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Summary A complete description of the bifurcation scenario of a uniform flow past a rotating circular cylinder has been recently
provided by [1]. Linear stability theory is used to depict neutral curves and analyse the arising unstable global modes. Special
emphasis is paid to the identification of bifurcations with codimension higher than one. Three codimension-two bifurcation points are
detected, namely a Takens-Bogdanov, a cusp and generalised Hopf, which are closely related to qualitative changes in orbit dynamics.
The occurence of the cusp and Takens-Bogdanov bifurcations for very close parameters (corresponding to an imperfect codimension-3
bifurcation) is shown to be responsible for the emergence of multiple steady states. Direct numerical simulations confirmed the presence
of homoclinic and heteroclinic orbits which are classical in the presence of Takens-Bogdanov bifurcations. Finally, a weakly nonlinear
analysis is accomplished in the neighborhood of the Generalised Hopf bifurcation to determine the fold of two limit cycles of opposing
stability in the vicinity the subcritical Hopf bifurcation curve.

INTRODUCTION

The flow past a circular cylinder is one of the classical flow configurations which has long received attention from
the fluid dynamics community. This kind of flow has direct implications for flow control by using wall motion and has
recently received particular attention [2, 3, 4, 5].

Linear stability approaches[6, 7, 8], see i.e. [9, 10], have precised the picture, showing the existence of two separated
regions of instability in the (Re, α) plane, where α is the nondimensional rotation rated and Re the Reynolds number.
At large rotation rates α ≥ 4.5, there is a region in the plane of parameters (Re, α) where multiple steady states coexist
[9, 11, 12]. It has been conjectured by [11] the fact that multiple steady states collapse into a cusp bifurcation point. In
the vicinity of cusp bifurcation, three coexisting steady states exist. The counting of steady states supports the hypothesis
of a cusp bifurcation. However, near a cusp bifurcation one should not find an unsteady transition as it is the case of
Mode II. The presence of a connection between a Hopf bifurcation and a sadddle-node is an indicator of the other type
of codimension-two bifurcation, a 02 or Takens-Bogdanov bifurcation. Nevertheless, the generic type of this bifurcation
does not explain the existence of three steady states. Actually, in the neighbourhood of the onset at which multiple steady
states arise, dynamics are driven by the third-order normal form of the unfolding of the TB bifurcation.

Furthermore, it has been identified a third codimension-two point, namely a Generalized Hopf (GH) bifurcation.

PRELIMINARY RESULTS

Cusp-Takens Bogdanov normal form The Cusp-Takens Bogdanov normal form reads:

dy1
dt

= y2,
dy2
dt

= β1 + β2y1 + β3y2 + εy31 + c1y1y2 − y21y2 (1)
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Figure 1: (a) Bifurcation diagram predicted using the normal form 1 in the stable focus case (adapted from [13]), and
qualitative phase portrait in regions (1), (2), (3), (3’), (4) , (5), (5’) and along curve H∞. (b-d) Phase portrait (Fx, Fy) of
the dynamics of the rotating cylinder at Re = 170, where empty dots denote steady state solutions.
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Figure 2: (a) Qualitative bifurcation scenario in the vicinity of the GH bifurcation. (b) Comparison of the amplitude
of stable (solid line) and unstable (dashed line) limit cycles for three Rec, where Rec denotes the Reynolds number at
the subcritical Hopf bifurcation. Light grey curve corresponds to Rec = 250, dark grey to Rec = 200 and black to
Rec = 170. (c) Strouhal number for each limit cycle is shown.

where β1, β2 and β3 are unfolding parameters (mapped from the physical parameters (Re, α) ), c1 and ε (which can be
rescaled to±1) are fixed coefficients which depend on the nonlinear terms of the underlying system. Note that this normal
form Eq. 1 generalizes both the normal form of the standard TB bifurcation (which is recovered for β1(Re, α) = 0) and
the one of the fold bifurcation (which is recovered for β3(Re, α) = 0). The occurrence of both these codimension-2
conditions for very close values of the parameters is characteristic of an imperfect codimension-3 bifurcation and justifies
the relevance of the associated normal form.

The dynamics of the normal form has been explored by [13, 14] who classified the possible phase portraits and the
associated bifurcation diagrams as a function of the unfolding parameters (β1, β2, β3) along a spherical surface. They
showed that all possible bifurcation diagrams fall into three possible categories, called focus, saddle and node according
to the values of the coefficients c1 and ε. The situation 0 < c1 < 2

√
2 and ε = −1 corresponds to the stable focus case

and is found to lead to a bifurcation diagram Fig. 1. In order to confirm the global stability results, we performed also a
parametric study by using time-stepping simulations [15] for several rotation rates at a fixed Re, see Fig. 1 (b-d).

Generalised Hopf bifurcation The governing equation is a Stuart Landau equation, depending on a small parameter
ε2 = Re−1c −Re−1 :

dA

dt
= (iω0 + ε2λ0 + ε4λ1)A+ (ν1,0 + ε2ν1,1)|A|2A+ ν2,0|A|4A (2)

From Eq. 2, a GH bifurcation occurs on the Hopf bifurcation curve and whenever Re(ν1,0) = 0. When Re(ν1,0) < 0
(resp. Re(ν1,0) > 0 ) the Hopf bifurcation is subcritical (resp. supercritical). The amplitude of the limit cycle |A|± =√
− Re(ν1)

2Re(ν2)
±
√

Re(ν1)2

4Re(ν2)2
− Re(λ)

Re(ν2)
and its frequency ω± = ω0+ Im(ν1)|A|±+ Im(ν2)|A|2± where ν1 = ν1,0+ ε

2ν1,1,

λ = ε2λ0 + ε4λ1 are directly computed from Eq. 2 via Weakly NonLinear analysis, see Fig. 2 (b-c). When the Hopf
bifurcation is subcritical (Re(ν1,0) < 0) there is a range in ε2 where both solutions are positive real solutions, |A|± ∈ R+.
The inner unstable (resp. outer stable) limit cycle increases (resp. decreases) its amplitude as the distance from the Hopf
bifurcation increases until both periodic orbits collide and disappear, that occurs when Re(ν1)

2

4Re(ν2)2
= Re(λ)

Re(ν2)
.
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