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Abstract
As agricultural intensification affects global environmental change, a redesign of our food production systems towards practices
that replace external inputs with inbuilt ecosystem services is needed. Specifically, human-induced changes to biogeochemical
flows of nitrogen (N) cycling exceed the proposed planetary boundaries, highlighting a priority area for reducing nutrient inputs
in agricultural production systems. A new understanding of nutrient interactions in the complete agroecosystem will allow us to
better predict and mitigate the consequences of anthropogenic environmental changes compared with a reductionist approach.
Here, we review for the first time system-level nutrient interactions, particularly N, in perennial horticulture using high-producing
kiwifruit and apple crops grown in New Zealand as a basis to identify critical knowledge gaps and prioritize new research. The
major points identified are (1) current nutrient guidelines are from the 1980s to the early 2000s and do not take into account
substantial production changes since that time; (2) few studies construct complete nutrient budgets of all sources and losses; (3)
nutrient loss estimates are generally low relative to those from other agricultural land uses; (4) there is a lack of studies which
address nutrient interactions between above- and below-ground food webs in perennial horticultural crops; (5) there is contra-
dictory literature where fertilizer has been found both to increase and to decrease plant chemical signaling and defense mech-
anisms. New tools are emerging to improve orchard nutrient management, including advances in fertilizer application techniques,
new methods to monitor plant and soil nutrients, and utilizing genetic variability to breed cultivars with improved nutrient use
efficiency. To reduce adverse nutrient effects on the environment, new research is needed, addressing the relationships between
carbon and nutrients and nutrient demands in modern fruit cultivars and growing systems; the nutrient balance for perennial
horticultural crops considering all inputs and outputs; and interactions of the above- and below-ground nutrient flows in orchard
food webs.
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1 Introduction

Human impacts associated with the industrial revolution and
agricultural intensification have caused unprecedented global
environmental changes that threaten to undermine the Earth’s
natural systems (Rockström et al. 2009; Steffen et al. 2015).
Environment changes include climate change, biodiversity
loss, soil degradation, changes in nutrient cycling, and loading
with persistent toxic substances. A redesign of our food pro-
duction systems is needed, towards sustainable intensification
practices that replace external inputs with ecosystem services
and consider whole system-based production practices in the
context of the ecological landscape (Kleijn et al. 2019; Kuyper
and Struik 2014; Rockström et al. 2017). International policy
agreements such as ‘A European Green Deal’ (European
Commission 2020) and ‘The Paris Agreement’ (United
Nations 2015) promote the reduction of inputs in a range of
systems including food production, providing incentives to
meet reduction targets. Human-induced changes to biogeo-
chemical flows of nitrogen (N) cycling exceed the proposed
planetary boundaries (Rockström et al. 2009; Steffen et al.
2015), which highlights a priority area for reducing nutrient
inputs in agricultural production systems.

By examining food production changes with a system-
based approach, the benefits and trade-offs from practice
changes, such as reduction of nutrient inputs, will be evaluated
for all areas of the biosphere from the plant to the soil and the
macro- and microorganisms. Positive and negative environ-
mental outcomes will stem from the interactions at these
boundary interfaces for different ecosystem components.
Research using a complete systems approach rather than a
reductionist approach allows us to better predict and mitigate
the consequences of anthropogenic environmental changes
(Claverie et al. 2020; Demestihas et al. 2017; Ehrenfeld
et al. 2005). This is achieved by layering in research on
plant-soil feedback to understand the underlying mechanisms,
to predict consequences of nutrient cycling and optimization
on crop productivity, disease and pest management, microbial
community composition, environmental impacts, and trade-
offs under a variety of conditions.

Perennial fruit and nut crops are grown on over 91 million
ha worldwide and are of great economic importance in many
regions as well as in global trade (FAOSTAT 2021). Within
New Zealand, perennial horticultural crops are produced on
over 68,000 ha, with an export market value of more than
NZ$5.7 billion (Fresh Facts 2020). The largest perennial crops
producing fresh fruits in New Zealand are kiwifruit and apples
(Fig. 1); key industry statistics are shown in Table 1. In this
review, we use kiwifruit and apple crops as case studies to
examine nutritional requirements and interactions with system
functions of deciduous, perennial fruit crops. Kiwifruit and
apples are grown and marketed in many countries. These
crops represent contrasting production systems: a vigorous,

recently domesticated vine, and a low-vigor tree crop that
has been domesticated for thousands of years. Therefore, they
provide useful extremes to examine nutrient cycling of peren-
nial fruit crop production systems that focus on producing
high yields of high-quality fruits.

Our review takes a novel systems-level scope to examine
nutrient cycling in perennial horticultural systems, focusing
on N using our case study crops of kiwifruit and apple, with
the aim of identifying areas to reduce external N inputs and
limit environmental N emissions. To begin to address reduc-
ing nutrient inputs in perennial horticulture systems we first
need to consider the nutrient requirements of fruit crops, both
quantities and timing, sources and losses of nutrients in the
agroecosystem, and nutrient interactions with the food web of
the orchard ecosystem. We conclude by identifying key re-
search gaps limiting our understanding of nutrient dynamics
in these systems, and novel technologies for smart fertilization
practices.

2 Current practice

Current plant nutrient guidelines in New Zealand kiwifruit
orchards are based predominantly on earlier studies of two
commercial cultivars, the green-fleshed kiwifruit (Actinidia
chinensis (A. Chev.) C. F. Liang et A. R. Ferguson var.
deliciosa ‘Hayward’) and gold-fleshed kiwifruit (Actinidia
chinensis Planch. var. chinensis ‘Hort16A’) (Mills et al.
2008, 2009; Morton and Woolley 2011; Smith et al. 1987),
which did not consider yield responses to nutrient applica-
tions. However, vine yield has increased significantly since
these studies were carried out, owing to significant changes
in management practices, for example changing from ‘T’ bar
to pergola canopy systems and the introduction of a new gold-
fleshed kiwifruit cultivar (Actinidia chinensis var. chinensis
‘Zesy002’ to replace ‘Hort16A’ which was decimated by the
disease Pseudomonas syringae pv. actinidiae (Psa) (Ferguson
2015). The story is just as complex for apples, as the work was
carried out in the 1980s and 1990s, based on studies of older
cultivars like ‘Golden Delicious’, ‘Braeburn’, and ‘Cox’s
Orange Pippin’ growing as widely spaced, freestanding trees
in two regions (Goh and Haynes 1983; Palmer and Dryden
2006). The impacts on nutrition of the introduction of new
cultivars like ‘Scifresh’ and ‘Scilate’ on dwarfing rootstocks,
location, climate, and two-dimensional trellis growing sys-
tems with higher tree densities have not yet been considered.

Nutrient applications in New Zealand orchards are based
on local industry knowledge, leaf and soil testing, nutrient
removal from the orchard, and plant characteristics like age,
cultivar, and performance. Leaf analyses are carried out in
spring for kiwifruit and in mid-summer for apple; however,
it can be difficult to gain a clear picture of plant nutrition
because of variability between leaves and the importance of
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nutrient reserves for perennial fruit crops. Leaf concentrations
of key mineral nutrients in apple and kiwifruit change
throughout the season. They are influenced by the phenolog-
ical stage of the shoot, the presence of fruit, and the mobility
of the mineral nutrient in the plant. High concentrations of
phloem-mobile macro-nutrients (e.g. N, phosphorus (P), po-
tassium (K), magnesium (Mg)) are found in leaves pre-
flowering, whereas leaf concentrations of phloem-immobile
minerals such as calcium (Ca) are low (Smith et al. 1987).
After flowering through to harvest N, P, and K leaf concen-
trations tend to decline in both apples and kiwifruit as the
minerals are remobilized from the leaves and move to other
developing sinks e.g. fruit and roots and the N is diluted
through leaf growth (Nachtigall and Dechen 2006; Smith
et al. 1987). In contrast, concentrations of minerals with inter-
mediate to low phloem mobility (e.g. Ca, manganese (Mn),
iron (Fe)) increase in leaves throughout the season, as they
accumulate via the xylem in the transpiration stream and re-
main in the leaf. Leaf concentrations of nutrients can be af-
fected by the presence/absence of fruit. For example, P in-
creases slightly in ‘Hayward’ kiwifruit leaves towards the
end of the season in non-fruiting shoots but declines in the
presence of fruit (Smith et al. 1987). Nutrient concentrations
in leaves can also be affected by scion and rootstock cultivar
combinations. For example, Mg concentrations increase
through the season in ‘Fuji’ and ‘Golden Delicious’ leaves

but remain constant in ‘Gala’ leaves (Nachtigall and Dechen
2006). Combining a ‘Gala’ scion with the rootstock G890
elevated mineral nutrient uptake compared with that in
‘Gala’ scions combined with G41, M9, and B9 rootstock ge-
notypes (Valverdi et al. 2019).

In addition to leaf analysis, fruit and soil mineral analyses
are sometimes used as a guide for nutrient application, espe-
cially focusing on fruit quality where Ca concentration can
affect harvest quality and storage of the fruit (Torres et al.
2017). In apples, the nutrient concentration required for
healthy fruit growth is different depending on the cultivar,
growth phase, and also within an orchard (Palmer and
Dryden 2006). Orchard soils are generally sampled using a
single test in winter, although these analyses do not provide
a good overview of the spatial variability across orchards and
within the root zone (Srivastava and Malhotra 2017).

Nutrient removed from the system each year is calculated
from harvested fruit, growth, and prunings plus an amount to
cover environmental losses (see Section 4.2). For example, in
‘Hayward’ kiwifruit orchards (yield 40 t ha-1), some 27–48 kg
N ha-1 is removed as fruit, and growers typically apply 75 to
100 kg N ha-1, although N inputs across New Zealand kiwi-
fruit orchards range from 0 to 226 kgN ha-1 (Carey et al. 2009;
Morton 2013). In New Zealand apples (yield 70 t ha-1), N loss
from harvested fruit is around 24–36 kg N ha-1 depending on
the cultivar (Palmer and Dryden 2006) with average

Fig. 1 The largest perennial crops
producing fresh fruits in New
Zealand are (a) kiwifruit and (b)
apples. Photographs by The New
Zealand Institute for Plant and
Food Research Limited.

Table 1 New Zealand industry statistics for apples and kiwifruit.

Statistic Apple Kiwifruit Source

Area grown (ha) 10,396 12,905 Fresh Facts (2020)

Export market value (NZ$) $876 million $2.5 billion Fresh Facts (2020)

Average yield (t ha-1) 65 44.5 Fresh Facts (2020)

Maximum yield (t ha-1) 170–180 74 Thorp et al. (2011); Tustin and van Hooijdonk (2016)

On-orchard costs (NZ$ ha-1) $29,400 $38,900 ANZ (2019); Journeaux et al. (2019)

Average orchard gate return (NZ$ ha-1) $67,200 $107,142 Fresh Facts (2020); Journeaux et al. (2019)
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applications around 30–80 kg N ha-1 (Goh and Haynes 1983;
Morton 2013). However, industry production practices and
yields have changed since these earlier publications and there
have been no more recent studies of these crops in New
Zealand.

As fertilizer is a relatively inexpensive component of or-
chard management inputs, growers ensure non-limiting sup-
plies of nutrients are readily available to plants. In some cases,
this may lead to inefficient use of nutrients (Li et al. 2019).
This can have a wide range of consequences on plants (yield,
fruit quality, vigor, and pest and disease susceptibility) as well
as on the orchard ecosystems and the surrounding environ-
ment (Marsh et al. 1996; Morton 2013; Weinbaum et al.
1992).

3 Plant nitrogen dynamics

Nitrogen is a highly mobile nutrient, cycling rapidly through
the plant, soil, and environment. Plants have a high demand
for N and it combines with carbon to form essential com-
pounds like amino acids, proteins, nucleic acids, and chloro-
phyll. Plant roots actively take up N from the soil as nitrate;
however, they are also able to assimilate ammonium ions.
Once nitrate is taken up by roots, it is generally reduced to
ammonium in the roots, although it can be transported to
leaves and then reduced. For example, half of the nitrate ab-
sorbed by ‘Hayward’ kiwifruit roots was reduced in the roots
(Ledgard and Brier 1991). Uptake of N from roots to leaves is
via the xylem; however, retranslocation between sources and
sinks within the plant is primarily via the phloem (Guak et al.
2003; Ledgard and Brier 1991). In apples, new growing tis-
sues in spring, particularly leaves (30–50% of plant N) and
fruit (18% of plant N), are the major sinks for N in trees of all
ages (Batjer et al. 1952; Forshey 1963; Neilsen et al. 2001b).
Prior to leaf fall, up to 50% of the N in leaves is withdrawn and
stored in the woody framework of plants. This is essential to
support new growth in spring before the canopy and root
system are able to fully support plant demands. If N is applied
too early in late winter or early spring before the plants come
out of dormancy, the plant roots are unable to take it up lead-
ing to fertilizer loss to the environment through leaching and
volatilization (Neilsen and Neilsen 2002). Breaking of dor-
mancy can vary significantly across cultivars of single crops,
for example, the timing of the generation of root pressure in
kiwifruit grown in New Zealand can vary between late July to
October in different kiwifruit varieties (Clearwater et al.
2007).

3.1 Nitrogen responses

Nitrogen deficiency, or over-supply, can have negative im-
pacts on fruit productivity and quality. Insufficient N can

reduce leaf expansion and shoot growth and reduce individual
leaf photosynthesis, resulting in limited assimilation for fruit
growth or storage to support flowering in the following season
(Buwalda andMeekings 1993). However, the highmobility of
N within the plant, the ability of the plant to store and remo-
bilize N over the short term, and changes in growth rates in
response to low N availability can often mask N deficiency in
the orchard, which is typically monitored using leaf N analysis
(Buwalda and Smith 1990). For example, long-term N
withholding trials on ‘Hort16A’ kiwifruit vines on an or-
chard in Te Puke, New Zealand, over 6 years did not
affect leaf N levels, but the impact of reduced N supply
could be observed through reduced fruit size, increased
fruit dry matter content and advanced fruit maturity
(Barnett pers. comm.). Soil type, fertilizer history, and
seasonal weather patterns also make orchard trials de-
signed to understand plant N requirements difficult, and
long-term trials are required.

Excessive N application can enhance shoot growth
(Buwalda and Meekings 1993), which competes with fruit
for assimilates. Vigorous shoot growth can create shade,
which can adversely affect fruit quality (Grant and Ryugo
1984; Snelgar et al. 1998; Tombesi et al. 1993) requiring more
shoot biomass removal by pruning (Boyd 2012; Morton
2013). This then may result in increased wound generation
from extra pruning cuts or shoot breakages, which result in
additional sites for infection with pathogens like
Pseudomonas syringae pv. actinidiae Biovar 3 (Psa) in kiwi-
fruit (Ferrante et al. 2012) and Neonectria ditissima in apple
(Amponsah et al. 2015; Dryden et al. 2016), and other
pathogens.

High N applications can also affect fruit quality. Increasing
annual rates of N up to 200 kg N ha-1 resulted in reduced apple
flesh firmness and red color, whilst increasing from 50 to
200 kg N ha-1 reduced apple total soluble solids contents
(Fallahi et al. 2010; Nava et al. 2008; Neilsen et al. 2009). In
Italy, six years of high N application to kiwifruit resulted in
fruit starting to soften earlier in storage (Vizzotto et al. 1999)
and high N application to ‘Hayward’ kiwifruit in California
caused fruit to soften more rapidly in storage (Johnson et al.
1997).

It has also been reported that excessive N can cause fruit-
stalk wither and premature softening of kiwifruit in New
Zealand (Sher and Yates 1992). However, Boyd (2012) found
that this was not consistent over multiple years. Higher than
standard N applications resulted in vines that were less pro-
ductive, the fruit maturity was delayed, and as a result, the fruit
had a higher incidence of low-temperature breakdown in stor-
age (Boyd 2012). Maximum vine growth does not equal max-
imum productivity or maximum fruit quality in crops. This
highlights the subtlety needed for N management in perennial
trees and vines, unlike in pastoral systems where vegetative
growth is the prime goal.
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3.2 Prioritized knowledge gaps

Much of the information on nutrient requirements of apples
and kiwifruit is over 30 years old. Since these studies were
carried out, the yield and fruit quality produced in New
Zealand apple and kiwifruit orchards have been transformed
by the introduction of new cultivars and management tech-
niques. To update our knowledge of plant nutrition and im-
prove practices in kiwifruit and apple orchards, a number of
gaps in our knowledge need to be filled (Fig. 2). These include
improved understanding of the relationship between plant car-
bon fixation and nutrient availability, particularly N, which
could improve both productivity and sustainability outcomes
in orchards. The majority of the historical work has been car-
ried out by looking at crop responses to fertilizer regimes over
one or more seasons. Whilst this research has helped us nar-
row down our fertilizer requirements, the large gains now are
to be made through targeted nutrition focused around the right
time in the season to match that cultivars requirements, appli-
cation to ensure the nutrient is supplied to the right tissues at
the right amount to limit loss while maximizing yield. To
enable this, we need to extend our knowledge of nutrient

dynamics in perennial fruit crops to a seasonal view of nutri-
ents throughout plants including their root systems (Fig. 2). In
order to develop better nutrient management techniques, we
need to develop new systems that can non-destructively mon-
itor plant nutrient uptake, use, and losses in real-time which
will allow us to fine-tune our fertilizer programs. New knowl-
edge in these areas, together with more targeted application
methods, should lead to a more sustainable approach to nutri-
ent inputs while maintaining or increasing plant productivity
and enhancing environmental outcomes.

4 Sources and losses of nutrients

4.1 Nutrient sources

In perennial orchard systems, nutrients accumulated in the
fruit are derived from the remobilization of storage reserves
within the plant and nutrient uptake from external nutrient
sources. Spring growth first begins with the remobilization
of stored nutrients followed by rapid root growth and external
nutrient uptake after breaking dormancy (Neilsen et al. 2001b;

Fig. 2 Key research gaps identified in understanding system nutrient
dynamics in orchards include: understanding the response of pests and
pathogens to nutrient stress signaling (Section 5), knowledge of nutrient
requirements in modern cultivars and growing systems throughout the

growing season (Section 3), synthesizing the puzzle of above- and
below-ground effects on food web interactions (Section 5), quantifying
nutrient losses in orchards (Section 4), and determining nutrient balances
for perennial horticultural crops (Section 4).

System nutrient dynamics in orchards: a research roadmap for nutrient management in apple and kiwifruit. A... Page 5 of 18 64



Tagliavini and Scandellari 2007; see Section 3). Plants acquire
nutrients from external sources through root uptake of soil
nutrients or leaf uptake of foliar nutrient applications. Soil-
available nutrients are derived from mineral fertilizer applica-
tion, organic amendments, rainfall, irrigation water, minerali-
zation of soil organic matter, and decomposition of orchard
leaf litter, prunings, and groundcover plants.

Few studies have constructed complete orchard nutrient
budgets in apples or kiwifruit comparing contributions from
all sources. Atucha et al. (2011) calculated N budgets includ-
ing external inputs and soil fluxes for an apple orchard in New
York, USA, using different groundcover management and
fertilizer inputs. However, this study did not quantify the re-
mobilization of tree N reserves. In fertilizer-applied treat-
ments, external inputs accounted for 52–57% of the N input,
while soil fluxes from soil mineralization and plant litter de-
composition accounted for 43–48% (Atucha et al. 2011). This
indicates the importance of soil nutrient cycling to nutrient
uptake in orchards. Greater understanding of the quantity
and timing of nutrient availability from soil fluxes is needed
to reduce external nutrient inputs to move towards minimal
input horticulture.

Nitrogen use efficiencies, expressed as the quantity of the
N removed in the crop as a percentage of fertilizer N applied,
are generally quite low for fruit trees compared with other
agricultural land uses owing to an over-application of fertilizer
compared with crop requirements (Wang et al. 2016;
Weinbaum et al. 1992). Field studies quantifying nutrient up-
take using 15N isotopic tracer methodology report fertilizer
use efficiencies of <17 to 32% in apples grown in Canada
and Australia (Neilsen et al. 2001a; Neilsen et al. 2001b;
Tan et al. 2021) and 48 to 53% in kiwifruit grown in New
Zealand (Ledgard et al. 1992). These low fertilizer uptake
efficiencies indicate that applied nutrients could be accumu-
lating in the soil, or be vulnerable to losses from the orchard
ecosystem. Indeed, Ledgard et al. (1992) report soil retention
of 18 to 22% of 15N-labelled fertilizer applied to kiwifruit and
an apparent loss of 26 to 32% of fertilizer N after one growing
season. Thus, there is room for improvement in the manage-
ment of mineral fertilizers to better match crop requirements
through targeted nutrition based on new knowledge of season-
al nutrient requirements of modern perennial fruit crop culti-
vars and growing systems (see Section 3.2).

The rate of soil organic matter mineralization and nutrient
release varies with soil type, land use history, temperature, and
soil moisture (Curtin et al. 2012). The contribution of miner-
alization to crop N supply may range from <20 to >200 kg N
ha-1 (Cabrera et al. 1994) depending on the quantity of min-
eralizable organic N in the soil and environmental conditions
that control the rate of mineralization. New Zealand soils have
large stocks of soil organic matter relative to global soils (Tate
et al. 1997). Soil organic carbon and nitrogen stocks to 1-m
depth averaged 162 t C ha-1 and 15.5 t N ha-1 in a survey of

kiwifruit orchards in the main growing regions of Bay of
Plenty and Waikato in New Zealand (Gentile et al. 2021).
Soil organic carbon stocks in apple orchards in New
Zealand’s largest apple production region in Hawke’s Bay
averaged 132 t C ha-1 to 1-m depth (Gentile et al. 2016).
Several chemical, physical, and biological measures have
been proposed as indicators of potential mineralizable N from
soil (Curtin andMcCallum 2004; Sharifi et al. 2007) including
hot water-extractable N, which is a sensitive indicator of po-
tentially mineralizable N in New Zealand soils (Curtin et al.
2017). Kim et al. (2011) found hot water-extractable C was a
predictor of N mineralization in New Zealand apple orchard
soils. They concluded that orchard C management to increase
labile organic matter was a greater driver of soil N minerali-
zation than temperature and moisture environmental condi-
tions. Field rates of N mineralization may be predicted using
models that incorporate the potential mineralizable N pool and
rate constants for soil temperature and moisture content (e.g.
Dessureault-Rompré et al. 2012; Paul et al. 2002).

Nutrients are internally recycled through the decomposi-
tion of plant biomass in the orchard system via mowed
groundcover and tree leaf litter and prunings. Groundcover
plants show rapid rates of decomposition and nutrient release
within the growing season (Tagliavini et al. 2007; Tutua et al.
2002). Tutua et al. (2002) report the N half-life of a ryegrass
and clover groundcover was 50–110 days in a New Zealand
apple orchard. This groundcover could provide a net input of
N to the orchard system if the species mix includes legumes to
add N through biological N fixation. A study on N2 fixation of
groundcover plants in a Canterbury, New Zealand, apple or-
chard found biological N fixation ranged from 112 to 143 kg
N ha-1 over 2 years (Goh and Ridgen 1997; Goh et al. 1995).
Clover groundcover N2 fixation in New Zealand kiwifruit
orchards was estimated to be 28 kg N ha-1 year-1 (Smith
et al. 1988). In contrast to groundcover plants with high N
concentrations, orchard crop plant leaf litter and prunings have
higher C:N ratios and slower decomposition rates. Apple leaf
litter decomposition first has a phase of net N, P, and S im-
mobilization for a period of 6 months to 1 year, and then
shows a net release of N with 30 to 40 % of the initial litter
N content released in the second year (Han et al. 2011;
Tagliavini and Scandellari 2007; Tagliavini et al. 2007). A
field study of kiwifruit pruning wood decomposition includ-
ing leaves showed only 9 % of the N content was taken up by
the following crop after 2 years (Ledgard et al. 1992).

Nutrient release rates from organic fertilizers and amend-
ments such as composts and mulches can vary widely depend-
ing on the quality of the amendment. Parameters such as N,
C:N, lignin, and polyphenol contents have all been suggested
as being influential in determining the timing of N release
(Cassity-Duffey et al. 2020; Lazicki et al. 2020; Palm et al.
2001). Nutrient release will also be modified by climate.
Predicting the quantity of nutrients available from different
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organic sources, and what is locally available for our perennial
production systems, is a research gap.

4.2 Nutrient losses

Nutrients may be lost from perennial horticulture systems via
leaching, runoff, gaseous emissions, and crop removal at har-
vest. Compared with other agricultural land uses, N leaching
losses under perennial horticulture crops in New Zealand are
relatively low (Journeaux et al. 2019). Annual N leaching
rates from previous New Zealand studies are shown in
Table 2 and range from 1 to 33 kg N ha-1 year-1 in apple
production and 3 to 39 kg N ha-1 year-1 under kiwifruit.
Reported values for the N leaching footprint of apples and
kiwifruit in New Zealand are very similar despite slightly
higher inputs of fertilizer under kiwifruit production (see
Section 2). There have been a few published field measure-
ments of N leaching in perennial horticulture (Clothier et al.
2012; Goh and Haynes 1983; Green et al. 2007; McIntosh
2009). However, the majority of the leaching estimates are
derived from various research and nutrient management
models. The N leaching values between direct measurements
and modelled estimates are generally comparable.

The occurrence of nutrient leaching is determined by drain-
age from rainfall and irrigation events (Neilsen et al. 2008)
that are seasonally focused in temperate climates (Riga and
Charpentier 1999), whereas the quantity of nutrients leached

is also influenced by nutrient inputs (Neilsen et al. 2008) and
orchard management strategies (e.g., orchard design, planting
density and sward management). Management strategies to
decrease nutrient leaching losses include decreasing the
amount of nutrients applied, optimizing the timing of applica-
tions, and applying woody mulches (Merwin et al. 1996;
Neilsen et al. 2008). In New Zealand scenarios, Journeaux
et al. (2019) found a minimal change in N leaching losses
by eliminating N fertilizer use, and greater N leaching losses
when compost or clover understory crops were used in place
of N fertilizer inputs owing to lower crop nutrient extraction
and higher N mineralization. They suggest that reducing fer-
tilizer inputs offers little impact on nutrient losses relative to
an already well-managed fertilizer regime in perennial horti-
culture crops. There is a need to improve the understanding of
leaching losses in modern orchard systems.

Nutrient losses from runoff are assumed to be minimal in
New Zealand perennial horticulture production systems be-
cause of the typically flat terrain in orchards and grassed al-
leyways, which reduce erosion risk. However, this may
change if perennial horticulture expands to more sloping land.
There are few studies reporting runoff nutrient losses from
perennial horticulture in New Zealand. Modelled P losses
for perennial horticulture in the Hawke’s Bay region ranged
from 0.13 to 0.58 kg P ha-1 year-1, with 55–78% of this loss
occurring via leaching and drainage instead of runoff.
Modelled runoff P losses in the Gisborne region ranged from

Table 2 The nitrogen-leaching footprint of kiwifruit and apple crops grown in New Zealand.

Crop Nitrate leached
(kg N ha-1 year-1)

Region Measurement method Reference

Apples 33 Canterbury Aldunum tension lysimeters Goh and Haynes (1983)

Apples 2–12 Canterbury Modelled for a range of regional soils and climates Green and Clothier
(2009)

Apples 1.4–12.4 Hawke’s Bay Modelled for a range of regional soils and two irrigation
regimes

Green et al. (2012)

Apples 9–14 Hawke’s Bay Drainage fluxmeters Clothier et al. (2012)

Apples 5.2 National, major growing
regions

Modelled for a range of soils Clothier et al. (2012)

Apples 3–18 Tasman, Waimea Plains Modelled for a range of regional soils Fenemor et al. (2016)

Apples 9–24 Hawke’s Bay Modelled for a range of regional soils Archer and Brookes
(2018)

Apples 5.4 National Modelled industry average Journeaux et al. (2019)

Kiwifruit 39 Bay of Plenty Drainage fluxmeters and modelling Green et al. (2007)

Kiwifruit <15 Bay of Plenty Modelled for a range of regional soils McIntosh (2009)

Kiwifruit 5.8–9.2 Bay of Plenty Groundwater monitoring bores McIntosh (2009)

Kiwifruit 3–15 National, major growing
regions

Modelled for a range of regional soils Deurer et al. (2011)

Kiwifruit 4–27 Gisborne, Poverty Bay flats Modelled for a range of regional soils Gentile et al. (2014)

Kiwifruit 9–23 Hawke’s Bay Modelled for a range of regional soils Archer and Brookes
(2018)

Kiwifruit 6.4 National Modelled industry average Journeaux et al. (2019)
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0.1 to 1.0 kg P ha-1 year-1 for kiwifruit, grape, and citrus
production (Gentile et al. 2014). Similarly, Clothier and
Green (2017) modelled the annual New Zealand national av-
erage for vineyard P losses from combined leaching and run-
off to be 0.25 kg P ha-1 year-1.

Soil N can be converted to gases and lost to the atmosphere
by denitrification and NH3 volatilization. There have been no
measurements of gaseous N losses under perennial horticul-
ture in New Zealand. An international meta-analysis of nitrous
oxide (N2O) emissions in perennial fruit trees found annual
emissions ranged from −0.116 to 26 kg N ha-1 year-1 (Gu et al.
2019). Cumulative N2O emissions also increased linearly with
N fertilizer rates. Interestingly, N2O emissions were higher
with organic than synthetic fertilizers (Gu et al. 2019).
Similarly, Kramer et al. (2006) found that N2O emissions
were the same between organic and conventional apple
orchards in Washington State, USA, but that N2 losses were
greater from the organic orchard, indicating larger total
gaseous N losses. These results suggest that increased
carbon availability with organic fertilizers may stimulate
denitrification N losses. In contrast, Fentabil et al. (2016)
found that surface-applied wood mulch reduced N2O emis-
sions in a Canadian apple orchard even though soil labile
organic carbon increased.

Gaseous emissions from apple orchards show high tempo-
ral and spatial variability in the international literature. N2O
emissions are higher during the summer growing season in
climates without freeze-thaw cycles (Riga and Charpentier
1999; Swarts et al. 2016) and pulses of N2O occur after N
fertilizer applications and summer rainfall or irrigation
(Fentabil et al. 2016; Pang et al. 2009). Pang et al. (2009)
found N2O emissions increased closer to the tree row and
band of fertilizer application in an apple orchard in China,
whereas Swarts et al. (2016) found N2O emissions in
Australian apple orchards were greater in the grassed alleyway
than the tree line, which may have been due to higher carbon
inputs or poorer soil structure in the alleyway. While there are
a few international studies quantifying N2O emissions in apple
orchards, we found no published studies measuring N2O
emissions under kiwifruit production.

4.3 Prioritized knowledge gaps

Constructing a complete N balance for New Zealand horticul-
tural crops would enable us to quantify all N fluxes for the
entire orchard system (Fig. 2). These balances need to be
considered for different cultivars, management systems, and
growing regions, to be able to examine nutrient losses
(leaching, runoff, gaseous emissions) and the net balance of
inputs and outputs to determine if production is maintaining or
mining nutrient contents in the soil. Secondly, predicting the
nutrient availability and release from soil mineralization and
organic amendments in different growing regions is critical to

quantify the amount and timing of availability of nutrients
from these sources to better match nutrient applications with
crop requirements. Lastly, there are no published data on N2O
emissions and few field measurements of nutrient leaching in
perennial horticulture in New Zealand (Fig. 2). Robust field
data for these nutrient losses in relation to other temporal
variables would improve environmental monitoring and
reporting (e.g., greenhouse gas inventory reporting) and iden-
tify key areas where losses could be reduced. Identification of
high-risk leaching periods and the nutrient source (e.g. fertil-
izer, soil organic matter mineralization, compost) would allow
management-specific interventions to be developed to reduce
nutrient leaching.

5 Nutrient interactions with the food web

A food web represents all the food chains in an orchard eco-
system, over all trophic levels. Understanding the food web
structure is important for understanding nutrient cycling, sys-
tem stability and recovery, and population and community
dynamics (de Vries and Wallenstein 2017; Fagard et al.
2014; Maaroufi and De Long 2020; Whalen et al. 2013).
The quantity and diversity of organisms in a soil food web
determine nutrient availability to plants (e.g., Lakshmi et al.
2020; Whalen et al. 2013). Therefore, soil food webs are crit-
ical to the orchard system dynamics including nutrient man-
agement and, vice versa, nutrients can have complex effects
on food webs including interactions between biotic and abiot-
ic factors (Bengtsson et al. 2005; Tuck et al. 2014). To under-
stand the impact of nutrients on interactions over organiza-
tional hierarchies, we need to consider competition and tro-
phic interactions at the community level and trade-off dynam-
ics, such as competition, growth and plant immunity, influenc-
ing processes at the ecosystem level (Gagic et al. 2017;
Johnson et al. 2016; Keurentjes et al. 2011; Tao et al. 2017;
van Gils et al. 2016). There are many facets of how nutrition at
the orchard scale could change the hierarchy of the food web
and increase or decrease resource competition among species
(Keurentjes et al. 2011; Van der Putten et al. 2013).

Existing research addresses nutrient feedback loops on
food webs, and food web structure effects on nutrient dynam-
ics, primarily from ecological theory and grassland and agri-
culture systems (e.g. Tsiafouli et al. 2015; Van der Putten et al.
2001) with fewer studies in perennial horticulture (see Lago
et al. 2019 for the detrital foodweb under kiwifruit). Biotic and
abiotic processes influencing nutrient availability can affect
food web stability (DeAngelis et al. 1989; Huxel and
McCann 1998; McMeans et al. 2015), and shifts in nutrient
resource quality can alter trophic interactions (Koricheva et al.
1998). These influences are little studied for perennial horti-
cultural settings but have a large potential to play important
roles in the trophic interactions with nutrition under
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horticultural management. Nutrient management practices in
high-intensity land-use trend toward low complexity food
webs (Tylianakis and Binzer 2014) with changes in above-
and below-ground food webs from top-down and bottom-up
effects. These food web changes alter the dynamics of organic
matter decomposition and nutrient cycling and therefore affect
plant nutrition, which in turn affects above- and below-ground
food webs. Existing soil nutrient pools, or nutrient stores in
plant biomass, can buffer changes in organic matter nutrient
release (Buchkowski et al. 2019).

5.1 Type of nutrient applications

The form (e.g., organic versus inorganic) of nutrient applica-
tion can have different outcomes and flow-on effects in the
food web and ecosystem. For example, Rowen et al. (2019)
reviewed studies comparing manure and synthetic fertilizer
treatments in a variety of cropping systems, including apple
production, and found animal manure influenced pest control
in two different ways. Manures had bottom -up effects on prey
suppression by changing plant nutrient concentrations and
altering plant defense chemical production. Additionally, ma-
nures showed top-down effects on biological control by im-
proving the soil habitat for predators through increased soil
organic matter and water retention. Other studies show that
adding compost as a mulch in apple orchards creates a more
diverse ecosystem and is likely to have beneficial impacts on
orchard sustainability (Brown and Tworkoski 2004; Doran
2002; Yao et al. 2005). Lago et al. (2019) found that intensive,
conventionally managed kiwifruit orchards had less complex
soil food webs, which were capable of rapid mineralization of
soil organic matter. However, less intensively managed kiwi-
fruit soils using compost amendments supported a more di-
verse soil food web, including organisms with roles in im-
proving soil structure and incorporating soil organic matter,
resulting in higher C and N retention (Lago et al. 2019).

While nutrient release from the decomposition of organic
matter in mulch can enhance soil quality (TerAvest et al.
2011), mulching might also affect pest and disease
management at other trophic levels. Miñarro et al. (2009) con-
cluded that a change from herbicide use to mulching or me-
chanical weed control may have significant effects on taxo-
nomic groups of soil-dwelling predators. Adding organic ma-
terial to the soil of an apple orchard significantly affected
arthropod abundance, leading to more predators and fewer
herbivores, but no effect was observed on rates of apple scab
(Venturia inaequalis) infection (Brown and Tworkoski 2004).
Damavandian (2000) found that straw mulch in apple or-
chards can affect migration in the subterranean apple aphid
(Eriosoma lanigerum (Hausmann)). A small change on one
trophic level has the potential to affect higher trophic levels,
and ultimately, propagate through the entire food web (Chen
and Wise 1999). This results in a balance of trade-offs

between beneficial and pest components of the food webs,
dependent on management practices including nutrient appli-
cations. In a study byMathews et al. (2002), the application of
mulch to the soil surface affected soil detritivores, herbivores,
and predators, as well as the host plant in a ‘Golden Delicious’
apple orchard. Thus, the type of nutrient application can affect
the food web at several trophic levels and have different im-
plications for the nutrient effects on an orchard ecosystem as a
whole.

5.2 Above- and below-ground food webs

Most food web studies often study a single part of the system
such as the above-ground canopy food web, effect of nutrients
on herbivory, or parts of the below-ground food web
(Koricheva et al. 1998; Poveda et al. 2007; Ramirez et al.
2018; Van der Putten et al. 2001). However, these subsystems
depend on and interact with each other (A’Bear et al. 2014;
Hannula et al. 2019; Poveda et al. 2007; Van der Putten et al.
2001; Yang et al. 2020). The lack of studies addressing the
interactions between above- and below-ground food webs in
orchard crops has been noted (Demestihas et al. 2017;
Mercado-Blanco et al. 2018). In the international literature,
most of the studies addressing interactions between above-
and below-ground food webs are in annual crops or grasses
(Heinen et al. 2020; Heinen et al. 2018; Masters et al. 2001;
Pineda et al. 2017; Zhu et al. 2018). Nutrient exchange inti-
mately links above- and below-ground biota (van der Heijden
et al. 2008) and more sophisticated orchard models are needed
for studying above- and below-ground interactions, particu-
larly in perennial systems (Demestihas et al. 2017; Mercado-
Blanco et al. 2018; Ramirez et al. 2018; Van der Putten et al.
2001).

Interactions between plants, insects, and microbes are me-
diated in many cases through chemical communication. A
myriad of responses by both herbivore and host can be driven
by changes in nutrient availability (Gershenzon 1984; Mur
et al. 2017). Nitrogen availability can both positively and neg-
atively affect a pathogen’s infection strategy, and alter host
plant defense mechanisms (Sun et al. 2020). Depending on
the system or chemical compound, fertilizer inputs can result
in increased or decreased quantities of plant secondary metab-
olites (Gershenzon 1984; Jamieson et al. 2017). These chang-
es to plant chemical signals may be in the form of altered
ratios of volatile compounds, cessation of some compounds
emitted, or the production of new compounds (El-Hawaz et al.
2018; Gouinguené and Turlings 2002). Meta-analyses show
that N inputs decrease foliar concentrations of carbon-based
plant secondary compounds and increase several measures of
insect herbivore performance including development time,
biomass and growth rates (Koricheva et al. 1998; Li et al.
2016). Nitrogen fertilization of field crops often stimulates
insect populations as a result of increased plant consumption
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and higher food utilization rates (Altieri and Nicholls 2003;
Muthukrishnan and Selvan 1993). Despite this initial negative
outcome of stimulating herbivorous insect populations, N fer-
tilizer effects can flow onto connected trophic levels, resulting
in improved outcomes for parasitoids, for example, increased
parasitoid hatch rates and lifespan (Aqueel et al. 2015).

Below-ground food web communities, particularly mi-
crobes, influence plant nutrient uptake. The structure and
function of the soil microbiome are dynamic and are influ-
enced by multiple biotic and abiotic factors such as plant host,
environmental conditions, soil type, seasonality, and manage-
ment practices (Lakshmanan et al. 2014; Whitehead et al.
2021). Fertilization decreases microbial community diversity
and shifts below-ground food webs to bacterial rather than
fungal dominance (Bardgett et al. 1999; de Vries and
Wallenstein 2017; Rahman and Sugiyama 2008). The ratio
between bacterial and fungal community dominance is corre-
lated to the rates of C and N cycling processes (de Vries and
Wallenstein 2017). Additionally, the size, number of densely
connected networks, and number of connections between net-
works in below-ground food webs are reduced with conven-
tional fertilizer use (de Vries and Wallenstein 2017). Further
research is needed to elucidate the effects of nutrient additions
on below-ground food web functions in orchard ecosystems.

5.3 Prioritized knowledge gaps

There is a lack of synthesis of the ‘puzzle pieces’ or research
targeting multiple factors in orchard food webs to assess the
functioning of the system as a whole (Fig. 2). This includes the
effects of nutrients on trophic interactions and connectivity of
the food web components, both above- and below -ground,
over multiple spatial and temporal scales. Previous, special-
ized studies provide mixed and context-dependent results,
which highlight a need for targeted long-term research in this
area, particularly in perennial horticultural systems. For exam-
ple, fertilizer additions have been found to induce both posi-
tive and negative effects on pests and pathogens but the mech-
anisms underlying nutrient stress signaling in the plant and the
responses of pests and pathogens are not well understood (Fig.
2). These relationships are complex, with wide-ranging inter-
actions in the ecosystem. Furthermore, much of the existing
research on nutrient effects on food web dynamics compares
conventional versus organic management systems or types of
mulch and fertilizer applications rather than the specific mech-
anisms and drivers altering nutrient flows and ecosystem re-
sponses. To advance this area, we need to consolidate the
‘puzzle pieces’ from existing theory, and specialized food
web components and mechanisms into a nutrient dynamics
framework for orchard systems. By examining the drivers of
nutrient flows, we will be able to identify any further gaps
holding back our ability to predict outcomes of nutrient man-
agement changes.

6 Smart ways to improve nutrient practices

New tools are emerging to monitor plant nutrient dynamics
and requirements as well as targeting fertilizer applications.
These tools include advances in fertilizer application tech-
niques, new methods to monitor plant and soil nutrients,
modelling techniques to determine nutrient requirements and
develop decision-support systems, and utilizing genetic vari-
ability to breed cultivars with improved plant nutrient use
efficiency.

6.1 Adopting new application techniques

The majority of apple and kiwifruit orchards in New Zealand
are largely rain-fed and have most nutrients applied through
broadcast applications; however, recently more sustainable
application methods are being adopted. Fertigation, where
water and nutrients are supplied to match plant requirements,
is one approach that has been used in other countries to im-
prove the efficiency of both water and nutrient use while min-
imizing the detrimental effects of nutrient oversupply (Hagin
and Lowengart 1996; Incrocci et al. 2017; Srivastava and
Malhotra 2017). Fertigating can be used to supply precise
measures of nutrients to better match plant demand at set time
points as it allows a better distribution of nutrients in the plant
root zone as well as the ability to maintain low nutrient con-
centrations in soil solution (Bar-Yosef 1999). Fertigation has
therefore been associated with a large reduction in N losses
from the soil in apples in a semiarid region of Canada where
irrigation is required to maintain productivity (Neilsen and
Neilsen, 2002). Early studies of fertigation in ‘Hayward’ ki-
wifruit production in New Zealand (Marsh and Stowell 1993)
showed no beneficial effects on the yield or fruit quality, but
the researchers did not investigate nutrient use efficiency. In
apples, a comparison of broadcast and fertigation application
has suggested that N application rates can be lowered by 75%
using fertigation, but again, there were no effects on yield or
fruit quality (Neilsen et al. 1999). Despite the benefit of
fertigation, caution should be applied to its use in some con-
texts since it has also been associated with soil acidification,
restricted root volume, and K deficiency using drip irrigation
in some soil types or with strongly dwarfing rootstocks
(Neilsen et al. 2000; Neilsen and Neilsen, 2005). Further im-
provements in nutrient use efficiency are possible using this
technique in conjunction with new knowledge and new tools
to measure various factors such as plant water use and nutrient
uptake as well as soil water and soil nutrient status and health
(Incrocci et al. 2017).

Nutrients can also be applied in dilute concentrations to
plant canopies. This application method is advantageous in
rainfed production systems where fertigation may not be pos-
sible. Foliar applications can be used to quickly supply nutri-
ents to meet plant growth demands to correct nutrient
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disorders and apply micronutrients, for example in apple trees
(Kuresova et al. 2019). However, the quantity of nutrients that
can be applied to plants via the foliage is much less than that
which can be absorbed by roots and the uptake of nutrients
through the stomata or cuticle can depend on the mineral
nutrient, phenological stage, leaf age, leaf temperature, and
stomatal conductance (Burkhardt 2010). Dong et al. (2005)
compared the effects of foliar and soil N applications in apples
and found that foliar N application reduced the risk of N
leachingwith no significant effects on tree N status, fruit yield,
or quality. Applying 50% of fertilizer to the soil and 50% to
apple leaves increased the N fertilizer use efficiency compared
with that of N fertilizer applied only to the soil, as the leaves
can absorb most of the fertilizer within a short time
(Fernandez-Escobar et al. 2009). Foliar potassium nitrate
(KNO3) applications to ‘Zesy002’ kiwifruit vines in Bay of
Plenty and Hawke’s Bay, New Zealand, orchards significantly
improved vine photosynthetic performance, nutrient status,
and fruit characteristics such as size, firmness, soluble solid
content, and fruit dry matter at harvest (Hashmatt et al. 2019).
Spatial and temporal separation of soil-applied Ca and K fer-
tilizer also improved nutrient uptake, photosynthetic perfor-
mance, and at-harvest fruit quality of ‘Zesy002’ kiwifruit,
while both soil-applied Ca and foliar-applied K increased ki-
wifruit vine N uptake Hashmatt (2020). Whilst fertilizing the
soil and leaves or fertilizing the leaves alone has the potential
to improve nutrient use efficiency care is required to ensure
both the timing and frequency of applications are optimized.
Shoots, especially young leaf tissue, can burn if the nutrient
concentration is too high (Burkhardt 2010).

6.2 New measurement technologies

A wide range of newer technologies are being developed and
utilized to monitor orchard nutrient status and tailor fertilizer
applications to achieve sustainable outcomes. Sap nutrient
analysis has been widely used in vegetable crops and has been
used to predict N in apple leaves (Almeida et al. 2020).
Imaging technologies are also being developed and used in
fruit crops such as nondestructive leaf chlorophyll meters,
which have been successfully used to assess leaf N status in
a range of crops including apples (Lee et al. 2019).
Hyperspectral imaging techniques, capable of estimating mea-
sures such as leaf chlorophyll, N, and water content (Lu et al.
2020) have been used at both a leaf and a canopy level in apple
crops (Ye et al. 2020). These techniques are also being used to
remotely monitor the spatial and temporal variability of crops
(Lu et al. 2020). For tomatoes, Sun et al. (2019) have devel-
opedmultispectral three-dimensional imaging for determining
N, P, and K of glasshouse tomato plants, which is more robust
in determining nutrient content in contrast to two-dimensional
or single-point measurements. However, they report that plant
movement or shaking of soft plant stems prevented accurate

three-dimensional registration. Another important consider-
ation for the potential use of spectral techniques to determine
plant mineral element status is the inability of these techniques
to penetrate the object and they are unsuitable for the identi-
fication of nutrient levels for tissues with low homogeneity.
Imaging technologies lend themselves to the implementation
of precision agriculture and should enable more precise mea-
sures of individual plant nutrient status during the growing
season.

To improve fertilization practices, an understanding of the
ability of soils to supply nutrients is also required. Recent
technological advances have provided new opportunities to
understand how variations in soil type, temperature, and mois-
ture affect their ability to supply nutrients. Electromagnetic
induction mapping (EM) allows a rapid assessment of differ-
ences in soil properties (such as texture and moisture) to be
performed (Doolittle and Brevik 2014). Rapid analysis of soil
solution extracts using photometers or ion-specific sensors or
measuring soil N directly using NIR reflectance, allows regu-
lar monitoring of vegetable crops (Incrocci et al. 2017) but has
not been widely used in perennial fruit crops. Targeted plant
and soil sampling are still required to validate data from new
measurement methods.

To take maximum advantage of new knowledge and tech-
nologies to improve perennial fruit crop nutrient management,
models of key plant and soil processes need to be developed
and used to form decision-support systems. These tools are
commonly used in arable and vegetable crops (Incrocci et al.
2017). Models have been developed, for example, to examine
orchard fertilizer practices (Nesme et al. 2005) and to model
the N content of apple trees determined from hyperspectral
imaging (Ye et al. 2020) but there are no equivalent studies
in kiwifruit. Many processes, including nutrient cycling and
balances and food web dynamics, have yet to be modelled in
apple and kiwifruit orchard systems and used to formulate
effective decision-support tools.

6.3 New rootstock and scion genetics

Variation in plant scion and rootstock genetics and interac-
tions between them provide an important route for improving
nutrient use efficiency in orchard ecosystems. Breeding of
scions and rootstocks for perennial fruit crops has traditionally
focused on improving yield, fruit quality, and pest and disease
resistance, as well as reducing plant vigor and increasing tol-
erance to environmental conditions. Rootstocks are widely
used in apple orchards and benefits can include these factors
as well as tolerance to poor soil conditions, avoidance of nu-
trient disorders like bitter pit, andmore recently, enhanced leaf
nutrient uptake (Amiri et al. 2014; Neilsen et al. 2018;
Valverdi and Kalcsits 2021). Advances in understanding have
allowed progress in customising apple rootstock nutrient up-
take capabilities to meet scion requirements in specific
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environments (Fazio et al. 2013; Reig et al. 2018). New un-
derstanding of the effects of symbiotic relationships between
apple rootstocks and mycorrhiza on growth, gas exchange,
nutrient uptake, and efficiency is also important (Dalla Costa
et al. 2021). However, the mechanisms involved in nutrient
acquisition and the role of rootstock and scion and rootstock
genetics needs to be fully explored in apple and other fruit
crops (Kalcsits et al. 2020). In kiwifruit orchards, the benefits
of rootstocks are still being explored, with the majority of
orchards being planted on seedling rootstocks or on their
own roots. New understanding, together with advances in
genotyping methods that take account of the many factors
involved, will lead to the development of new scion and root-
stock cultivars with greater nutrient use efficiency for apples
and kiwifruit.

7 Conclusions and perspectives

Our review has identified significant knowledge gaps lim-
iting our understanding of nutrient dynamics in modern
perennial horticulture systems. We took a novel, system-
level approach to examine nutrient interactions in or-
chards to develop a research roadmap for optimizing nu-
trient management in apples and kiwifruit. The major
knowledge gaps identified (Fig. 2) provide challenges
for reducing nutrient inputs in orchard ecosystems without
negatively affecting fruit quantity and quality. Key re-
search priorities include the following: (1) understanding
the relationship between carbon and nutrients, and nutri-
ent demand, in modern fruit cultivars and growing sys-
tems, (2) quantifying the nutrient balance for perennial
horticultural crops, considering all inputs and outputs,
and (3) synthesizing research targeting multiple factors
in orchard food webs, considering both above- and
below-ground nutrient flows. New research is needed to
address these knowledge gaps to reduce the adverse ef-
fects of nutrients and greenhouse gas emissions on the
environment.

While there is a great opportunity for biophysical and
social studies to start addressing these priorities, one of
the most significant challenges for perennial horticulture
nutrient management research is the long-term time scale
required to understand nutrient dynamics in a perennial
horticultural crop. This is due to nutrient storage and re-
mobilization in perennial tissue over long temporal scales,
and the time required to produce a fruit crop from plant
establishment. Targeted experiments will require the use
of isotopic tracer methodology to unravel nutrient move-
ment through the agroecosystem over multiple seasons.
Non-destructive measurement techniques to monitor plant
and soil nutrient status offer new means to collect real-
time data, which can be used to make better predictions of

plant nutrient demands to guide nutrient applications.
However, links to new imaging and sensing technologies
need to be verified with robust destructive measurements.
Finally, we need research encompassing the complete or-
chard system to better predict and mitigate the environ-
mental impacts of nutrient inputs on the whole
agroecosystem and its supported food webs.
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