
HAL Id: hal-04148576
https://hal.science/hal-04148576v1

Submitted on 3 Jul 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An evaluation of software-based TSN traffic shapers
using Linux tc

Santiago Torres Borda, Jérôme Ermont

To cite this version:
Santiago Torres Borda, Jérôme Ermont. An evaluation of software-based TSN traffic shapers using
Linux tc. 18th International Conference on Factory Communication Systems (WFCS 2022), IEEE,
Apr 2022, Pavia, Italy. pp.1-4, �10.1109/WFCS53837.2022.9779163�. �hal-04148576�

https://hal.science/hal-04148576v1
https://hal.archives-ouvertes.fr

An evaluation of software-based TSN traffic shapers
using Linux tc

Santiago Torres Borda, Jérôme Ermont
Université de Toulouse - IRIT - Toulouse INP/ENSEEIHT

Toulouse, France

Abstract—In this study, the feasibility of a hardware abstracted
switch that targets TSN applications is evaluated. A solution using
P4, a flexible solution to program SDN switches, is discussed.
Nevertheless, extensions to this approximation have to be made to
respect time oriented features that are unavailable to implement
in a sole P4 environment. As a consequence, the Linux tc package
is used to program the traffic control functionalities such as TAS
and CBS shapers. The final implementation is a proof of concept
that uses tc and runs on top of the Linux kernel. Finally, future
work is discussed as a possible followup to this project.

Index Terms—TSN, Data plane programming, SDN, Traffic
Shaping, tc

I. INTRODUCTION

Networks in general have had a flexibility problem for
years[1]. Upgrading or changing any aspect of the network is
hampered by the fact that there are a wide variety of switches
and routers that make a simple change in the network tedious
and impractical. Software Defined Networking (SDN)[13]
solves this problem by separating the control plane from the
data plane, thus allowing the operation of each switch in the
network to be dictated. However, this is not enough to make
the network completely flexible. Even though rules can now be
specified without having to stop the operation of the network,
the data plane is still static and hardware dependent. This is
why languages like P4 have been proposed[1]. P4 aims to
program the data plane, using the SDN pipeline, so that the
user can now specify how they want the frame to be processed
at the switch level.

In addition, real-time networks have had a skeptical ap-
proach to SDN, as timing constraints are not compatible with
the overhead added by these new technologies. Many studies,
such as [2], [10], and [11] among others, have attempted
to evaluate the feasibility of SDN and P4 as tools for real-
time network deployment. Nevertheless, no studies have been
conducted in which both tools are deployed and tested for
real-time networks.

Moreover, Time Sensitive Networking (TSN) has gained
popularity for timed constrained networks by utilizing widely
established Ethernet networks[5]. In particular, to reduce la-
tency, they have defined many norms such as 802.1Qav (Credit
Based Shaper) and 802.1Qbv (Time Aware Shaper). Where,
the first one works on a credit basis by only sending the
quantity of bits it has in terms of credits. Whilst, the second
one works on a time basis and schedules time constrained and
non-time constrained frames into different time slots.

On link

 : Class A
 : Class B
 : Class B
 Message ready
 in the queue

Fig. 1. CBS behavior

The objective of this study will be to propose a clear
pathway to a TSN solution within an SDN/P4 environment.
In particular, we aim to propose a way to implement bandwidth
allocation shapers such as Time-Aware Shaper (TAS) and
Credit Based Shaper (CBS) in this environment.

II. PROBLEM STATEMENTS

A. Traffic shaping in Time Sensitive Networking

TSN norms define tools to adapt Ethernet networks to a
Real-Time focused environment[5]. In particular, they allow
for synchronization, reliability, latency management and re-
source management. Where the latency management aspect is
mostly composed by traffic shapers that define how frames
are scheduled according to their latency requirements. For
instance, the conjunction of CBS and TAS is traditionally used
in TSN configurations since it allows the consideration of time
and event triggered traffic simultaneously.

1) Credit Based Shaper: CBS is a mechanism that aims
to limit starvation problems, improve fairness between flows
and limit jitter by controlling the output transmission rate. In
essence, for a given class a message can only be sent if the
quantity of credits, represented in bits, is positive. A class can
accumulate credits whenever there’s a message in the queue
ready to be transmitted. When the queued message is sent, the
class’ credits are spent until a negative minimum is reached.
At that point, the class relinquishes medium access to the next
class ready to transmit.

Figure 1 proposes an example of the CBS behavior. Here,
three messages are to be scheduled. They are divided between
two classes and are shaped by a different CBS. Before t1,
there is no frame in the queue of class A, so the credit stays
equal to 0. In contrast, at the beginning of this example,

m2 is already being transmitted and consequently the credits
belonging to class B are being spent. The rate at which
the CBS shaped queue is designated to send is called the
sendSlope and depends directly on the Network’s Interface
speed.

Once these credits reach a negative minimum, at t3, no more
message from class B can be transmitted. At t1, m1 is in the
queue of class A. The credit of class A is accumulated until t3.
Where the slope of the credit accumulation is named idleSlope.
From t3, m1 is transmitted and the credits of class A are spent.
Finally, the presence of m3 in class B queue, allowed for it to
accumulate credit, which is used to send the aforementioned
frame. In this particular case, class’ B associated output rate
was capped at the value of its associated sendSlope when
transmitting m2 and m3, whereas it was locked to 0 whenever
its credit was negative or wasn’t transmitting.

2) Time Aware Shaper: Moreover, for TAS, traffic is di-
vided into time slots. For each time slot, only traffic belonging
to a certain class is scheduled on the network interface. CDT
slots are meant for time constrained traffic, whereas non time
constrained traffic is only scheduled during the best effort slot.
Finally a guard band is implemented so that best effort slot
duration is ensured to not exceed its expected duration. The
described functionality is evidenced in figure 2.

B. Data plane programming

Since its conception, Software Defined Networking aims to
render networks re-configurable without having to change or
reprogram network entities such as switches or routers. First,
the control plane was separated from the data plane. As a
consequence, a network controller became the sole member
of the control plane and dictated routing and switching rules
for the whole network[9]. Still, this solution was limited since
not every part of the network was programmable. For instance,
the data plane was still hardware dependent and would need
manual reconfiguration in case the network would accept
traffic with new characteristics.

As a solution to this limitation, P4 allowed for the pipeline
from figure 3. Compatible with the traditional SDN pipeline,
it would allow hardware abstraction by reducing switching
and routing features to two functional blocks: a parser and a
match+action rule[1]. The first one is executed upon package
ingress and fragments the different fields from the packet
header. Then, a first match+action rule is performed in which
the contents from the header fields are analyzed. Here, an
egress rule that indicates where to output the packet can be
made. Furthermore, a packet modification stage can be done
before having to perform a second match+action rule that

GB CDT slot BE Repeat

TAS period

GB CDT slot BE

Fig. 2. TAS timeslots

I
N
P
U
T

P
A
R
S
E
R

Match
action

Match
action

Tr
af

fic
 m

an
ag

er O
U
T
P
U
T

Egress pipelineIngress pipeline

Parse
graph

Control
program

Table
config

Action
set

Switch configuration

Forwarding
rules

Forwarding
rules

Scheduling
Queuing

Replication

Fig. 3. P4 generic pipeline

would take into account the newly added information. By
introducing this pipeline, P4 allows data plane programming
in conjunction with control plane programming already estab-
lished in SDN.

As an example, a TSN compliant P4 switch would go until
the traffic management step of the pipeline and then output the
packet given no modification is needed after traffic shaping.
First, the packet would be parsed and then the analysis VLAN
TAG would be carried out. Once the packet’s priority is
obtained through said tag, the traffic management phase can
begin, to then output the packet onto the network.

Every P4 implementation follows a switch model. It can
either be specific to a material P4 switch or can be abstract
enough to run both on material P4 switches and software
switches targets such as DPDK[7] or Open vSwitch[12]. Even
though there can be a wide variety of implementations, they all
follow the same pipeline from figure 3. The pipeline allows
predictable behavior among a wide variety of switches, this
way a P4 hardware abstraction layer is defined.

The most general model that can run on a wide variety of
targets is called v1model[8]. The model’s architecture follows
closely figure 3 and is flexible for parsing and match+action
rules, yet static for the traffic management features. Since
the aim of P4 is to be as abstract as possible, the traffic
manager is not programmable by depending on the switch
available hardware features, such as the number of queues,
interfaces, etc. Given that the traffic manager is in charge
of scheduling and queuing, two crucial factors for any TSN
shaper implementation, this fact renders a TSN P4 switch
implementation infeasible.

III. MOTIVATION

Since an implementation of a TSN P4 switch is deemed
impossible, the furthest the switch implementation can go is
the ingress parsing, where the switch will only let through
VLAN tagged frames. Still, an approximation to achieve TSN
functionalities is possible. This implementation can target a
software switch so that application layer tools can be used.
One such solution would be to target DPDK or Open vSwitch

implementations that run on the Linux kernel which allows the
utilization of Linux qdiscs[6] to act as a re-configurable traffic
manager. By using them in conjunction to the switch mandated
rules from P4, a TSN switch mandated by P4 parsing is
possible.

IV. LINUX TRAFFIC CONTROL

Linux traffic control or tc[6] is a tool from the iproute2
suite used as the network traffic manager for the Linux kernel.
The tool’s main features include traffic shaping, scheduling,
policing and dropping. As a means to process the traffic
it employs queuing disciplines or qdiscs, classes and filters.
Where qdiscs are the implementation of queuing mechanisms
like PFIFO. CBS and TAS work in conjunction to these qdiscs
to achieve TSN functionality.

A. Implementing TSN shapers with tc

First, to implement TAS using tc, the taprio qdisc[4] must
be used. The taprio qdisc implements a simplified version of
the 802.1Qbv mechanism, which models the different queues
by gating mechanisms which open or close at a specific point
in time. Thus, allowing to schedule a specific set of queues
in a given time slot. As an effect of this implementation, the
periodic guard band is not present.

Second, to implement CBS using tc, the cbs qdisc must be
used alongside the mqprio qdisc. Where the latter is used to
map outgoing traffic to a specific priority. The cbs qdisc is then
set to a specific queue by defining its idleslope, sendslope,
locredit which is the negative minimum amount of credits
allowed and highcredit which is the maximum amount of
credits allowed. These values are inherent to the network
interface speed and can be calculated as defined in [3].

B. Traffic shaping with tc

In order to prove the feasibility of a P4 switch that offloads
the traffic management to tc’s qdiscs, two tests were defined
on the network configuration shown in figure 4. The first one
implements two queues shaped by a Time Aware Shaper. On
one end of the switch, a host is emitting frames as fast as
it can, alternating the priority at each emission. On the other
side, another host listens for those frames and registers the
timestamps at which those frames arrive. This way traffic
belonging to the two priorities was generated regardless of
the ongoing time slot. Similarly, the Credit Based Shaper is
set to shape one of two queues, where the second queue is free
to transmit as soon as it can. Here, the emitter sends with the
same priority many concurrent frames so that the throughput is
affected by the presence or absence of credits. On the receiver
side the perceived throughput for both priorities is registered.
For every test made, the traffic was set to UDP in order to
emulate real-world behavior.

Since our goal is to test the feasibility of tc as a TSN-
oriented traffic manager, the switch is reduced to a bridge
between two interfaces. In addition, since tc runs on the
application layer, the traffic priority found in the frames is
mapped to a destination port instead, where 7777 represents

192.168.0.1/24

192.168.0.100/24 192.168.0.200/24

:7777 => PRI0
:6666 => PRI1

enp2s0f0 enp2s0f1

enp2s0f0enp2s0f1

Fig. 4. Proposed test bed

in both tests the time sensitive data and 6666 the best effort
data.

Because tc runs on the application layer, tools for fast
and easy prototyping that work from the application layer
are used. For instance, packet generation was done using
Netcat and iPerf3. The first one allowed for packet creation
having a specific length and destination port whereas the
second allowed to generate simultaneous concurrent traffic
using the same destination port. This allows to set the testing
environments for tc driven TAS and CBS respectively.

V. RESULTS

A. Time Aware Shaper

The TAS evaluation used the test bed from figure 4 to obtain
the behavior shown in figure 2. Here an arbitrary CDT slot of
80ms and a BE slot of 20ms for a total TAS period of 100ms
was set. Although arbitrary, these testing conditions allow TAS
shaping characteristics in figure 5 to be observed.

Figure 5 is divided in two parts. The bottom plot shows
the frame emission and the top plot shows frame reception.
As stated in section IV-B, the frames are emitted as fast as

0.00 0.02 0.04 0.06 0.08 0.10
Time [s]

0.00

0.25

0.50

0.75

1.00

Pa
ck

et
 A

rr
iv

al

Packet reception timestamps (TAS)
PRI0
PRI1

0.00 0.02 0.04 0.06 0.08 0.10
Time [s]

0.00

0.25

0.50

0.75

1.00

Pa
ck

et
 e

m
iss

io
n

Packet emission timestamps (for TAS)
PRI0
PRI1

Fig. 5. Time Aware Shaper experiment results

Fig. 6. Credit Based Shaper Experiment results

possible by Host1. It is evident from the plot on the top
that the scheduler, as expected, divides the traffic into their
respective slots. Nonetheless, slot duration is not respected
by adding consistently 2.05ms accounting by the tc added
overhead and the frame transmission delay. This behavior
is expected since the Linux kernel used has no Real-Time
features.

B. Credit Based Shaper

Similar to the Time Aware Shaper experiment, the Credit
Based Shaper experiment result from figure 6 yields the
expected output. Whenever the PRI0 queue is congested, its
throughput will be 0 for as long as the idleslope accumulates
the credit back.

In this test, we set the CBS to be using half of the
available bandwidth at all times by configuring the idleslope to
50Mbps which is half of the network’s interface output speed.
Consequently, the sendslope was set to −50Mbps, the hicredit
to 6Mbits and the locredit to −500kbits. Here, concurrent
streams were generated periodically with the separation of
a second per set of concurrent streams. This allowed the
visibility of CBS’s behavior observed in figure 6.

VI. CONCLUSIONS AND PERSPECTIVE

In this paper it was concluded that P4 is not abstract enough
to program a TSN oriented switch. Nevertheless, it can work
in conjunction with other software implementations such as
tc and DPDK or Open vSwitch in order to reach the needed
modularity. It was also shown that tc is a well implemented
alternative to P4’s static traffic manager and is able to imple-
ment scheduling TSN features with a considerable delay that
can be lowered with a real time implementation of the Linux
kernel.

As future work, implementing P4 in conjunction with tc and
evaluating it as an SDN deployable configuration could be of
interest. Furthermore, if said solution isn’t enough in terms of

expected time constraints, a new Hardware Abstraction Layer
could be proposed for switch programming that would allow
to integrate hard Real-Time features into the data plane.

REFERENCES

[1] P. Bosshart et al, ”P4: Programming Protocol-Independent Packet Pro-
cessors,” SIGCOMM Comput.Commun.Rev., vol. 44, (3), pp. 87-95, 7,
2014.

[2] Y.-W. Chen, L.-H. Yen, W.-C. Wang, C.-A. Chuang, Y.-S. Liu, and C.-
C. Tseng, “P4-enabled bandwidth management,” in 20th Asia-Pacific
Network Operations and Management Symposium (APNOMS), 2019,
pp. 1–5.

[3] V. Costa, CBS - credit based shaper (CBS) qdisc, Linux Man Page,
2017.

[4] V. Costa, TAPRIO - time aware priority shaper, Linux Man Page, 2018.
[5] Time-sensitive networking (TSN) task group, ”TSN Standards.” [On-

line]. Available: https://1.ieee802.org/tsn.
[6] B. Hubert, tc - show / manipulate traffic control settings, Linux Man

Page, 2001.
[7] Intel Corporation. “Intel DPDK: Data plane development kit.” [Online].

Available: https://www.dpdk.org/
[8] E. F. Kfoury, J. Crichigno, and E. Bou-Harb, “An exhaustive survey

on P4 programmable data plane switches: Taxonomy, applications,
challenges, and future trends,” IEEE Access, vol. 9, pp. 87094–87155,
2021

[9] N. McKeown et al, ”OpenFlow: Enabling Innovation in Campus Net-
works,” SIGCOMM Comput.Commun.Rev., vol. 38, (2), pp. 69-74, 3,
2008.

[10] R. Rotermund, Timo Häckel, P. Meyer, F. Korf, and T. C. Schmidt, “Re-
quirements analysis and performance evaluation of SDN controllers for
automotive use cases,” in 2020 IEEE Vehicular Networking Conference
(VNC), 2020, pp. 1–8.

[11] D. Thiele and R. Ernst, “Formal analysis based evaluation of software
defined networking for time-sensitive Ethernet,” in 2016 Design, Au-
tomation Test in Europe Conference Exhibition, 2016, pp. 31–36.

[12] The Linux Foundation. “Production quality, multilayer open virtual
switch.” [Online] http://www.openvswitch.org/.

[13] D. Kreutz et al, ”Software-Defined Networking: A Comprehensive
Survey,” Proc IEEE, vol. 103, (1), pp. 14-76, 2015.

