

Deciphering the human urine matrix: a new approach to simultaneously quantify the main ions and organic compounds by ion chromatography/mass spectrometry (IC-MS)

Guillaume Hopsort, Laure Latapie, Karine Groenen Serrano, Karine Loubière,

Theodore Tzedakis

▶ To cite this version:

Guillaume Hopsort, Laure Latapie, Karine Groenen Serrano, Karine Loubière, Theodore Tzedakis. Deciphering the human urine matrix: a new approach to simultaneously quantify the main ions and organic compounds by ion chromatography/mass spectrometry (IC-MS). Analytical and Bioanalytical Chemistry, In press, 10.1007/s00216-023-04808-2. hal-04148427

HAL Id: hal-04148427 https://hal.science/hal-04148427v1

Submitted on 3 Jul 2023

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Deciphering the human urine matrix: a new approach to simultaneously quantify the main ions and organic compounds by ion chromatography / mass spectrometry (IC-MS)

Guillaume Hopsort^{a,*}, Laure Latapie^a, Karine Groenen Serrano^a, Karine Loubière^a, Theodore Tzedakis^{a,* 1}
Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
*Corresponding authors:
PhD. student Guillaume Hopsort, +33 7 87 03 88 78, guillaume.hopsort@univ-tlse3.fr
Pr. Theodore Tzedakis, +33 5 61 55 83 02, theodore.tzedakis@univ-tlse3.fr

Abstract

Analyzing the composition of (human) urine plays a major role in the fields of biology and medicine. Organic molecules (such as urea, creatine, etc.) and ions (such as chloride, sulfate, etc.) are the major compounds present in urine, the quantification of which allows for the diagnosis of a subject's health condition. Various analytical methods have been reported for studying urine components and validated on the basis of known and referenced compounds. The present work introduces a new method able to simultaneously determine both major organic molecules and ions contained in urine, by combining ion chromatography using a conductimetric detector with mass spectroscopy. The analysis of organic and ionized compounds (anionic and cationic) was achieved in double injections. For quantification, the standard-addition method was used. Human urine samples were pre-treated (diluted and filtered) for IC-CD/MS analysis. The analytes were separated in 35 min. Calibration ranges (0-20 mg.L⁻¹), correlation coefficients (> 99.3%) as well as detection (LODs < 0.75 mg.L⁻¹) and quantification (LOQs <2.59 mg.L⁻¹) limits were obtained for the main organic molecules (lactic, hippuric, citric, uric, oxalic acids, urea, creatine and creatinine) and ions (chloride, sulfate, phosphate, sodium, ammonium, potassium, calcium and magnesium) contained in urine. The intra- and inter-day accuracies of the analytes consistently ranged from 0.1% to 5.0%, and the precision was within 4.0%. For all analytes, no significant matrix effects were observed and recoveries ranged from 94.9% to 102.6%. Finally, quantitative results of analytes were obtained from 10 different human urine samples.

Keywords

Human urine analysis, Ion chromatography / Ion exchange, Mass spectrometry, matrix effect, one-pot quantification

¹ ORCID numbers:

G. Hopsort: 0000-0002-5619-9667 / K. Groenen Serrano : 0000-0002-5619-9667 / K. Loubière: 0000-0001-6245-2844 / T. Tzedakis : 0000-0002-9222-4487

Graphical abstract

1. Introduction

Using the human urine composition as a health indicator is an old method; first known as uroscopy, then as urinalysis, this practice has been in existence for about 6,000 years ago. Early physicians considered urine as a revealing diagnostic tool, allowing them to understand various diseases like infections of the urinary tract, problems with the kidneys and bladder, and liver failure (1–4).

Produced by the kidneys and stored in the bladder between urinations, urine's composition depends on various factors, such as diet, lifestyle, and individual characteristics (*i.e.*, gender, age, weight, eating habits, etc.). When freshly excreted from the bladder, urine contains more than 95wt% of water. Substances present in urine are split into organic compounds (~ 60wt%, composed of urea representing more than 60wt%, followed by ammonium salts ~ 20wt%, the rest including creatinine and other compounds) and inorganic compounds (~ 40wt%, salts such as sodium chlorides, potassium chlorides, sulfates, carbonates, and phosphates).

The work of Prof. D.F. Putnam in 1971 pioneered the determination of the human urine composition (5). They provided, for the first time, a deep analysis demonstrating that human urine is an aqueous solution of urea, creatinine, uric acid, and various other species, such as chloride, sodium, potassium, sulfate, ammonium, and phosphate in smaller quantities. Proteins were also found to be present in urine, but in trace amounts compared to their concentrations in blood plasma. Consequently and after a multitude of research works, Bouatra et al. (6) identified in 2013 more than 3,000 components in human urine. Since then, over 90 compounds were found to be consistently present in urine samples, irrespective of gender or collection time. Later, various analytical methods have emerged to inspect the urine matrix (7,8), and currently multiple specific techniques are available to quantify traces of many "minor" molecules in urine, such as : HPLC (hormones (9), antidepressants (10), ranitidine (11)), UHPLC-MS/MS (pyrithione metabolites (12), DL-cysteine (13), steroid hormones (14)) or LC-MS/MS (gluten-derived metabolites (15), THC metabolites (16), phytocannabinoids (17)).

However, any study has yet been developed allowing efficient quantification of the most concentrated compounds without sample preparation and in a short time. Among the different analytical techniques used to measure separately the majority molecules contained in urine, one can typically cite:

- (i) for urea, electrochemical sensor (18), chemiluminometric (19) and spectrophotometric (20) methods;
- (*ii*) for creatinine, electrochemical detection (21), HPLC-MS/MS (22), colorimetric method (23);
- *(iii)* for chlorides, spectrophotometric method (24).

Besides, the simultaneous determination of both uric acid and creatinine has already been reported using HPLC (25,26) or LC/MS (27). Takao et al. quantified urea, uric acid and creatinine by LC/MS (28) in real human urine

matrices, while Wang et al. focused on the simultaneous potentiometric detection of sodium and potassium (29) in artificial urine solutions. Using paper-based sensors in synthetic urine, Tasoglu et al. successfully detected, in physiological concentrations, the major ions contained in urine, such as sodium, potassium, calcium, chloride and nitrite (30). All these methods are undeniably accurate but do not allow for one-pot and short-time analysis of the majority of compounds in the urine matrix. To the best of our knowledge, none of them are able to simultaneously determine the concentrations of both ions and organic compounds.

For the first time, the present work proposes a simple, rapid and sample-preparation-free method for the simultaneous analysis of the main organic molecules (lactic acid, hippuric acid, citric acid, uric acid, oxalic acid, urea, creatine and creatinine as biomarkers (31–36)) and the most concentrated ions (chloride, sulfate, phosphate, sodium, ammonium, potassium, magnesium and calcium) contained in human urine. This method consists of coupling ion chromatography to mass spectroscopy, which relevancy, accuracy and robustness will be demonstrated through a study involving samples obtained from 10 healthy human volunteers.

2. Material and methods

2.1. Chemicals

Lactic acid, hippuric acid, citric acid, uric acid, oxalic acid, urea, creatine and creatinine were purchased from Sigma-Aldrich (> 99.5%, St-Louis, USA) with a Normapur[®] grade. Anionic standards were prepared from a mixed solution from CPAChem (*Combined seven anions standard II – 7 components*, Bogomilovo, Bulgaria), while cationic standards were prepared from a mixed solution from SCP Science (*Standard for IC*, Baie-D'Urfé, Canada). Water was purified by a Milli-Q water purification system from Elga LabWater (*Medica*, Lane End, UK). Glassware should be avoided for the preparation and storage of solutions and replaced by synthetic material in order to avoid any ionic salting-out.

2.2. Preparation of standards and urine samples

2.2.1. Preparation of standards

Standard stock solutions of the analytes containing organic molecules at 0.5 g.L⁻¹ were prepared in Milli-Q water and stored in plastic bottles at 4 °C for no more than one week. Then, stock solutions were diluted to standard solutions at different concentrations.

2.2.2. Preparation of urine samples

Anonymous human urine samples were obtained from 10 healthy volunteers internally (7 male samples $\#1 \rightarrow \#7$ and 3 female samples $\#8 \rightarrow \#10$ in their 20s to 60s). The samples were stored at 4 °C until analysis. Urine samples were *(i)* filtered through 0.45 µm syringe filters, *(ii)* diluted 250-fold and then *(iii)* injected to the analytical system.

2.3. Instrumentation and conditions

A scheme of the system configuration for IC-CD/MS urine analysis is provided in Online Resource SI 1.

2.3.1. Chromatography

Analyses were performed using an IC-CD system (Thermo Scientific DionexTM ICS-5000⁺) equipped with a DP analytical pump, an AS-AP auto-sampler, and a DC-5 module with double oven containing (*i*) DionexTM CDRS 600 and DionexTM ADRS 600 suppressors for cation and anion detections respectively as well as (*ii*) two conductivity detectors (CD). Ion suppression was ensured by applying a constant current of 31 and 24 mA to the anionic and cationic suppressors respectively. The injection loop volumes were 25 µL and 10 µL, respectively for cation and anion pathways (full loop). Thermo ScientificTM ChromeleonTM Chromatography Data System software 7.2.10 was used for IC control and data processing.

An IonPac CS16-4µm analytical column (2 mm × 250 mm) from Thermo Scientific[™] was used for cation separation. The cationic eluent (methanesulfonic acid (MSA)) was generated at a flow rate of 0.16 mL.min⁻¹ by using a Thermo Scientific[™] Dionex[™] EGC 500 MSA Eluent Generator Cartridge. The column temperature was 40 °C.

An IonPac AS11-HC-4µm analytical column (2 mm × 250 mm) from Thermo Scientific was used for anion separation. The anionic eluent (KOH) was generated at a flow rate of 0.25 mL.min⁻¹ by using a Thermo ScientificTM DionexTM EGC III 500 KOH Potassium Hydroxide Eluent Generator Cartridge. The column temperature was 25 °C. Both eluent concentration profiles are provided in Online Resource SI 2. The overall run time was 35 min.

2.3.2. Mass spectroscopy

The IC system was coupled to a mass spectroscopy analyzer Orbitrap (Thermo Scientific Q ExactiveTM Focus). A DionexTM AXP Auxiliary Pump (water, 0.25 mL.min⁻¹) was used to ensure a neutral pH at the mass spectrometry inlet by connecting it to the relevant suppressor. Thermo ScientificTM Q ExactiveTM Plus software 2.11 was employed for MS control and data processing was proceed by Thermo ScientificTM ChromeleonTM Chromatography Data System software 7.2.10 and Thermo ScientificTM XcaliburTM software.

MS was performed using the full-scan method in the negative mode (0-35 min, m/z 50-500) and positive mode (0-35 min, m/z 50-500) using a heated electrospray ionization (ESI) source. Concerning the negative mode, the optimal parameters were set as follows: sheath gas flow rate, nitrogen set to 40 *a.u.*; auxiliary gas flow rate, nitrogen set to 20 *a.u.*; spray voltage, 3.5 kV; capillary temperature, 300 °C; S-lens RF level, 60; auxiliary gas flow rate, nitrogen set to 30 *a.u.*; auxiliary gas flow rate, nitrogen set to 30 *a.u.*; auxiliary gas flow rate, nitrogen set to 10 *a.u.*; spray voltage, 4.5 kV; capillary temperature, 300 °C; S-lens RF level, 60; auxiliary gas flow rate, nitrogen set to 30 *a.u.*; auxiliary gas flow rate, nitrogen set to 10 *a.u.*; spray voltage, 4.5 kV; capillary temperature, 300 °C; S-lens RF level, 60; auxiliary gas heater temperature, 300 °C; S-lens RF level, 60; auxiliary gas flow rate, nitrogen set to 10 *a.u.*; spray voltage, 4.5 kV; capillary temperature, 300 °C; S-lens RF level, 60; auxiliary gas heater temperature, 320 °C.

2.4. Validation of the method

An example of the obtained chromatograms for various analyte standard concentrations is provided in Online Resource SI 3. The method was validated for selectivity, sensitivity, linearity, accuracy, and precision according to the ICH guidelines (37).

2.4.1. Selectivity

The method's selectivity to ensure a proper separation of the different ions was examined on standard solutions and blank solvent (Milli-Q water) via conductivity measurements.

For the organic molecules, the method's selectivity was examined by analyzing several standard solutions. The signal of the mass spectrum of each pure compound was then compared to the corresponding one obtained in the urine spectrum as illustrated in Online Resource SI 4.

2.4.2. Sensitivity

The method's sensitivity was determined under the operating conditions used through the LODs and LOQs determination at a signal-to-noise ratio of 3 and 10, respectively.

2.4.3. Linearity

The linearity of the CD or MS signals of each compound against its concentration was examined by plotting the corresponding calibration curves. A set of solutions containing different concentrations of analyte were prepared, covering a wide range of values as reported in **Table 1**.

	Concentration range		Concentration range for									
Analyte	for calibration curves	Detection mode	determining recoveries									
-	(mg.L ⁻¹)		$(mg.L^{-1})$									
Organic molecu	les	MS										
Urea	$0 \le [CH_4N_2O] \le 25$	+p	$5 \le [CH_4N_2O] \le 25$									
Uric acid	$0 \le [C_5 H_4 N_4 O_3] \le 20$	—р	$2.5 \le [C_5 H_4 N_4 O_3] \le 20.0$									
Creatine	$0 \le [C_4 H_9 N_3 O_2] \le 10$	+p	$2.5 \le [C_4 H_9 N_3 O_2] \le 10.0$									
Creatinine	$0 \le [C_4 H_7 N_3 0] \le 10$	+p	$2.5 \le [C_4 H_7 N_3 0] \le 10.0$									
Citric acid	$0 \le [C_6 H_8 O_7] \le 7.5$	-р	$2.5 \le [C_6 H_8 O_7] \le 7.5$									
Lactic acid	$0 \le [C_3 H_6 O_3] \le 5$	-р	$1 \le [C_3 H_6 O_3] \le 5$									
Hippuric acid	$0 \leq [C_9H_9NO_3] \leq 5$	-р	$1 \leq [C_9H_9NO_3] \leq 5$									
Oxalic acid	$0 \le [C_2 H_2 O_4] \le 5$	-р	$1 \le [C_2 H_2 O_4] \le 5$									
Ionic compound	ls	CD										
Chloride	$0 \leq [Cl^-] \leq 20$	θ	$1 \leq [Cl^-] \leq 20$									
Ammonium	$0 \leq [\mathrm{NH}_4^+] \leq 15$	\oplus	$2.5 \le [NH_4^+] \le 15.0$									
Potassium	$0 \le [K^+] \le 10$	\oplus	$1.25 \le [K^+] \le 10.00$									
Sodium	$0 \le [Na^+] \le 7.5$	\oplus	$1.25 \le [Na^+] \le 7.50$									
Sulfate	$0 \le [SO_4^{2-}] \le 5$	θ	$0.25 \le [SO_4^{2-}] \le 5.00$									
Phosphate	$0 \le [PO_4^{3-}] \le 5$	θ	$0.25 \le [PO_4^{3-}] \le 5.00$									
Magnesium	$0 \le [Mg^{2+}] \le 2$	\oplus	$0.25 \le [Mg^{2+}] \le 2.00$									
Calcium	$0 \le [Ca^{2+}] \le 2$	\oplus	$0.25 \le [Ca^{2+}] \le 2.00$									

 Table 1 Concentration range (ordered by decreasing concentrations) used for each analyte to obtain the IC-CD/MS calibration curves and recoveries.

2.4.4. Accuracy

The method's accuracy was assessed by injecting standard solutions at different concentrations. By using calibration curves, the relative error (RE) between the theoretical and measured concentrations was then determined according to the Eq. (1).

$$RE = \left| \frac{\text{Theoretical concentration value} - \text{Experimental concentration value}}{\text{Theoretical concentration value}} \right| \times 100 \qquad \text{Eq. (1)}$$

The accuracy was also examined by means of the recovery of some known quantities of organic molecules and ionic compounds added to human urine samples. The latter parameter was already been studied by El Himri et al. (38) and was defined as **Eq. (2)**.

Recovery =
$$\frac{\text{Measured amount}}{\text{Spiked amount}} \times 100$$
 Eq. (2)

The dispersion of the measurements is assessed by evaluating the standard deviation (SD) as shown Eq. (4).

$$SD = \sqrt{\frac{\sum (x_i - \mu)^2}{N}}$$
 Eq. (4)

where x_i represents each value from the population, μ is the population mean and N is the size of the population. The recovery was determined by triplicate analysis of urine samples spiked with standards as shown in **Table 1**.

2.4.5. Precision

The intra-day precision was evaluated through the repeatability defined with relative standard deviation (RSD), as **Eq. (5)**, and determined from 5 replicates at a minimum of 3 different concentrations on day 1. The inter-day precision was evaluated by injecting the same solution in triplicate on days 2 and 3.

$$RSD = \left|\frac{SD}{\mu}\right| \times 100 \qquad \text{Eq. (5)}$$

2.4.6. Matrix effect

Calibration standards with equivalent concentration levels were prepared by introducing spiking into blank matrix extracts of the urine sample. Calibration curves were obtained by plotting the peak areas as a function of the concentrations of their respective calibration standards for each compound. The matrix effect (ME) was ascertained by comparing the slopes of the calibration curves formed from the matrix case and the ones formed from solvent-based calibration curves. The method used to quantify ME was derived from the equation proposed by Cho et al. (39) as described in **Eq. (6)**. A value exceeding 100% (below 100%) means an increase (a decrease) in response signal. This analysis was performed on ten distinct samples.

$$ME = \frac{\text{slope of matrix calibration curve}}{\text{slope of solvent standard calibration curve}} \times 100$$
 Eq. (6)

3. Results

3.1. Implementation of the IC-CD/MS method

The operating parameters of the mass spectrometer were optimized (i.e., ESI voltage, gas temperature, etc.), corresponding to IC conditions (i.e., flow rate, eluent composition, and concentration) previously described. Under these conditions, all the analytes in this matrix could be efficiently separated and detected within an overall run duration of 35 min. The chromatograms of the mixed standards and urine samples obtained are shown in **Fig. 1** and **Fig. 2**, respectively. The $[M - H]^-$ ions of lactic, hippuric, citric, uric and oxalic acids were detected in the negative ion mode as lactate, hippurate, citrate, urate, and oxalate (their identification is also possible in CD but was not applied in this study). The $[M - H]^+$ ions of urea, creatine and creatinine were detected in the positive ion mode.

Fig. 1 a) Anionic, b) cationic and c) extracted ion chromatograms of a sample containing all the standards in water. Major compounds are identified and labelled.

Fig. 2 a) Anionic, b) cationic and c) extracted ion chromatograms of a typical human urine sample. Major compounds are identified and labelled.

3.2. Validation of the IC-CD/MS method

3.2.1. Linearity, LODs and LOQs

Table 2 shows, for each analyte, the calibration curve ranges, regression equations, correlation coefficients, LODs and LOQs. Whatever the analyte, a linear relationship is obtained between the peak area and the concentration of standards in water, with correlation coefficients above 0.993. In Online Resource SI 5, the calibration curves

shows, for each standard, a good validation of the method by applying the Kohlrausch's law and the Kingdon's principle, respectively, for CD and MS detections (40,41).

AnalyteESI polarity T_r (min)Analyte concentration range (ppm)Regre ([j] in the second secon				Regression equation ([<i>j</i>] in mg.L ⁻¹)	Correlation coefficient R ²	LOD (mg.L ⁻¹)	LOQ (mg.L ⁻¹)	
Organic con	npounds ((MS)		(Peak area in counts.min)				
Lactic acid	-р	4.6	0-5	Peak area = $3.84 \times 10^6 \times [C_3H_6O_3]$ + 9.40×10^4	0.9988	0.19	0.64	
Hippuric acid	-р	16.0	0-5	Peak area = $5.08 \times 10^6 \times [C_9H_9NO_3]$ + 6.01×10^5	0.9958	0.37	1.22	
Citric acid	-р	18.1	0-7.5	Peak area = $5.43 \times 10^4 \times [C_6 H_8 O_7]$ + 4.39×10^3	0.9990	0.30	1.01	
Uric acid	-р	19.5	0-20	Peak area = $3.21 \times 10^3 \times [C_5 H_4 N_4 O_3]$ + 8.41×10^2	0.9988	0.72	2.41	
Oxalic acid	-р	27.0	0-5	Peak area = $3.98 \times 10^5 \times [C_2H_2O_4]$ + 3.37×10^4	0.9982	0.24	0.80	
Urea	+p	5.9	0-25	Peak area = $1.22 \times 10^6 \times [CH_4N_2O]$ + 1.51×10^5	0.9999	0.32	1.07	
Creatine	+p	17.3	0-10	Peak area = $3.86 \times 10^5 \times [C_4 H_9 N_3 O_2]$ + 2.55×10^4	0.9979	0.59	1.96	
Creatinine	+p	23.8	0-10	Peak area = $1.25 \times 10^6 \times [C_4 H_7 N_3 0]$ + 2.59×10^5	0.9972	0.63	2.11	
Ionic compo	unds (CL))		(Peak area in µS.min)				
Chloride		7.5	0-20	Peak area = $0.50 \times [Cl^{-}] + 0.06$	0.9999	0.12	0.41	
Sulfate		13.1	0-5	Peak area = $0.40 \times [SO_4^{2-}] + 0.10$	0.9994	0.14	0.47	
Phosphate		17.0	0-5	Peak area = $0.17 \times [PO_3^{2-}] + 0.01$	0.9982	0.25	0.84	
Sodium	г 1	13.0	0-7.5	$Peak area = 8.58 \times [Na^+] + 0.69$	0.9991	0.23	0.77	
Ammonium	[-]	14.3	0-15	Peak area = $0.72 \times [NH_4^+] + 0.13$	0.9987	0.75	2.59	
Potassium		16.5	0-10	Peak area = $0.64 \times [K^+] + 0.06$	0.9963	0.71	2.37	
Magnesium		17.8	0-2	Peak area = $2.12 \times [Mg^{2+}] + 0.08$	0.9936	0.16	0.54	
Calcium		19.7	0-2	Peak area = $1.09 \times [Ca^{2+}] + 1.05$	0.9950	0.14	0.48	

 Table 2 Retention time, calibration curve ranges, regression equation, correlation coefficients, LODs and LOQs obtained, for each analyte (ordered by increasing retention time).

3.2.2. Precision

As shown in **Table 3**, the intra-day precisions for all concentrations of each standard were smaller than 2.5% and the RSDs for the inter-day analysis smaller than 4.0% for each analyte, thus demonstrating that the method can be used to obtain accurate results.

	Concentration	Intra-day $(n = 5)$	i)	Inter-day $(n = 11)$				
Analyte	(mg.L ⁻¹)	Accuracy RE (%)	Precision RSD (%)	Accuracy RE (%)	Precision RSD (%)			
Organic molec	cules							
	1.00	1.2	1.5	4.3	0.6			
	2.00	2.9	0.8	1.8	3.5			
Lactic acid	3.00	3.5	3.1	0.2	2.2			
	4.00	0.5	1.9	3.4	2.8			
	5.00	3.3	2.6	2.5	3.4			
Hippuric	1.00	3.6	3.2	0.9	1.8			
acid	2.00	0.4	2.1	3.7	2.4			

Table 3 Intra-day and inter-day precision and accuracy.

	3.00	1.1	1.4	4.2	0.3
	4.00	2.2	0.9	1.3	3.8
	5.00	1.7	1.2	2.0	2.0
	2.50	1.1	1.4	2.6	1.5
Citric acid	5.00	3.9	0.9	4.2	3.9
	7.50	0.9	2.2	1.1	0.2
	2.50	2.5	0.5	3.7	2.8
	5.00	4.1	1.8	5.0	1.9
TT.'	7.50	3.9	1.2	2.4	3.1
Uric acid	10.00	2.8	2.5	0.5	0.7
	15.00	0.6	0.3	3.8	3.7
	20.00	3.2	2.1	1.3	2.4
	1.00	2.7	2.9	3.1	3.7
Ovalia said	2.00	4.1	1.7	2.6	0.4
Oxalic acid	3.00	2.3	3.3	1.9	1.1
	4.00	1.5	3.6	4.4	1.6
	5.00	3.8	0.7	0.1	1.3
	5.00	1.8	0.1	0.9	1.1
	10.00	4.5	1.7	4.1	3.4
Urea	15.00	1.2	2.4	0.2	0.4
	20.00	3.6	1.0	3.3	3.0
	25.00	0.5	0.7	2.0	1.7
	2.50	1.7	1.6	4.6	2.5
Creatine	5.00	2.4	1.3	1.8	1.2
Creatine	7.50	3.8	0.4	3.9	4.0
	10.00	0.3	1.9	1.5	0.9
	2.50	2.3	0.1	4.9	2.1
Creatinine	5.00	3.7	2.3	0.0	3.6
	7.50	0.7	1.8	2.3	1.4
	10.00	1.5	2.0	3.1	2.9
Ionic compour	nds	1 1 1	0.6	1 1	0.0
	1.00	1.1	0.6	1.1	0.8
Chlorida	5.00	0.8	1.0	0.4	0.3
Ciliofide	15.00	0.3	0.4	1.2	1.0
	13.00	1)			
	20.00	0.1	0.2	0.5	0.4
	20.00	0.1	0.2	0.5	0.4
	20.00 0.25 1.25	0.1 0.6 1.2	0.2 0.8 0.5	0.5 1.0 0.2	0.4 0.7 0.2 0.1
Sulfate	20.00 0.25 1.25 2.50	0.1 0.6 1.2 0.9	0.2 0.8 0.5 0.3	0.5 1.0 0.2	0.4 0.7 0.2 0.1 0.9
Sulfate	20.00 0.25 1.25 2.50 3.75	0.1 0.6 1.2 0.9 0.8	0.2 0.8 0.5 0.3 1.0	1.3 0.5 1.0 0.2 1.2 0.7	0.4 0.7 0.2 0.1 0.9 0.5
Sulfate	20.00 0.25 1.25 2.50 3.75 5.00	0.1 0.6 1.2 0.9 0.8 0.8	0.2 0.8 0.5 0.3 1.0 0.0	1.3 0.5 1.0 0.2 1.2 0.7 0.1	0.4 0.7 0.2 0.1 0.9 0.5 0.7
Sulfate	20.00 0.25 1.25 2.50 3.75 5.00 0.25	0.1 0.6 1.2 0.9 0.8 0.8 0.8 0.2	0.2 0.2 0.8 0.5 0.3 1.0 0.0 0.7	1.3 0.5 1.0 0.2 1.2 0.7 0.1 1.4	0.4 0.7 0.2 0.1 0.9 0.5 0.7 0.1
Sulfate	20.00 0.25 1.25 2.50 3.75 5.00 0.25 1.25	0.1 0.6 1.2 0.9 0.8 0.8 0.2 1.7	0.2 0.2 0.8 0.5 0.3 1.0 0.0 0.7 0.3	1.3 0.5 1.0 0.2 1.2 0.7 0.1 1.4 1.0	0.4 0.7 0.2 0.1 0.9 0.5 0.7 0.1 0.9
Sulfate	20.00 0.25 1.25 2.50 3.75 5.00 0.25 1.25 2.50	0.1 0.6 1.2 0.9 0.8 0.8 0.2 1.7 0.6	0.2 0.8 0.5 0.3 1.0 0.0 0.7 0.3 0.8	1.3 0.5 1.0 0.2 1.2 0.7 0.1 1.4 1.0 0.8	0.4 0.7 0.2 0.1 0.9 0.5 0.7 0.1 0.9 0.6
Sulfate Phosphate	20.00 0.25 1.25 2.50 3.75 5.00 0.25 1.25 2.50 3.75 5.00 0.25 1.25 2.50 3.75	0.1 0.6 1.2 0.9 0.8 0.2 1.7 0.6 0.3	0.2 0.8 0.5 0.3 1.0 0.7 0.3 0.8 0.7 0.3 0.5	1.3 0.5 1.0 0.2 1.2 0.7 0.1 1.4 1.0 0.8 0.0	0.4 0.7 0.2 0.1 0.9 0.5 0.7 0.1 0.9 0.6 0.2
Sulfate Phosphate	20.00 0.25 1.25 2.50 3.75 5.00 0.25 1.25 2.50 3.75 5.00 0.25 1.25 2.50 3.75 5.00	0.1 0.6 1.2 0.9 0.8 0.2 1.7 0.6 0.3 0.4	0.2 0.2 0.8 0.5 0.3 1.0 0.7 0.3 0.7 0.3 0.7 0.3 0.7 0.3 0.1	1.3 0.5 1.0 0.2 1.2 0.7 0.1 1.4 1.0 0.8 0.0 0.4	0.4 0.7 0.2 0.1 0.9 0.5 0.7 0.1 0.9 0.6 0.2 0.8
Sulfate Phosphate	20.00 0.25 1.25 2.50 3.75 5.00 0.25 1.25 2.50 3.75 5.00 0.25 1.25 2.50 3.75 5.00 1.25 2.50 3.75 5.00 1.25	0.1 0.6 1.2 0.9 0.8 0.2 1.7 0.6 0.3 0.4 1.9	0.2 0.8 0.5 0.3 1.0 0.7 0.3 0.7 0.3 0.7 0.3 0.7 0.3 0.1 1.0	1.3 0.5 1.0 0.2 1.2 0.7 0.1 1.4 1.0 0.8 0.0 0.4 1.1	0.4 0.7 0.2 0.1 0.9 0.5 0.7 0.1 0.9 0.6 0.2 0.8 0.4
Sulfate Phosphate	20.00 0.25 1.25 2.50 3.75 5.00 0.25 1.25 2.50 3.75 5.00 0.25 1.25 2.50 3.75 5.00 1.25 2.50 3.75 5.00 1.25 2.50	0.1 0.6 1.2 0.9 0.8 0.2 1.7 0.6 0.3 0.4 1.9 0.4	0.2 0.2 0.8 0.5 0.3 1.0 0.0 0.7 0.3 0.8 0.5 0.1 1.0 0.6	1.3 0.5 1.0 0.2 1.2 0.7 0.1 1.4 1.0 0.8 0.0 0.4 1.1 0.6	0.4 0.7 0.2 0.1 0.9 0.5 0.7 0.1 0.9 0.6 0.2 0.8 0.4 0.2
Sulfate Phosphate Sodium	20.00 0.25 1.25 2.50 3.75 5.00 0.25 1.25 2.50 3.75 5.00 1.25 2.50 3.75 5.00 1.25 2.50 5.00 5.00	0.1 0.6 1.2 0.9 0.8 0.2 1.7 0.6 0.3 0.4 1.9 0.4 0.1	0.2 0.2 0.8 0.5 0.3 1.0 0.0 0.7 0.3 0.8 0.5 0.1 1.0 0.6 0.9	1.3 0.5 1.0 0.2 1.2 0.7 0.1 1.4 1.0 0.8 0.0 0.4 1.1 0.6 1.3	0.4 0.7 0.2 0.1 0.9 0.5 0.7 0.1 0.9 0.6 0.2 0.8 0.4 0.2 1.0
Sulfate Phosphate Sodium	20.00 0.25 1.25 2.50 3.75 5.00 0.25 1.25 2.50 3.75 5.00 1.25 2.50 3.75 5.00 1.25 2.50 5.00 7.50	0.1 0.6 1.2 0.9 0.8 0.2 1.7 0.6 0.3 0.4 1.9 0.4 0.1 0.1	0.2 0.8 0.5 0.3 1.0 0.7 0.3 0.7 0.3 0.7 0.3 0.6 0.9 0.0	$\begin{array}{c} 1.3 \\ 0.5 \\ 1.0 \\ 0.2 \\ 1.2 \\ 0.7 \\ 0.1 \\ 1.4 \\ 1.0 \\ 0.8 \\ 0.0 \\ 0.4 \\ 1.1 \\ 0.6 \\ 1.3 \\ 0.9 \end{array}$	0.4 0.7 0.2 0.1 0.9 0.5 0.7 0.1 0.9 0.6 0.2 0.8 0.4 0.2 1.0 0.5
Sulfate Phosphate Sodium	20.00 0.25 1.25 2.50 3.75 5.00 0.25 1.25 2.50 3.75 5.00 1.25 2.50 3.75 5.00 1.25 2.50 5.00 7.50 2.50	0.1 0.6 1.2 0.9 0.8 0.2 1.7 0.6 0.3 0.4 1.9 0.4 0.1 0.1 1.4	0.2 0.2 0.8 0.5 0.3 1.0 0.7 0.3 0.7 0.3 0.7 0.3 0.7 0.3 0.7 0.3 0.6 0.9 0.0 0.7	$\begin{array}{c} 1.3 \\ 0.5 \\ 1.0 \\ 0.2 \\ 1.2 \\ 0.7 \\ 0.1 \\ 1.4 \\ 1.0 \\ 0.8 \\ 0.0 \\ 0.4 \\ 1.1 \\ 0.6 \\ 1.3 \\ 0.9 \\ 0.5 \\ \end{array}$	$\begin{array}{c} 0.4 \\ \hline 0.7 \\ \hline 0.2 \\ \hline 0.1 \\ \hline 0.9 \\ \hline 0.5 \\ \hline 0.7 \\ \hline 0.1 \\ \hline 0.9 \\ \hline 0.6 \\ \hline 0.2 \\ \hline 0.8 \\ \hline 0.4 \\ \hline 0.2 \\ \hline 1.0 \\ \hline 0.5 \\ \hline 0.5 \\ \hline 0.5 \\ \hline \end{array}$
Sulfate Phosphate Sodium	20.00 0.25 1.25 2.50 3.75 5.00 0.25 1.25 2.50 3.75 5.00 1.25 2.50 3.75 5.00 1.25 2.50 5.00 7.50 2.50 5.00	0.1 0.6 1.2 0.9 0.8 0.2 1.7 0.6 0.3 0.4 1.9 0.1 1.4 0.8	0.2 0.2 0.8 0.5 0.3 1.0 0.7 0.3 0.7 0.3 0.7 0.3 0.7 0.3 0.7 0.3 0.7 0.3 0.7 0.3 0.7 0.1 1.0 0.6 0.9 0.0 0.7 0.2	$\begin{array}{c} 1.3 \\ 0.5 \\ 1.0 \\ 0.2 \\ 1.2 \\ 0.7 \\ 0.1 \\ 1.4 \\ 1.0 \\ 0.8 \\ 0.0 \\ 0.4 \\ 1.1 \\ 0.6 \\ 1.3 \\ 0.9 \\ 0.5 \\ 1.1 \\ \end{array}$	$\begin{array}{c} 0.4 \\ \hline 0.7 \\ \hline 0.2 \\ \hline 0.1 \\ \hline 0.9 \\ \hline 0.5 \\ \hline 0.7 \\ \hline 0.1 \\ \hline 0.9 \\ \hline 0.6 \\ \hline 0.2 \\ \hline 0.8 \\ \hline 0.4 \\ \hline 0.2 \\ \hline 1.0 \\ \hline 0.5 \\ \hline 0.5 \\ \hline 0.6 \\ \hline \end{array}$
Sulfate Phosphate Sodium Ammonium	20.00 0.25 1.25 2.50 3.75 5.00 0.25 1.25 2.50 3.75 5.00 1.25 2.50 3.75 5.00 1.25 2.50 5.00 7.50 2.50 5.00 10.00	0.1 0.6 1.2 0.9 0.8 0.2 1.7 0.6 0.3 0.4 1.9 0.4 0.1 0.1 0.4 0.1 0.4	0.2 0.2 0.8 0.5 0.3 1.0 0.0 0.7 0.3 0.8 0.5 0.1 1.0 0.6 0.9 0.0 0.7 0.2 0.9	$\begin{array}{c} 1.3 \\ 0.5 \\ 1.0 \\ 0.2 \\ 1.2 \\ 0.7 \\ 0.1 \\ 1.4 \\ 1.0 \\ 0.8 \\ 0.0 \\ 0.4 \\ 1.1 \\ 0.6 \\ 1.3 \\ 0.9 \\ 0.5 \\ 1.1 \\ 1.4 \\ 1.4 \\ \end{array}$	0.4 0.7 0.2 0.1 0.9 0.5 0.7 0.1 0.9 0.6 0.2 0.8 0.4 0.2 1.0 0.5 0.5 0.5 0.7
Sulfate Phosphate Sodium Ammonium	20.00 0.25 1.25 2.50 3.75 5.00 0.25 1.25 2.50 3.75 5.00 1.25 2.50 3.75 5.00 1.25 2.50 5.00 7.50 2.50 5.00 10.00 15.00	0.1 0.6 1.2 0.9 0.8 0.2 1.7 0.6 0.3 0.4 0.1 0.1 1.4 0.8 0.4 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.6	0.2 0.2 0.8 0.5 0.3 1.0 0.0 0.7 0.3 0.8 0.5 0.1 1.0 0.6 0.9 0.0 0.7 0.2 0.9 0.4	1.3 0.5 1.0 0.2 1.2 0.7 0.1 1.4 1.0 0.8 0.0 0.4 1.1 0.6 1.3 0.9 0.5 1.1 1.4 0.2	0.4 0.7 0.2 0.1 0.9 0.5 0.7 0.1 0.9 0.6 0.2 0.8 0.4 0.2 1.0 0.5 0.6 0.7 1.0 0.5 0.6 0.7 1.0
Sulfate Phosphate Sodium Ammonium	20.00 0.25 1.25 2.50 3.75 5.00 0.25 1.25 2.50 3.75 5.00 0.25 1.25 2.50 3.75 5.00 1.25 2.50 5.00 7.50 2.50 5.00 10.00 15.00 1.25	0.1 0.6 1.2 0.9 0.8 0.2 1.7 0.6 0.3 0.4 1.9 0.4 0.1 0.4 0.1 0.4 0.1 0.4 0.7	0.2 0.2 0.8 0.5 0.3 1.0 0.0 0.7 0.3 0.8 0.5 0.1 1.0 0.6 0.9 0.0 0.7 0.2 0.9 0.4 0.6	1.3 0.5 1.0 0.2 1.2 0.7 0.1 1.4 1.0 0.8 0.0 0.4 1.1 0.6 1.3 0.9 0.5 1.1 1.4 0.2 0.6	0.4 0.7 0.2 0.1 0.9 0.5 0.7 0.1 0.9 0.6 0.2 0.8 0.4 0.2 1.0 0.5 0.6 0.7 1.0 0.5 0.6 0.7 1.0 0.3
Sulfate Phosphate Sodium Ammonium Potacsium	$\begin{array}{c} 20.00 \\ 0.25 \\ 1.25 \\ 2.50 \\ 3.75 \\ 5.00 \\ 0.25 \\ 1.25 \\ 2.50 \\ 3.75 \\ 5.00 \\ 1.25 \\ 2.50 \\ 5.00 \\ 1.25 \\ 2.50 \\ 5.00 \\ 7.50 \\ 2.50 \\ 5.00 \\ 10.00 \\ 15.00 \\ 1.25 \\ 2.50 \\ 1.25 \\ 2.50 \end{array}$	0.1 0.6 1.2 0.9 0.8 0.2 1.7 0.6 0.3 0.4 1.9 0.4 0.1 0.4 0.1 0.1 1.9 0.4 0.1 0.1 1.9 0.4 0.1 1.9	0.2 0.2 0.8 0.5 0.3 1.0 0.7 0.3 0.7 0.3 0.7 0.3 0.7 0.3 0.7 0.3 0.4 0.6 0.7 0.2 0.9 0.4 0.6 0.3	$\begin{array}{c} 1.3 \\ 0.5 \\ 1.0 \\ 0.2 \\ 1.2 \\ 0.7 \\ 0.1 \\ 1.4 \\ 1.0 \\ 0.8 \\ 0.0 \\ 0.4 \\ 1.1 \\ 0.6 \\ 1.3 \\ 0.9 \\ 0.5 \\ 1.1 \\ 1.4 \\ 0.2 \\ 0.6 \\ 1.2 \\ \end{array}$	$\begin{array}{c} 0.4 \\ \hline 0.7 \\ \hline 0.2 \\ \hline 0.1 \\ \hline 0.9 \\ \hline 0.5 \\ \hline 0.7 \\ \hline 0.1 \\ \hline 0.9 \\ \hline 0.6 \\ \hline 0.2 \\ \hline 0.8 \\ \hline 0.4 \\ \hline 0.2 \\ \hline 1.0 \\ \hline 0.5 \\ \hline 0.5 \\ \hline 0.5 \\ \hline 0.5 \\ \hline 0.6 \\ \hline 0.7 \\ \hline 1.0 \\ \hline 0.3 \\ \hline 0.3 \\ \hline 0.3 \\ \hline \end{array}$
Sulfate Phosphate Sodium Ammonium Potassium	20.00 0.25 1.25 2.50 3.75 5.00 0.25 1.25 2.50 3.75 5.00 1.25 2.50 3.75 5.00 1.25 2.50 5.00 1.25 2.50 5.00 10.00 15.00 1.25 2.50 5.00 5.00	0.1 0.6 1.2 0.9 0.8 0.2 1.7 0.6 0.3 0.4 1.9 0.4 0.1 1.4 0.8 0.1 0.1 1.9 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.2 0.2 0.8 0.5 0.3 1.0 0.7 0.3 0.7 0.3 0.7 0.3 0.7 0.3 0.7 0.3 0.7 0.3 0.7 0.1 1.0 0.6 0.9 0.0 0.7 0.2 0.9 0.4 0.6 0.3 0.8	$\begin{array}{c} 1.3 \\ 0.5 \\ \hline 1.0 \\ 0.2 \\ \hline 1.2 \\ 0.7 \\ 0.1 \\ \hline 1.4 \\ \hline 1.0 \\ 0.8 \\ 0.0 \\ 0.4 \\ \hline 1.1 \\ 0.6 \\ \hline 1.3 \\ 0.9 \\ 0.5 \\ \hline 1.1 \\ \hline 1.4 \\ 0.2 \\ 0.6 \\ \hline 1.2 \\ 0.9 \\ 0.9 \\ \hline 0.9$	$\begin{array}{c} 0.4 \\ \hline 0.7 \\ \hline 0.2 \\ \hline 0.1 \\ \hline 0.9 \\ \hline 0.5 \\ \hline 0.7 \\ \hline 0.1 \\ \hline 0.9 \\ \hline 0.6 \\ \hline 0.2 \\ \hline 0.8 \\ \hline 0.4 \\ \hline 0.2 \\ \hline 1.0 \\ \hline 0.5 \\ \hline 0.5 \\ \hline 0.5 \\ \hline 0.5 \\ \hline 0.6 \\ \hline 0.7 \\ \hline 1.0 \\ \hline 0.3 \\ \hline 0.3 \\ \hline 0.1 \\ \hline \end{array}$

	10.00	0.3	0.2	0.4	0.1
	0.25	1.4	0.9	0.7	0.4
	0.50	0.7	0.2	1.0	0.7
Magnesium	1.00	0.1	0.7	1.4	0.5
	1.50	0.7	0.5	0.2	0.1
	2.00	0.1	0.1	1.4	1.7
	0.25	0.2	1.0	0.6	0.9
	0.50	0.1	0.3	0.3	0.8
Calcium	1.00	1.6	0.6	1.2	0.5
	1.50	0.5	0.1	0.1	0.2
	2.00	0.8	0.8	1.3	0.1

3.2.3. Accuracy

Table 4 shows the recovery of different analytes for various concentrations in spiked human urine samples, ranging

 from 94.9% to 102.6%. They indicate a good agreement between theoretical and experimental ones.

		Recovery rates					
Analyte	Spiked concentration	Mean value	SD				
·	(mg.L ⁻)	(%)	(%)				
Organic molecules	·						
	1.00	95.8	3.2				
	2.00	98.3	4.1				
Lactic acid	3.00	100.5	5.0				
	4.00	96.1	3.5				
	5.00	101.4	4.8				
	1.00	101.7	5.1				
	2.00	95.4	3.9				
Hippuric acid	3.00	99.9	2.9				
	4.00	101.1	4.9				
	5.00	97.3	3.7				
	2.50	95.3	3.4				
Citric acid	5.00	100.7	5.6				
	7.50	101.5	4.8				
	2.50	99.2	4.0				
	5.00	102.3	5.2				
TT ' '1	7.50	97.8	3.6				
Uric acid	10.00	98.6	4.5				
	15.00	100.1	5.7				
	20.00	94.9	3.1				
	1.00	99.2	4.7				
	2.00	102.1	5.6				
Oxalic acid	3.00	97.6	4.5				
	4.00	100.8	5.3				
	5.00	102.5	5.2				
	5.00	96.4	2.9				
	10.00	102.6	5.1				
Urea	15.00	101.8	4.7				
	20.00	97.1	3.8				
	25.00	100.9	5.8				
	2.50	95.6	3.3				
	5.00	98.0	4.3				
Creatine	7.50	99.7	5.0				
	10.00	96.9	3.7				
Creatinine	2 50	101.1	49				

Table 4 Recovery of the analytes introduced into a human urine sample (n = 3).

	5.00	95.9	3.0
	7.50	100.4	5.5
	10.00	97.5	3.2
Ionic compounds			
	1.00	99.3	0.4
	5.00	100.8	1.2
Chloride	10.00	101.5	1.4
	15.00	100.1	0.7
	20.00	99.7	0.9
	0.25	101.2	1.1
	1.25	101.8	1.6
Sulfate	2.50	99.9	0.3
	3.75	100.4	1.3
	5.00	100.6	0.6
	0.25	101.1	1.5
	1.25	99.6	0.2
Phosphate	2.50	101.4	0.8
	3.75	100.0	1.1
	5.00	99.1	0.5
	1.25	101.7	1.0
Sodium	2.50	100.9	1.3
Sourum	5.00	100.2	0.1
	7.50	99.5	1.6
	2.50	101.3	0.8
Ammonium	5.00	99.8	1.2
Allinoilluin	10.00	100.5	0.3
	15.00	99.4	1.5
	1.25	100.7	0.9
	2.50	101.0	1.4
Potassium	5.00	101.6	0.7
	7.50	99.2	1.0
	10.00	100.3	0.5
	0.25	101.9	1.6
	0.50	99.0	0.4
Magnesium	1.00	101.7	1.1
	1.50	100.4	0.2
	2.00	100.8	1.4
	0.25	100.1	0.7
	0.50	101.5	1.3
Calcium	1.00	99.3	0.6
	1.50	99.8	1.0
	2.00	100.9	0.2

3.2.4. Matrix effect

As explained in section 2.4.6, MEs were evaluated using ten human urine samples spiked with various analytes, with the objective of evidencing any suppression or enhancement of their signals. A typical example for a human urine sample spiked with commercial urea is presented **Fig. 3**-a. The y-shift shows the presence of urea initially contained in the human urine sample. As illustrated in **Fig. 3**-b, the analyte concentration in the urine matrix can be obtained by applying the standard addition method. The same study was performed for all analytes and the results are reported in **Table 5**. As described in **Eq. (6)**, the comparison of the peak areas indicates any significant ME.

Fig. 3 a) Variation of the urea MS signal magnitude with the urea added concentration, into water or into human urine

and b) illustrative example of the application of the standard addition method for the determination of the urea concentration in a human urine sample.

	Organic n	nolecules	1													
	Lactic acid		Hippurio	e acid	Citric ac	id	Uric acid	l	Oxalic a	cid	Urea		Creatine	e	Creatini	ne
Sample	Mean	SD	Mean	SD	Mean	SD	Mean	SD	Mean	SD	Mean	SD	Mean	SD	Mean	SD
	value	(%)	value	(%)	value	(%)	value	(%)	value	(%)	value	(%)	value	(%)	value	(%)
	(%)	(70)	(%)	(70)	(%)	(70)	(%)	(70)	(%)	(70)	(%)	(70)	(%)	(70)	(%)	(70)
#1	97.4	1.7	108.1	8.3	98.7	2.7	97.2	1.5	100.8	4.9	96.7	3.6	94.8	4.8	103.9	7.9
#2	102.6	9.6	104.7	3.1	101.5	7.6	101.8	6.2	101.9	7.5	108.2	10.1	106.3	9.3	99.5	6.5
#3	99.1	5.4	98.7	6.8	97.9	1.9	99.5	4.7	107.8	0.4	91.5	1.9	103.2	8.2	101.6	8.6
#4	104.2	4.1	103.5	2.9	99.6	5.3	96.7	0.6	97.6	8.7	104.3	7.3	97.7	2.7	104.8	9.8
#5	101.3	7.2	106.9	10.5	100.2	8.1	100.3	5.3	103.8	5.9	99.8	5.8	95.6	3.6	96.2	3.2
#6	105.7	3.5	99.5	0.8	102.1	4.2	102.1	2.4	98.3	9.2	100.1	8.4	110.9	7.9	98.3	4.3
#7	106.2	2.6	102.1	6.1	97.4	0.6	98.4	3.9	104.9	8.9	92.5	2.5	109.1	10.1	110.0	11.0
#8	100.1	9.9	107.3	4.5	100.9	6.9	101.0	6.7	102.4	1.3	109.3	9.3	99.2	5.2	92.7	2.7
# 9	98.6	10.3	101.7	3.8	101.7	3.5	96.9	4.0	108.3	7.1	97.4	4.4	105.4	6.4	105.1	5.1
#10	103.1	0.6	100.3	5.2	100.4	7.3	100.7	6.5	97.9	2.1	102.6	6.2	90.8	0.8	110.4	6.4
	Ionic com	pounds	-								_					
	Chloride		Sulfate		Phospha	te	Sodium	Sodium Ammonium			Potassiu	m	Magnesium		Calcium	
Sample	Mean	SD	Mean	SD	Mean	SD	Mean	SD	Mean	SD	Mean	SD	Mean	SD	Mean	SD
	value	(%)	value	(%)	value	(%)	value	(%)	value	(%)	value	(%)	value	(%)	value	(%)
	(%)	(70)	(%)	(70)	(%)	(70)	(%)	(70)	(%)	(70)	(%)	(70)	(%)	(70)	(%)	(70)
#1	95.1	3.1	98.8	6.8	93.4	2.4	98.1	6.1	97.3	4.3	98.6	5.6	97.8	8.3	101.3	3.5
#2	108.6	10.6	96.5	3.5	102.3	7.3	104.0	9.0	100.7	7.7	102.5	7.5	96.1	2.7	93.7	8.2
#3	94.7	4.7	104.1	9.1	100.8	6.8	111.5	8.5	102.8	9.8	100.2	6.2	105.3	5.0	99.0	6.9
#4	106.9	9.9	101.7	8.7	97.2	4.2	93.9	2.9	94.4	3.4	93.1	1.1	100.5	10.1	108.1	2.3
#5	99.3	6.3	95.9	2.9	110.0	11.0	107.6	10.6	103.1	8.1	106.1	9.1	109.2	9.2	104.2	7.1
#6	101.2	8.2	107.4	10.4	96.9	3.9	95.2	3.2	108.9	10.9	95.8	3.8	98.0	3.3	96.3	10.8
#7	109.8	10.8	93.6	1.6	105.7	9.7	109.7	11.7	95.5	2.5	108.4	10.4	94.9	4.0	95.0	4.6
#8	90.6	0.6	102.9	7.9	104.6	8.6	92.1	1.1	99.9	5.9	114.7	8.7	92.8	11.0	110.0	0.9
#9	97.9	2.9	109.5	11.5	99.1	5.1	106.8	9.8	91.1	0.1	99.6	5.6	101.9	1.6	92.6	9.4
1110	1015	7.5	100.0	5.0	01.0	1.0	00.0	0.0	105.0	()	01.4	0.4	07.0	(1	07.1	57

Table 5 MEs of the analytes introduced into a human urine sample (n = 3).

3.3. Analysis of human urine samples

Ten human urine samples obtained from healthy volunteers have been analyzed using the proposed method, and the quantitative results are reported in **Table 6**. The sixteen analytes, present in all samples, are quantified at a concentration within the linear ranges of their calibration curves.

	Organic me	olecules															
	Lactic acid Hippuric acid Citr						Citric acid Uric acid Oxalic acid						Creatine	e	Creatinine		
Sample	Mean value (g.L ⁻¹)	RSD (%)	Mean value (g.L ⁻¹)	RSD (%)	Mean value (g.L ⁻¹)	RSD (%)	Mean value (g.L ⁻¹)	RSD (%)	Mean value (g.L ⁻¹)	RSD (%)	Mean value (g.L ⁻¹)	RSD (%)	Mean value (g.L ⁻¹)	RSD (%)	Mean value (g.L ⁻¹)	RSD (%)	
#1	1.62×10 ⁻²	0.17	0.78	0.18	0.92	0.60	0.92	0.60	3.16×10 ⁻²	2.81	20.37	0.22	0.16	2.80	3.01	0.47	
#2	7.17×10 ⁻³	0.64	0.42	0.19	0.81	3.38	0.81	3.38	4.12×10 ⁻²	0.75	21.34	0.62	1.59	0.35	3.85	0.77	
#3	9.67×10 ⁻³	2.38	0.09	0.26	0.52	0.21	0.52	0.21	<lod< td=""><td>-</td><td>7.79</td><td>2.78</td><td>0.14</td><td>1.94</td><td>1.00</td><td>3.38</td></lod<>	-	7.79	2.78	0.14	1.94	1.00	3.38	
#4	4.25×10 ⁻³	2.16	0.19	0.17	0.33	0.83	0.33	0.83	<lod< th=""><th>-</th><th>6.20</th><th>2.33</th><th><lod< th=""><th>-</th><th>0.72</th><th>1.38</th></lod<></th></lod<>	-	6.20	2.33	<lod< th=""><th>-</th><th>0.72</th><th>1.38</th></lod<>	-	0.72	1.38	
#5	1.50×10 ⁻²	0.21	0.61	0.57	0.78	1.42	0.78	1.42	5.11×10 ⁻²	1.74	9.65	1.50	0.05	3.63	2.24	1.07	
#6	<lod< td=""><td>-</td><td>0.16</td><td>2.24</td><td>0.59</td><td>0.93</td><td>0.59</td><td>0.93</td><td>3.73×10⁻³</td><td>2.38</td><td>11.55</td><td>0.13</td><td>17.54</td><td>0.52</td><td>0.91</td><td>1.75</td></lod<>	-	0.16	2.24	0.59	0.93	0.59	0.93	3.73×10 ⁻³	2.38	11.55	0.13	17.54	0.52	0.91	1.75	
#7	3.46×10 ⁻³	0.53	0.14	2.23	0.38	1.46	0.38	1.46	3.75×10 ⁻⁴	1.18	5.84	0.99	<lod< td=""><td>-</td><td>0.86</td><td>0.76</td></lod<>	-	0.86	0.76	
#8	5.53×10 ⁻²	0.02	0.46	0.21	0.77	1.42	0.77	1.42	1.37×10 ⁻²	0.06	15.56	0.09	0.65	0.71	1.58	1.81	
# 9	3.37×10 ⁻²	0.38	0.61	0.46	0.72	0.38	0.72	0.38	2.17×10 ⁻²	0.10	14.48	1.00	1.73	0.64	2.21	0.26	
#10	1.72×10 ⁻²	0.54	0.19	0.18	0.93	0.59	0.93	0.59	4.43×10 ⁻²	0.20	23.14	1.93	6.88	0.67	1.37	0.11	
	Ionic comp	ounds															
	Chloride		Sulfate		Phospha	te	Sodium		Ammonium	Potassiu	m	Magnesium Calcium			1		
Sample	Mean	ean _{RSD} Mean _{RSD} I		Mean	RSD	Mean	RSD	Mean	RSD	Mean	RSD	Mean	RSD	Mean	RSD		
	value (g.L ⁻¹)	(%)	value (g.L ⁻¹)	(%)	value (g.L ⁻¹)	(%)	value (g.L ⁻¹)	(%)	value (g.L ⁻¹)	(%)	value (g.L ⁻¹)	(%)	value (g.L ⁻¹)	(%)	value (g.L ⁻¹)	(%)	
#1	3.37	0.42	1.31	1.01	2.70	0.76	0.32	0.51	0.73	3.86	4.13	1.07	0.08	0.10	0.19	0.61	
#2	4.97	0.07	1.42	0.62	4.87	0.11	0.61	0.73	0.51	3.83	4.15	0.73	0.14	1.85	0.08	1.92	
#3	3.16	0.11	0.38	2.31	0.44	2.35	0.24	0.14	0.10	2.34	2.98	0.65	0.03	0.25	0.05	1.76	
#4	1.51	0.23	0.38	1.17	0.78	1.31	0.09	0.18	0.15	1.51	2.38	1.28	0.04	2.38	<lod< td=""><td>-</td></lod<>	-	
#5	5.85	0.06	0.75	1.18	1.29	0.79	0.34	0.75	0.83	0.94	4.23	0.78	0.05	3.61	<lod< th=""><th>-</th></lod<>	-	
#6	2.67	0.01	1.07	1.64	0.48	2.14	0.26	0.34	0.16	1.42	2.58	0.64	0.05	1.55	0.10	0.17	
#7	2.60	0.14	0.25	1.74	0.25	1.22	0.16	0.42	0.20	0.00	2.80	0.49	0.03	2.86	0.05	1.60	
#8	5.49	0.13	1.06	0.41	1.15	0.89	0.67	0.83	0.38	0.63	1.68	0.33	0.16	3.67	0.26	1.24	
# 9	2.53	0.42	1.16	0.38	2.23	0.46	0.28	0.32	0.64	0.39	2.60	1.07	0.10	1.72	0.09	3.42	

Table 6 Analytical results of organic compounds and ions contained in humane urine samples (n = 3).

(a)

4. Discussions

To the best of the authors' knowledge, the analytical technique described above (i.e., IC-CD/MS) is applied for the first time for simultaneously determination major compounds in urine. This allows a double analysis and direct dilute-and-shoot approach in 35 min without sample preparation.

The validation results demonstrate the reliability of this method for the simultaneous quantification of lactic acid, hippuric acid, citric acid, uric acid, oxalic acid, urea, creatine, creatinine and ions in human urine samples (with a precision within 4.0%, accuracy ranging from 0.1% to 5% and recovery rates varying from 94.9% to 102.6%).

Both external calibration and standard-addition approaches enable the quantification of the analyte. Following this procedure, the proposed method provides satisfactory quantitative results (compared to the literature's values presented in Online Resource SI 6), without the need for expensive isotope-labelled compounds (42), thereby supporting its applicability to daily testing of human urine samples. The difference in values can be attributed to different lifestyle practices (such as eating habits, sleep, sex, sporting activities, etc.).

According to various studies (28,43,44), the identification and characterisation of a human urine solution can be performed by evaluating some concentration ratio according to the two following coefficients K_1 and K_2 :

$$K_{1} = 20 \times \{ [\text{Uric acid}] / [\text{Urea}_{eq \text{ nitrogen}}] \}$$
 Eq. (7)

$$K_2 = [Uric acid]/[Creatinine]$$
 Eq. (8)

where concentrations are given in g.L⁻¹.

These two factors have been evaluated and reported in the Online Resource SI 7. Sakurai et al. (28) reported values of K_1 ranging from to 0.69 to 2.25, which are consistent with those obtained in this study, ranging from 1.63 to 3.45. As for K_2 , Kwon et al. (27) and Sakurai et al. (28) reported values ranging from 0.28 to 0.66, similar to those obtained in this study (from 0.21 to 0.68). However, the pioneering technique of ion chromatography coupled with mass spectroscopy allows efficient characterization of the more significant analytes contained in human urine.

5. Conclusions

This work investigated a new IC-CD/MS method for the simultaneous quantification of the 8 main organic molecules (biomarkers) and 8 ions naturally present in human urine, in two runs and within 35 min. Chromatographic separation was performed using ion-exchange columns coupled to a mass spectroscopy detector. Quantitative concentration values were obtained using the external standard method without requiring the use of expensive isotope-labeled compounds. The results were validated according to ICH guidelines (through selectivity, sensitivity, linearity, accuracy, and precision) and showed that the proposed method provided quantitative values

with precision and accuracy higher than 95%. Furthermore, no matrix effects were observed. In the future, the proposed method could be thus used as a basic technique in any analytical field.

Declarations

_

Acknowledgements

The authors would like to thank the volunteers for their urine donations.

Funding

This work was supported by the French National Research Agency (proposal HYUREA ANR-19-CE04-0009).

- Conflict of Interest

The authors have no relevant financial or non-financial interests to disclose.

- Ethical approval

This is an observational study; no ethical approval was needed for the study. Before gathering any information, we ensured to obtain written approvals from each participant with notice of information and consent form. All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments. This study was conducted with healthy individuals aged 18 and above, who had no previous record of kidney-related ailments. The study excluded those who were currently suffering from a urinary tract infection. Furthermore, female participants were instructed to undertake the test on non-menstrual days.

- CRediT author statement

Guillaume Hopsort: Conceptualization, Methodology, Validation, Formal analysis, Investigation, Data curation, Writing - Original draft, Visualization; Laure Latapie: Conceptualization, Methodology, Validation, Formal analysis, Investigation, Resources, Writing - Review & Editing, Funding acquisition; Karine Groenen Serrano: Writing - Review & Editing, Supervision; Karine Loubière: Writing - Review & Editing, Supervision; Théodore Tzedakis: Writing - Review & Editing, Supervision, Project administration, Funding acquisition.

References

Queremel Milani DA, Jialal I. Urinalysis. In: StatPearls. Treasure Island (FL): StatPearls Publishing;
 2023.

2. Njoku K, Chiasserini D, Jones ER, Barr CE, O'Flynn H, Whetton AD, et al. Urinary Biomarkers and Their Potential for the Non-Invasive Detection of Endometrial Cancer. Front Oncol. 2020 Nov 3;10:559016.

 Jing J, Gao Y. Urine biomarkers in the early stages of diseases: current status and perspective. Discov Med. 2018 Feb;25(136):57–65.

4. Sequeira-Antunes B, Ferreira HA. Urinary Biomarkers and Point-of-Care Urinalysis Devices for Early Diagnosis and Management of Disease: A Review. Biomedicines. 2023 Mar 29;11(4):1051.

5. Putnam DF. Composition and Concentrative Properties of Human Urine [Internet]. National Aeronautics and Space Administration; 1971. Available from: http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19710023044_1971023044.pdf

Bouatra S, Aziat F, Mandal R, Guo AC, Wilson MR, Knox C, et al. The Human Urine Metabolome.
 Dzeja P, editor. PLoS ONE. 2013 Sep 4;8(9):e73076.

Brunzel NA. Fundamentals of Urine and Body Fluid Analysis - E-Book. 5th ed. Philadelphia: Elsevier;
 2022.

8. Das Gupta B. Urine Analysis [Internet]. Elsevier. India; 1932. 152 p. Available from: https://doi.org/10.1016/C2013-0-06676-5

 Lopes D, Morés L, Da Silva M, Schneider M, Merib J, Carasek E. Determination of hormones in urine by hollow fiber microporous membrane liquid–liquid extraction associated with 96-well plate system and HPLC-FLD detection. J Chromatogr B. 2022 Sep;1207:123406.

10. Mohamed GG, Fekry AM, Attia FMA, Ibrahim NS, Azab SM. Simultaneous determination of some antidepressant drugs and vitamin B12 in pharmaceutical products and urine sample using HPLC method. J Chromatogr B. 2020 Aug;1150:122178.

11. Ashiru DAI, Patel R, Basit AW. Simple and universal HPLC-UV method to determine cimetidine, ranitidine, famotidine and nizatidine in urine: Application to the analysis of ranitidine and its metabolites in human volunteers. J Chromatogr B. 2007 Dec;860(2):235–40.

12. Zoller A, Wehmeyer K, Krivos K, Karb M, Stoffolano P, Nash JF, et al. UHPLC-MS/HRMS method for the quantitation of pyrithione metabolites in human urine. J Chromatogr B. 2021 May;1173:122614.

13. Ma Q, Qi C, Li XL, Shi Q, Xu CY, Jin T, et al. Simultaneous determination of DL-cysteine, DL-

homocysteine, and glutathione in saliva and urine by UHPLC-Q-Orbitrap HRMS: Application to studies of oxidative stress. J Pharm Biomed Anal. 2021 Mar;196:113939.

14. Dmitrieva E, Temerdashev A, Azaryan A, Gashimova E. Quantification of steroid hormones in human urine by DLLME and UHPLC-HRMS detection. J Chromatogr B. 2020 Nov;1159:122390.

15. Coglianese A, Charlier B, Mensitieri F, Filippelli A, Izzo V, Dal Piaz F. Standard addition method (SAM) in LC-MS/MS to quantify gluten-derived metabolites in urine samples. J Pharm Biomed Anal. 2023 Aug;232:115416.

16. Young BL, Victoria Zhang Y. A rapid Dilute-and-Shoot LC-MS/MS method for quantifying THC-COOH and THC-COO(Gluc) in urine. J Chromatogr B. 2022 Nov;1211:123495.

17. Reber JD, Karschner EL, Seither JZ, Knittel JL, Walterscheid JP. Screening and confirmation methods for the qualitative identification of nine phytocannabinoids in urine by LC-MS/MS. Clin Biochem. 2021 Dec;98:54–62.

18. Liu J, Lu W, Zhang L, Yang J, Yao ZP, He Y, et al. Integrated hand-held electrochemical sensor for multicomponent detection in urine. Biosens Bioelectron. 2021 Dec;193:113534.

19. Hu X, Takenaka N, Kitano M, Bandow H, Maeda Y, Hattori M. Determination of trace amounts of urea by using flow injection with chemiluminescence detection. The Analyst. 1994;119(8):1829.

20. Langenfeld NJ, Payne LE, Bugbee B. Colorimetric determination of urea using diacetyl monoxime with strong acids. Signore G, editor. PLOS ONE. 2021 Nov 8;16(11):e0259760.

21. Teekayupak K, Aumnate C, Lomae A, Preechakasedkit P, Henry CS, Chailapakul O, et al. Portable smartphone integrated 3D-Printed electrochemical sensor for nonenzymatic determination of creatinine in human urine. Talanta. 2023 Mar;254:124131.

22. Caporossi L, Paci E, Capanna S, Papaleo B, Tranfo G, Pigini D. A new HPLC-MS/MS method for urinary creatinine determination: Comparison study with Jaffè's method. URINE. 2023;5:23–8.

23. Musile G, Agard Y, Pesavento S, De Palo EF, Dorizzi RM, Bortolotti F. An origami microfluidic paper device for on-site assessment of urine tampering. First use of Nessler's reagent for the colorimetric determination of creatinine. Anal Chim Acta. 2023 Jan;1237:340610.

24. Rocha DL, Rocha FRP. An environmentally friendly flow-based procedure with photo-induced oxidation for the spectrophotometric determination of chloride in urine and waters. Microchem J. 2013 May;108:193–7.

25. Zuo Y, Wang C, Zhou J, Sachdeva A, Ruelos VC. Simultaneous Determination of Creatinine and Uric Acid in Human Urine by High-Performance Liquid Chromatography. Anal Sci. 2008 Dec;24(12):1589–92.

26. George SK, Dipu MT, Mehra UR, Singh P, Verma AK, Ramgaokar JS. Improved HPLC method for the simultaneous determination of allantoin, uric acid and creatinine in cattle urine. J Chromatogr B. 2006 Feb;832(1):134–7.

27. Kwon W, Kim JY, Suh S, In MK. Simultaneous determination of creatinine and uric acid in urine by liquid chromatography–tandem mass spectrometry with polarity switching electrospray ionization. Forensic Sci Int. 2012 Sep;221(1–3):57–64.

28. Sakurai T, Irii T, Iwadate K. Simultaneous quantification of urea, uric acid, and creatinine in human urine by liquid chromatography/mass spectrometry. Leg Med. 2022 Mar;55:102011.

29. Wang F, Liu Y, Zhang M, Zhang F, He P. Home Detection Technique for Na⁺ and K⁺ in Urine Using a Self-Calibrated all-Solid-State Ion-Selective Electrode Array Based on Polystyrene–Au Ion-Sensing Nanocomposites. Anal Chem. 2021 Jun 15;93(23):8318–25.

30. Ghaderinezhad F, Ceylan Koydemir H, Tseng D, Karinca D, Liang K, Ozcan A, et al. Sensing of electrolytes in urine using a miniaturized paper-based device. Sci Rep. 2020 Aug 12;10(1):13620.

31. Oginawati K, Anka AAH, Susetyo SH, Febriana SA, Tanziha I, Prakoeswa CRS. Urinary hippuric acid level as a biological indicator of toluene exposure on batik workers. Heliyon. 2021 Aug;7(8):e07775.

32. Gunst J, Kashani KB, Hermans G. The urea-creatinine ratio as a novel biomarker of critical illnessassociated catabolism. Intensive Care Med. 2019 Dec;45(12):1813–5.

33. Wang X, Wang M, Ruan J, Zhao S, Xiao J, Tian Y. Identification of urine biomarkers for calcium-oxalate urolithiasis in adults based on UPLC-Q-TOF/MS. J Chromatogr B. 2019 Aug;1124:290–7.

34. Krupp D, Doberstein N, Shi L, Remer T. Hippuric Acid in 24-Hour Urine Collections Is a Potential Biomarker for Fruit and Vegetable Consumption in Healthy Children and Adolescents, J Nutr. 2012 Jul;142(7):1314–20.

35. Xiang LW, Li J, Lin JM, Li HF. Determination of gouty arthritis' biomarkers in human urine using reversed-phase high-performance liquid chromatography. J Pharm Anal. 2014 Apr;4(2):153–8.

36. Nikolaidis S, Karpouzi C, Tsalis G, Kabasakalis A, Papaioannou KG, Mougios V. Reliability of urine lactate as a novel biomarker of lactate production capacity in maximal swimming. Biomarkers. 2016 May 18;21(4):328–34.

ICH. Validation of Analytical Procedures: Text and Methodology Q2(R2). London, UK: EMA; 2022
 Mar.

38. El Himri M, Errasfa M, El Kassimi A, Naboulsi A, El Himri A, El Haddad M. Method validation for

arsenic speciation in contaminated soil by HPLC-ICP-MS coupling method. J Indian Chem Soc. 2022 Oct;99(10):100684.

39. Cho J, Lee J, Lim CU, Ahn J. Quantification of pesticides in food crops using QuEChERS approaches and GC-MS/MS. Food Addit Contam Part A. 2016 Dec 1;33(12):1803–16.

40. Practical Aspects of Trapped Ion Mass Spectrometry, Volume IV, Theory and Instrumentation. RaymondE. March and John F.J Todd. CRC Press; 2017.

41. Huang Y, Mou S fen, Liu K na. Conductimetric detection of anions of very weak acids by incomplete suppressed ion chromatography. J Chromatogr A. 1999 Jan;832(1–2):141–8.

42. Unak P, Darcan Ş, Yurt F, Biber Z, Çoker M. Determination of iodide amounts in urine and water by isotope dilution analysis. Biol Trace Elem Res. 1999 Dec;71–72(1):463–70.

43. Sato K, Tsutsumi H, Htay HH, Tamaki K, Okajima H, Katsumata Y. Identification of human urinary stains by the quotient uric acid/urea nitrogen. Forensic Sci Int. 1990 Mar;45(1–2):27–38.

44. Fujishiro M, Sobue H, Taira R, Ohtawa T, Umezawa H, Izawa H, et al. Identification of human urinary stains by the uric acid/creatinine quotient and HPLC chromatogram. J Showa Med Assoc. 2008;68(3):175–81.

Nomenclature

Abbreviations

- DP : Dual Pump
- ESI: Electro-Spray Ionization
- HPLC: High-Performance Liquid Chromatography
- IC-CD/MS: Ion Chromatography-Conductivity Detector / Mass Spectroscopy
- ICH: International Council for Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use
- LC: Liquid Chromatography
- LOD: Limit of Detection
- LOQ: Limit of Quantification
- ME: Matrix effect
- RE: Relative Error
- RF: Radio Frequency
- RSD: Relative Standard Deviation
- SD: Standard Deviation

- UHPLC: Ultra High-Performance Liquid Chromatography

Symbols

- *a.u.*: arbitrary unit
- K₁ and K₂: calculated ratios to validate the human urine presence in a sample (dimensionless)
- $m/_Z$: mass-to-charge ratio
- *n*: number of repetitions (dimensionless)
- N: size of the population
- T_r : retention time (min)
- R²: correlation coefficient (dimensionless)
- x_i: each value from the population
- μ: population mean