNet-SSD (Figure 4a), the DLA inference
at 15 W brings little power saving (-10 %) but a much longer
latency (+50 %) compared to the GPU. Then choosing an
inference on the GPU here gives more improvements for the
two criteria compared to the DLA inference.

Finding 6: At the lowest power mode (15W), a low-complex
CNN in INT8 using a GPU can be nearly as energy-efficient as
the DLA.

3) Global analysis of the benchmark

To better summarize the inferences trends of the benchmark
models, Figure 5 compares all the CNNs on their latency and
energy efficiency at the lowest power mode (15W) and format
precision (INT8). Blue-colored zones indicate existing power
consumption and energy trade-offs when the inference of a
model is more energy-efficient on the DLA and faster on
the GPU. Almost all CNNs of the benchmark show such a
compromise for this configuration, except for the ResNet50
and the Inception models for which inferences on the DLA
are more performant for both criteria.
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Fig. 6: Benchmark analysis of all considered DNNs in terms
of memory and EDP (15W mode and INT8 accuracy)

These embedded performances on the benchmark can be
verifies with another metric such as the Energy-Delay-Product
(EDP). The EDP also reflects energy efficiency but combines
both the power consumption and the application latency to
consider trading increased delay for lower energy/operation.
As observed in Figure 5, Figure 6 shows that the inferences
on the DLA are more energy-efficient, in a EDP meaning, than
on the GPU for the Inception and ResNet50 models.

Here, the GPU and the DLA inferences have energy con-
sumptions of the same order of magnitude, but it is less verified
when increasing the image size (e.g, 3x500x500). Energy
consumption differences are effectively more pronounced for
bigger images. No clear link could be established between
the topology of a CNN and its energy consumption, but
a correlation may exist between a model’s complexity and
latency.

VI. CONCLUSION

In this paper, we explored the energy consumption and
latency trade-offs offered by the Jetson AGX Orin’s accel-
erators during the inferences of a CNN. This heterogeneous
SoC is designed with a GP-GPU specialized in massive data
parallel tasks, as well as a second accelerator, the Deep
Learning Accelerator (DLA) chip dedicated to energy-efficient
neural network processing. Based on these characteristics, one
could think there may exist a general latency and energy-
consumption trade-off between the inferences executed exclu-
sively either on the GPU or on one DLA.

To verify this idea, a benchmark of CNN models from
various applications was used to inspect the inferences perfor-
mances. Then, using TensorRT framework, neural networks
inferences were performed for different configuration sce-
narios on format precisions, frequencies, number of cores,
input sizes, power modes, and neural network topologies. The
results showed that configurations changes lead to different
responses from the DLA and the GPU by order of magnitude.
Inferences on different network topologies do not always
bring the initially expected latency-energy trade-off. Because
of extra communications overhead and specific TensorRT
optimizations related to the topology, the inferences on the

DLA may be faster and more energy-efficient, and the GPU
may align with the DLA regarding energy efficiency.

Our work shows that energy optimization on the Jetson
AGX Orin appears to be complex and sometimes counter-
intuitive when using the default TensorRT mapping. Energy
consumption impact must therefore be taken into account
when designing a neural network for the DLA through design
space exploration.
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