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torsion of an abelian variety

S. Checcoli and G. A. Dill

June 22, 2023

Abstract

In this article, we study a certain Galois property of subextensions of
k(Ators), the minimal field of definition of all torsion points of an abelian
variety A defined over a number field k. Concretely, we show that each
subfield of k(Ators) which is Galois over k (of possibly infinite degree) and
whose Galois group has finite exponent is contained in an abelian extension
of some finite extension of k. As an immediate corollary of this result and
a theorem of Bombieri and Zannier, we deduce that each such field has
the Northcott property, i.e. does not contain any infinite set of algebraic
numbers of bounded height.

1 Introduction

In [BZ01], Bombieri and Zannier introduce two properties of fields of al-
gebraic numbers with respect to the absolute logarithmic Weil height (see
[BG06, bottom of p. 16] for a definition).

Throughout this article, we let Q̄ be a fixed, once and for all, algebraic
closure of Q and all algebraic extensions of Q that appear will be assumed
to be subfields of Q̄. We say that an algebraic extension F/Q has the
Bogomolov property (B) if there exists a constant c = c(F ) > 0 such that
all elements of F\{0} which are not roots of unity have height at least c.
We say that F has the Northcott property (N) if it does not contain any
infinite set of algebraic numbers of bounded height.

By Kronecker’s theorem (see [BG06, Theorem 1.5.9]), property (N)
implies property (B) and by Northcott’s theorem (see [Nor49, Theorem 1]
and [BG06, Theorem 1.6.8]), every number field L has both property (N)
as well as property (B). In the last decades, there has been a lot of work
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around deciding the validity of these properties for infinite extensions of
Q.

In particular, property (B) holds for any subfield of kab, the maximal
abelian extension of a number field k: after a question posed by Zannier,
this was shown in [AD00] for k = Q, and then worked out for general num-
ber fields in [AZ00], and further in [AZ10]. The result was later generalised
by the main theorem in [ADZ14], which together with [Che13, Theorem
1.2] implies, in particular, that property (B) is satisfied by any Galois ex-
tension F/k of a number field k such that the quotient of Gal(F/k) by its
center has finite exponent, i.e. such that the orders of the elements of this
group are finite and uniformly bounded.

In [Hab13], Habegger proved an elliptic analogue of the above-mentioned
result in [AD00] by showing that property (B) holds for Q(Etors), the small-
est subfield of Q̄ over which all torsion points of an elliptic curve E, defined
over Q, are defined. We remark that, if E has no complex multiplication,
the extension Q(Etors)/Q is very far from being abelian.

The lower bound for the height of non-roots of unity in Q(Etors)\{0}
was later made explicit in [Fre21]. Moreover, in [Fre22], property (B) was
proved to hold, under the same assumptions on E, for extensions of the
form F (Etors) for some class of possibly infinite Galois extensions F/Q.

It is an open problem to decide whether, given a general abelian variety
A of dimension at least 2 defined over a number field k, property (B) holds
for k(Ators), the smallest subfield of Q̄ containing k over which all torsion
points of A are defined.

As for property (N), it was for instance proved in [BZ01] to hold for

the field k
(d)
ab , which is the compositum of all abelian extensions of k of

degree at most d. Clearly, k
(d)
ab /k is an abelian extension of k such that

Gal(k
(d)
ab /k) has finite exponent. Using the proof of [CZ11, Proposition

2.1], one can show that any Galois extension F/k with F ⊆ kab and such

that Gal(F/k) has finite exponent is contained in k
(d)
ab for some positive

integer d. So, in particular, property (N) holds for such extensions.
It is an open problem whether Gal(F/k) having finite exponent is

enough to ensure that the field F has property (N); for instance, it is
unknown whether property (N) holds for the compositum k(d) of all ex-

tensions of k of degree at most d when d ≥ 3. We note that k
(d)
ab is the

maximal subextension of k(d) which is abelian over k (as originally defined
in [BZ01]).

In this setting, it is quite natural to ask about the analogue of the
above-mentioned result of [BZ01] for abelian varieties:

Question 1. Let A be an abelian variety defined over a number field k and
let k(Ators) be the smallest subfield of Q̄ containing k over which all torsion
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points of A are defined. Is it true that if F ⊆ k(Ators), F/k is Galois, and
Gal(F/k) has finite exponent, then F has property (N)?

In this article, we answer Question 1 in the affirmative by showing
that, although for an abelian variety A over a number field k, the fields
kab and k(Ators) in general have very different Galois groups, their Galois
subextensions whose Galois groups have finite exponent look the same up
to replacing k by another number fieldM containing k. Our main theorem
is the following:

Theorem 1. Let A be an abelian variety defined over a number field k.
Let e ≥ 1 be an integer. Then there exists a number field M containing k
and depending only on A, k, and e such that for any subfield F ⊆ k(Ators)
with F/k Galois and Gal(F/k) of exponent at most e, one has F ⊆Mab.

We now briefly sketch the proof of Theorem 1, which is carried out
in Section 3. Notice that it suffices to prove Theorem 1 if the extension
F/k is finite and therefore contained in some k(A[n]) where A[n] denotes
the kernel of multiplication by n on A(Q̄). In Subsection 3.1, we show
furthermore how to reduce the proof of Theorem 1 to the construction of
two subgroupsW ′

n andW ′′
n of Gal(k(A[n])/k) satisfying certain conditions.

As we recall in Proposition 1 in Section 2, up to replacing k by a fixed finite
extension, we can write Gal(k(A[n])/k) canonically as the product of the
Galois groups Gal(k(A[pt])/k) for pt exactly dividing n. Moreover, for each
prime p, the Galois representation on the p-adic Tate module of A yields
an algebraic group Gp over Zp, which has nice properties for all primes
larger than some constant c. We then construct W ′

n and W ′′
n in such a

way that we can check the required conditions working “prime by prime”.
For small primes p (i.e. those less than or equal to max{c, e}), we use the
p-adic exponential map associated to Gp while for large primes p, we use a
group-theoretic property of Gp(Fp) (see Proposition 2 in Section 2).

The following result, which finally answers Question 1, is an immediate
corollary of the result in [BZ01] together with Theorem 1 and is proved in
Section 4:

Corollary 1. Let G = Gm or G = A with A an abelian variety defined over
a number field k. Let k(Gtors) denote the smallest subfield of Q̄ containing
k over which every torsion point of G is defined. Then every subfield of
k(Gtors) which is Galois over k and whose Galois group has finite exponent
has property (N).

2 Preliminaries on abelian varieties

Let A be an abelian variety defined over a number field K ⊆ Q̄.
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We fix some notation. Let Kn = K(A[n]) be the smallest subfield of Q̄
containing K over which every point of A[n], the group of torsion points of
A of order dividing n, is defined. Then the extension Kn/K is finite and
Galois. Set g = dimA and Gn = Gal(Kn/K), which we identify with a
subgroup of GL2g(Z/nZ) after having fixed once and for all a compatible
system of isomorphisms A[n] ≃ (Z/nZ)2g.

For a prime number p, we consider the representation ρp : Gal(Q̄/K)→
GL2g(Zp), coming from the p-adic Tate module

lim
←−

A[pn] ≃ lim
←−

(Z/pnZ)2g ≃ Z2g
p

of A. We let Gp denote the Zariski closure of ρp(Gal(Q̄/K)) in GL2g,Zp ,
regarded as an algebraic group over Zp.

Set now Kp∞ =
⋃

n≥0Kpn , it is a Galois extension of K. Let Gp∞ de-
note its Galois group over K. Note that ρp factors through the restriction
homomorphism Gal(Q̄/K) → Gp∞ . Furthermore, the induced homomor-
phism Gp∞ → GL2g(Zp) is injective and we identify Gp∞ with its image in
GL2g(Zp).

We collect here some well-known important classical results from the
theory of Galois representations attached to abelian varieties over number
fields. Recall that a smooth algebraic group G over Zp is called reductive
if both G⊗Zp Qp and G⊗Zp Fp are reductive algebraic groups in the usual
sense.

Proposition 1. Let A be an abelian variety defined over a number field k.
There exist a finite extension K/k and a constant c = c(A,K) > 0 such
that, with notation as above, the following properties hold true:

(i) for any coprime natural numbers n′ and n′′, the canonical homomor-
phism Gn′n′′ → Gn′ ×Gn′′ is an isomorphism,

(ii) the algebraic group Gp over Zp is connected for every prime p,

(iii) Gp is smooth and reductive for every prime p > c, and

(iv) for every prime p, the index [Gp(Zp) : ρp(Gal(Q̄/K))] is bounded from
above by c.

Proof. Property (i) follows from [Ser13, Théorème 1 and §3.1] (see also
[Ser86]), while (ii) is a result from [Ser81]. Property (iii) follows from
[Win02, Théorème 1 and §2.1] while the proof of (iv) is detailed in [Zyw19,
Theorem 1.2 (a), Remark 1.3, and §6] and is based on, amongst others,
results in [Win02] and [Ser86].

Remark 2. Our proof does not use any properties of abelian varieties over
number fields other than that Proposition 1 holds for the associated p-
adic Galois representations: we can start with any system of continuous
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Galois representations ρp : Gal(Q̄/K)→ GLg(p)(Zp) (p prime, g(p) ∈ N =
{1, 2, . . .}) and define Kn as the fixed field of

⋂r
i=1 ker(πpi,ki ◦ ρpi) where

n =
∏r

i=1 p
ki
i is the prime factorization of n ∈ N and πpi,ki : GLg(pi)(Zpi)→

GLg(pi)(Z/p
ki
i Z) is the canonical projection (i = 1, . . . , r). Then, if the

analogue of Proposition 1 holds in this situation, our proof will go through
and show that any Galois subextension of

⋃∞
n=1Kn whose Galois group

has finite exponent is contained in the maximal abelian extension of some
number field.

We will need the following fact, which is certainly well-known to ex-
perts. We give a proof which is heavily modeled after two answers to a
question on MathOverflow (see [Hum13, Mar13]) and uses, for instance,
classical results in [BT71, Lan56, Ste68].

Proposition 2. Let q be a power of a prime p and let G be a smooth,
connected, reductive algebraic group over the finite field Fq. Let G(Fq)

+ be
the normal subgroup of G(Fq) generated by its p-Sylow subgroups. Then
the quotient G(Fq)/G(Fq)

+ is abelian.

Proof. Let H be an arbitrary smooth, connected, reductive algebraic group
over Fq. We define H(Fq)

+ analogously to G(Fq)
+. By [Mil17, Theorem

14.5 and Proposition 14.14], a subgroup Γ of H(Fq) is equal to the Fq-
points of a unipotent algebraic subgroup U of H if and only if the order of
Γ is a power of p. By [BT71, Corollaire 3.7], H(Fq)

+ is then the subgroup
of H(Fq) generated by the U(Fq)’s, where U varies through the unipotent
radicals of the minimal parabolic subgroups of H that are defined over
Fq. Note that the minimal parabolic subgroups of H are precisely the
Borel subgroups of H by [Mil17, Aside 17.73 and Proposition 17.99], where
the latter proposition is a consequence of the main result in [Lan56]. In
particular, H has a Borel subgroup. Note that k should be assumed to be
finite in [Mil17, Proposition 17.99] and the morphism σ that occurs in the
proof of [Mil17, Proposition 17.99] is the Frobenius endomorphism relative
to k.

Let G′ denote the derived subgroup of G, which is a semisimple alge-
braic group over Fq, and let ω : G̃′ → G′ denote the universal cover of G′

(as an algebraic group; for the existence, see [Mil17, Remark 18.27]). Then
G̃′ is also semisimple by [Mil17, Lemma 19.14]. Since G/G′ is a torus by
[Mil17, Proposition 12.46 and Corollary 21.50], the preceding paragraph
together with [Mil17, Corollary 14.18] implies that G(Fq)

+ = G′(Fq)
+. By

[Ive76, Lemma 2.5], the preimage of a Borel subgroup B of G′ under ω
is a Borel subgroup B̃ of G̃′ (Iversen works over an algebraically closed
field, but we can use [Mil17, 17.66] to descend to Fq). Let Ũ denote the

unipotent radical of B̃ and let U denote the unipotent radical of B. We
have that Ũ ⊆ ω−1(U) since B/U is of multiplicative type by [Mil17,
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Theorem 16.33]. Thus, ω−1(U)/Ũ ⊆ B̃/Ũ is of multiplicative type while
ω−1(U)/ ker ω ≃ U is unipotent. By [Mil17, Lemma 16.44], the multipli-
cation morphism (kerω)× Ũ → ω−1(U) is an isomorphism. It follows that
ω|

Ũ
: Ũ → U is an isomorphism and so U(Fq) = ω(Ũ (Fq)). This implies

that the map G̃′(Fq)
+ → G′(Fq)

+ is surjective. Thus, it suffices to show

that G(Fq)/ω(G̃
′(Fq)

+) is abelian.
For an algebraic group H over Fq, we denote its center by Z(H).

The commutator morphism G × G → G factors through the projection
G × G → (G/Z(G)) × (G/Z(G)). At the same time, we have a chain
of canonical isomorphisms G̃′/Z(G̃′) ≃ G′/Z(G′) ≃ G/Z(G), the first of
which is induced by ω, by [Mil17, Example 19.25 and Remark 19.30] (the
universal covering of G′ad := G′/Z(G′) is the composition of the universal
covering of G′ with the projection G′ → G′ad because of [Mil17, Propo-
sition 18.2]). This implies that the commutator morphism G × G → G
decomposes as the induced morphism G ×G → (G̃′/Z(G̃′)) × (G̃′/Z(G̃′))
followed by first the morphism (G̃′/Z(G̃′)) × (G̃′/Z(G̃′)) → G̃′ that is in-
duced by the commutator morphism of G̃′ and then ω. It follows that
ω(G̃′(Fq)) contains the commutator subgroup of G(Fq).

Combining the two preceding paragraphs shows that it suffices to prove
that G̃′(Fq)

+ = G̃′(Fq).

By [Mil17, Remark 18.27], G̃′ is still simply connected when base
changed to an algebraic closure F̄q of Fq and, by [Mil17, Proposition 23.59],
over F̄q, the definitions of simply connectedness in [Mil17, Definition 18.5]
and [Ste68, §6.4] are equivalent. We can then apply [Ste68, Theorem 12.4]
to G̃′ over F̄q with σ chosen to be the Frobenius endomorphism relative to
Fq to conclude.

3 Proof of Theorem 1

3.1 Some reduction steps

Let F/k be a (possibly infinite) Galois extension with F ⊆ k(Ators) and
Gal(F/k) having finite exponent exp(Gal(F/k)) ≤ e for some positive in-
teger e ≥ 1. As F equals the compositum of all its subextensions which
are finite and Galois over k, it is enough to prove that Theorem 1 holds
true when [F : k] is finite.

So, let F/k be finite and Galois with Gal(F/k) of exponent at most e
and suppose F ⊆ k(Ators).

Let K/k be the finite extension from Proposition 1 and let L = KF ⊆
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K(Ators) be the compositum of F and K. Note that

Gal(L/K) ≃ Gal(F/F ∩K) ≤ Gal(F/k),

hence exp(Gal(L/K)) ≤ e.
We are going to prove that L is contained in the maximal abelian

extension of a fixed number field containing K and depending only on A,
K, and e. This of course will prove Theorem 1 for the extension F/k.

As before, we denote by Kn = K(A[n]) the smallest subfield of Q̄ con-
taining K over which every point of A[n], the group of all torsion points of
A of order dividing n, is defined. We set g = dimA and Gn = Gal(Kn/K),
which we identify with a subgroup of GL2g(Z/nZ), having fixed once and
for all a compatible system of isomorphisms A[n] ≃ (Z/nZ)2g.

We fix an integer n such that L ⊆ Kn and we set Hn = Gal(Kn/L) ≤
Gn. Our goal is to prove that there exists a positive integer m = m(A,K, e)
and subgroups W ′

n and W ′′
n of Gn such that:

(a) W ′′
n ✂Gn and Gn/W

′′
n is abelian,

(b) W ′
n contains the kernel of the projection from Gn onto Ggcd(n,m), and

(c) W ′
n ∩W

′′
n ⊆ Hn.

From these properties it follows that

L = KHn
n ⊆ KW ′

n∩W
′′
n

n = KW ′
n

n KW ′′
n

n

where we use the usual Galois-theoretic notation for the fixed field of a
subgroup of the Galois group. We conclude that

L ⊆ KmK
ab ⊆ Kab

m

and the statement of Theorem 1 holds with M = Km.

3.2 Construction of the auxiliary subgroups

We let c = c(A,K) be the constant from Proposition 1 and set

δ = e!c!.

In the following, I2g will denote the 2g × 2g identity matrix. By abuse of
notation, we use the same symbol regardless of the ring of coefficients of
the matrix.

We write n = n′n′′ where n′ and n′′ are the unique coprime positive
integers satisfying that p | n′ if and only if p | gcd(n, δ) for every prime p.

7



Writing n′ =
∏r

i=1 p
ai
i and n′′ =

∏s
j=1 q

bj
j with pi and qj distinct primes

and ai and bj positive integers (i = 1, . . . , r, j = 1, . . . , s), we can apply
Proposition 1.(i) to identify

Gn = Gn′ ×Gn′′ =

(
r∏

i=1

Gp
ai
i

)
×




s∏

j=1

G
q
bj
j


 . (3.1)

Consider, under this identification, the subgroups of Gn given by

U ′
n = Hn ∩ (Gn′ × {(I2g, . . . , I2g)})

and
U ′′
n = Hn ∩ ({(I2g , . . . , I2g)} ×Gn′′)

and let H ′
n and H ′′

n be their isomorphic images in Gn′ and Gn′′ respectively.
Let finally

W ′
n = H ′

n ×Gn′′

and
W ′′

n = Gn′ ×H ′′
n.

We are going to prove that these groups satisfy properties (a), (b), and
(c) from above. This will conclude the proof of Theorem 1.

Note that, under the identification (3.1), one has that the element

γ = (γ′1, . . . , γ
′
r, γ

′′
1 , . . . , γ

′′
s )

of Gn belongs to W ′
n ∩W

′′
n if and only if the two elements

γ′ = (γ′1, . . . , γ
′
r, I2g , . . . , I2g)

and
γ′′ = (I2g, . . . , I2g, γ

′′
1 , . . . , γ

′′
s )

are both in Hn. As clearly γ = γ′γ′′, we get that W ′
n ∩W

′′
n ⊆ Hn and so

(c) holds.

Claim 1. The group W ′′
n satisfies condition (a).

Proof of Claim 1. Since L/K is Galois, the subgroup Hn is normal in Gn,
so H ′′

n is normal in Gn′′ and hence W ′′
n is normal in Gn. Note that

Gn/W
′′
n ≃ Gn′′/H ′′

n ≃ ({(I2g, . . . , I2g)} ×Gn′′) /U ′′
n

and we are going to prove that the last quotient is abelian.
For j = 1, . . . , s, set

U
q
bj
j

= U ′′
n ∩ ({(I2g , . . . , I2g)} ×G

q
bj
j

× {(I2g, . . . , I2g)}),
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where of course the only non-trivial factor occurs at the (r+j)-th position,
and let H

q
bj
j

denote its isomorphic image in G
q
bj
j

. Using the identification

(3.1), we have that

{(I2g , . . . , I2g)} ×

s∏

j=1

H
q
bj
j

⊆ U ′′
n .

It follows that ({(I2g , . . . , I2g)} ×Gn′′) /U ′′
n is isomorphic to a quotient of

({(I2g , . . . , I2g)} ×

s∏

j=1

G
q
bj
j

)/({(I2g , . . . , I2g)} ×

s∏

j=1

H
q
bj
j

),

which, in turn, is isomorphic to the product

s∏

j=1

(G
q
bj
j

/H
q
bj
j

).

Hence it suffices to show that each factor G
q
bj
j

/H
q
bj
j

is abelian for j =

1, . . . , s. Note that this group has finite exponent at most e since it admits
an injective homomorphism into the group Gn/Hn of finite exponent at
most e.

From now on, we fix j and we write q, b instead of qj, bj to ease the
reading.

Let Gq be the algebraic group over Zq defined in Section 2 and consider
the homomorphism

ϕ : Gq(Z/q
bZ)→ Gq(Z/qZ)

given by reduction modulo q. We have that ϕ is surjective by Proposition
1.(iii) and Hensel’s lemma. Furthermore, the order of the kernel of ϕ is a
power of q.

Let Gq(Z/qZ)
+ denote the normal subgroup of Gq(Z/qZ) that is gener-

ated by its q-Sylow subgroups.
Note that Gq(Z/qZ)

+ is generated by elements g whose order is a power
of q and any lift γ ∈ Gq(Z/q

bZ) of such an element g will have order equal
to a power of q as well. Proposition 1.(iv) together with Hensel’s lemma
implies that γc! ∈ Gqb for any such γ.

Also, as exp(Gqb/Hqb) ≤ e, γδ ∈ Hqb and finally, as γ has order equal
to a power of q and q ∤ δ, we have that γ ∈ Hqb . It follows that kerϕ ⊆ Hqb

and Gq(Z/qZ)
+ ⊆ ϕ(Hqb). Hence, we have that ϕ−1(Gq(Z/qZ)

+) ⊆ Hqb .
Thus Gqb/Hqb is a quotient of the group Gqb/ϕ

−1(Gq(Z/qZ)
+), which

admits an injective homomorphism into the group Gq(Z/qZ)/Gq(Z/qZ)
+.

This last group is abelian by Proposition 2 and so is therefore Gqb/Hqb .
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Claim 2. The group W ′
n satisfies condition (b).

Proof of Claim 2. For i = 1, . . . , r, set

Up
ai
i

= U ′
n ∩ ({(I2g , . . . , I2g)} ×Gp

ai
i
× {(I2g , . . . , I2g)}),

where now the only non-trivial factor occurs at the i-th position, and let
Hp

ai
i

denote its isomorphic image in Gp
ai
i
. Note that, as before, the quo-

tient group Gp
ai
i
/Hp

ai
i

has exponent at most e since it admits an injective

homomorphism into the group Gn/Hn of exponent at most e. Using the
identification (3.1), we have

r∏

i=1

Hp
ai
i
×Gn′′ ⊆W ′

n.

Thus, thanks to Proposition 1.(i), in order to prove Claim 2 it suffices to
show that, for each i = 1, . . . , r, there exists some ti = ti(A,K, e) ∈ N such
that Hp

ai
i

contains the kernel of the projection map

π
p
ti
i

: Gp
ai
i
→ G

p
min{ti,ai}
i

.

From now on, we fix i and write p, a, t instead of pi, ai, ti.
Let Gp∞ = Gal(Kp∞/K) ⊆ Gp(Zp) be the group defined in Section 2.

Let
λ : Gp∞ → Gpa

be the canonical surjective restriction homomorphism and set Hp∞ =
λ−1(Hpa).

Note that it is enough to show that there exists some t = t(A,K, e) ∈ N
such that Hp∞ contains the kernel of the projection map

π̃pt : Gp(Zp)→ Gp(Z/p
tZ).

Indeed this would imply that ker(πpt) = λ(ker(π̃pt)) ⊆ Hpa.
As Hpa is normal in Gpa , the subgroup Hp∞ is normal in Gp∞ . Since

Gp∞/Hp∞ ≃ Gpa/Hpa has finite exponent at most e and

[Gp(Zp) : Gp∞ ] = [Gp(Zp) : ρp(Gal(Q̄/K))] ≤ c

by Proposition 1.(iv), we have that, if γ ∈ Gp(Zp), then γ
δ lies in Hp∞.

We now want to show that t can be chosen such that every element
in ker(π̃pt) is of the form γδ for some γ ∈ Gp(Zp). This will complete the
proof of Claim 2 and of Theorem 1.

Let Lp denote the Lie algebra of Gp ⊗Zp Qp. By [Bou72, Ch. III, §7,
No. 2, Proposition 3], there is an open subgroup U ⊆ Lp and a map

ϕ : U → Gp(Qp),
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called exponential map and satisfying ϕ(ℓu) = ϕ(u)ℓ for all u ∈ U and ℓ ∈ Z
and such that V = ϕ(U) is an open subgroup of Gp(Qp) homeomorphic to U
via ϕ. After shrinking U , we can and will assume without loss of generality
that ϕ(U) ⊆ Gp(Zp) since Gp(Zp) is an open subgroup of Gp(Qp).

Note that
δU = {δu | u ∈ U}

is open in U as multiplication by δ is an automorphism of Lp as a topolog-
ical group. Furthermore, since ϕ is a homeomorphism and ϕ(0) = I2g, we
have that ϕ(δU) is open in V and contains I2g.

Therefore there exists t = t(A,K, e) ∈ N such that ϕ(δU) contains the
open ball (with respect to the maximum norm on Gp(Zp) ⊆ GL2g(Zp) ⊆

Q4g2
p ) centered at I2g of radius p−t+1. Thus, ker(π̃pt) ⊆ ϕ(δU) ⊆ V.
We set ψ = ϕ−1 : V → U . Then, if v ∈ ker(π̃pt), we have that ψ(v) ∈ δU

and so ψ(v) = δu for some u ∈ U . Hence

v = ϕ(ψ(v)) = ϕ(δu) = ϕ(u)δ = γδ

with γ = ϕ(u) ∈ Gp(Zp) and we are done.

4 Proof of Corollary 1

We recall that, from the proof of [CZ11, Proposition 2.1], it follows that
any abelian extension of Q having Galois group of exponent at most e is

contained in Q
(e)
ab . We repeat that proof here, the only difference being

that the base field Q is replaced by any number field L.
Let F/L be a possibly infinite abelian extension of a number field L

and suppose that G = Gal(F/L) has exponent at most e. Clearly, F
equals the compositum of all its Galois subextensions L ⊆ F ′ ⊆ F with
G′ = Gal(F ′/L) finite and abelian of exponent at most e. We can thus
write G′ =

∏n
i=1 Ui as a direct product of finite cyclic groups Ui of order at

most e. Let Hi be the subgroup of G′ defined by Hi :=
∏

j 6=i Uj . We have
that [G′ : Hi] = |Ui| ≤ e for all i’s and ∩ni=1Hi = {id}. Thus, F ′ equals
the compositum of the fields F ′H1 , . . . , F ′Hn , which are abelian extensions

of L of degrees [F ′Hi : L] = [G′ : Hi] ≤ e. Hence F ′ ⊆ L
(e)
ab for every F ′ as

above, which implies that F ⊆ L
(e)
ab .

Now let F be a subfield of k(Gtors) such that F/k is Galois and Gal(F/k)
has exponent at most e.

If G = Gm, then Gal(F/k) is abelian and, by the above-mentioned

results, F ⊆ k
(e)
ab .

If G = A, then, by Theorem 1, there exists a finite extension M/k,
depending only on A, k, and e, such that F ⊆ Mab. Setting L = F ∩M ,
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we have that Gal(F/L) is abelian and has exponent at most e as a subgroup

of Gal(F/k). So again F ⊆ L
(e)
ab .

We now conclude the proof using the fact that fields of the form L
(e)
ab

have property (N) by [BZ01, Theorem 1].
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