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Abstract
Brain encoding is the process of mapping stimuli to brain ac-
tivity. There is a vast literature on linguistic brain encoding for
functional MRI (fMRI) related to syntactic and semantic repre-
sentations. Magnetoencephalography (MEG), with higher tem-
poral resolution than fMRI, enables us to look more precisely at
the timing of linguistic feature processing. Unlike MEG decod-
ing, few studies on MEG encoding using natural stimuli exist.
Existing ones on story listening focus on phoneme and simple
word-based features, ignoring more abstract features such as
context, syntactic and semantic aspects. Inspired by previous
fMRI studies, we study MEG brain encoding using basic syn-
tactic and semantic features, with various context lengths and
directions (past vs. future), for a dataset of 8 subjects listening
to stories. We find that BERT representations predict MEG sig-
nificantly but not other syntactic features or word embeddings
(e.g. GloVe), allowing us to encode MEG in a distributed way
across auditory and language regions in time. In particular, past
context is crucial in obtaining significant results.
Index Terms: brain encoding, human-computer interaction,
MEG, syntax, semantics, context length

1. Introduction
Over the past decade, Brain-Computer Interface (BCI) helped
to make significant progress in understanding language process-
ing in the brain using a popular computational paradigm: Brain
encoding, the process aiming to map stimuli features to brain
activity. The central aim of brain encoding for language pro-
cessing analysis is to unravel how the brain represents linguistic
knowledge (i.e. semantic and syntactic properties) and carries
out sentence-processing information [1, 2, 3, 4, 5] by modeling
the effect of such information on brain recordings. For instance,
using functional Magnetic Resonance Imaging (fMRI) brain
recordings, a number of previous studies have investigated the
alignment between text stimuli representations extracted from
language models (e.g. Bi-directional Encoder Representation
Transformer (BERT) [6]) and brain recordings of people com-
prehending language [7, 8, 9, 10, 11].

While a large part of brain encoding literature uses fMRI
brain recordings to study linguistic contrasts involved in lan-
guage processing, the low temporal resolution of fMRI makes it
difficult to link brain activation to specific linguistic processes.
Magnetoencephalograph (MEG) recordings, on the other hand,
have a better temporal resolution (generally understood as the
smallest time period of brain activation that can be distin-
guished), and allow us to better understand the neural dynamics
of the underlying language processing network. However, few
studies use MEG to study how word embeddings such as BERT
can be related to the brain activity of subjects reading one word

at a time from a story [7]. We propose to uncover the insights of
humans sentence processing during a naturalistic story listening
task.

Studies using word embedding representations and fMRI
have revealed that syntactic features are distributively repre-
sented across brain language networks and largely overlapped
with semantic networks [4, 5]. Despite the great strides in learn-
ing sentence comprehension at a functional level, there are still
many problems that could benefit from further improvements
in understanding sentence structure and meaning at the tempo-
ral level. Therefore, investigating how the brain encodes se-
mantic and fine-grained syntactic features of words using MEG
recordings seems crucial to understand the timing of language
comprehension mechanisms. Some important questions remain
to be explored: (1) How much context is maintained through
time to process words? (2) Is the direction of context impor-
tant (past context vs. future context)? The main objective of
this work is to address these questions using MEG activity, in
time at different sensor locations, for both syntactic and seman-
tic representations during naturalistic story listening.
Brain Regions of Interest (ROIs) for sentence processing:
Several MEG studies report an evidence from well-formed natu-
ral language expressions for a role of the left posterior temporal
lobe (PTL) in incremental syntactic processing. Similarly, post-
nominal adjectives were relayed to the inferior frontal gyrus
(IFG) and influence of semantic type in the left anterior tempo-
ral lobe (ATL) [12, 13, 14]. Further, Toneva et al. [15] conclude
that the involvement of a language network with task-specific
settings (e.g. question-answering task) is localized to the frontal
and the left temporal lobes. These findings correspond to many
fMRI studies [16, 17, 18, 19, 20, 21, 22]. However, the time at
which different brain regions are sensitive to distinct syntactic
and semantic properties remains unclear.
Word stimulus representations for brain encoding: Several
studies have used basic syntactic features such as part-of-speech
(POS), dependency relations (DEP), complexity metrics [23, 4,
24], and semantic word embeddings [25, 26, 27, 7, 28, 10] to
represent words for fMRI brain encoding with text stimulus.
However, modeling these basic syntactic and semantic features
for MEG recordings is still unexplored. In this paper, to under-
stand when the brain processes linguistic structure in sentences,
we leverage text representations using basic syntactic features
as well as semantic features, with various context lengths, direc-
tions (past vs. future), and within-context relative importance.

Overall, our main contributions are as follows. (1) We ex-
plore: (a) basic syntactic features, (b) GloVe embeddings, and
(c) semantic BERT embeddings for MEG brain encoding. We
found that only BERT embeddings were predictive of MEG ac-
tivity. (2) We find that prediction of the MEG activity using
BERT is in regions such as the bilateral temporal lobes, frontal
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Figure 1: Global schema of the study. Each circle is a vector embedding for a particular word. Here, “regarding” is the current
word wt encoded. (a) BERT representations are computed with varying context lengths and directions (past vs. future). “Past (future)
context of length n” means that word wt is encoded with its n preceding (following) words wt−1, . . . wt−n−1 (wt+1, . . . wt+n−1).
(Red) Past contexts (lengths 5 and 2). (Blue) Future context 5. (Yellow) Absence of context (context 1: static representation of the
word). (b) For a given past (future) context around a word wt, we name “residuals n” the results of filtering information of the n
nearest words from the representation of current word wt (e.g. past residuals 2 are the result of removing information of past context
2 w2

t = [wt, wt−1] from past context 5 w5
t ). Filtering is performed by first fitting a length n sub-context wn

t to the 5 context w5
t , and

then computing residuals between estimated and real 5 context. (c) For a given past (future) context around a word wt, we name “lag
l” the representation of the word wt−l (wt+l). (d) For each word, all of these representations are used to predict the subject’s MEG
activity at word onset in the story using ridge regression.

lobe and parietal lobe between 250ms to 750 ms (word onset is
at 200ms). (3) We report that past context has greater predic-
tive power than future context. When dealing with past context,
R2scores are proportional to context length.

2. Feature Representations
We used different features computed per word to simultane-
ously test different syntactic and semantic representations.
(1) Basic Syntactic Features: Similar to [29, 4, 5], we use
various multi-dimensional syntactic features such as Complex-
ity Metrics (Node Count (NC), Word Length (WL), Word
Frequency (WF)), Part-of-speech (POS) and Dependency tags
(DEP), described briefly below. Node Count (NC) The node
count for each word is the number of subtrees that are com-
pleted by incorporating each word into its sentence. Word
Length (WL) Word length is the number of characters present
in the word. Word Frequency (WF) Word frequency reports
log base-10 of the number of occurrences per billion of a given
word in a large text corpus. Syntactic Surprisal (SS) Word fre-
quency reports log base-10 of the number of occurrences per
billion of a given word in a large text corpus. Part-of-speech
(POS) We use the Spacy English dependency parser [30] to ex-
tract the Part-of-speech (POS). We generate a one-hot vector for
each word in which corresponding POS tag location is 1 and
remaining tag values are 0. Dependency tags (DEP) We use
the Spacy English dependency parser [30] to extract the depen-
dency tags. In DEP, we generate a one-hot vector for each word
and dependency tag in which corresponding dep tag location is
1 and remaining tag values are 0. (2) Semantic Features We
use two semantic representations: (1) GloVe (distributed word
representations) [31] and (2) BERT (contextualized representa-
tions) [6], described briefly below. GloVe: word vectors (each
word is a 300-dimension vector) [31], and the model always
represents unique embedding irrespective of the word appear-
ing in different contexts.
BERT: Given an input sentence, the pretrained BERT [6] out-
puts word representations at each layer. In this paper, we have
used the pretrained BERT-base model. We have not performed
any fine-tuning here. Since BERT embeds a rich hierarchy of
linguistic signals: surface information at the bottom, syntactic
information in the middle, semantic information at the middle
to higher layers [32]; hence, we use the #words × 768D vector
from the intermediate layer (layer-7) to obtain the embeddings.
(3) Varying the Context Length of BERT To extract the stim-
ulus features at different context lengths (C = 1, 2, 3, 4, 5, 20),

we constrained the model with maximum C words as context
length (Fig. 1(a)). Since BERT model process whole sentence,
we input all the C context-length words to the BERT model and
use the representation of the last word for the past context and
first word for the future context. For instance, given a story of
M words and considering the context length of 5, while the third
word’s vector is computed by inputting the network with (w1,
w2, w3), the last word’s vectors wM is computed by inputting
the network with (wM−5, · · · , wM ). Here, we extracted repre-
sentations for both past and future contexts.
(4) Residuals To compute residuals from pretrained BERT rep-
resentations at different context lengths, we use a ridge regres-
sion method in which the context wM (M=1,2,3) as input and
the context w5 is the target vector (Fig. 1(b)). We compute the
residuals by subtracting the predicted context from the actual
context resulting in the (linear) removal of a particular context
from context w5 (see Fig. 1 for a schematic). Because the MEG
brain prediction method is also a linear function (see Section 4),
this linear removal limits the contribution of the word impor-
tance to the eventual brain prediction performance.
(5) Lags To extract lag l representations, we take as an embed-
ding vector, for a given context length t, the vector of the word
wt−l for past context (or wt+l for future context) (Fig. 1(c)).
Contrary to residuals, these lag representations still contain in-
formation from the current word wt. Encoding MEG using lag
representations assesses how lag word information is correlated
to current word MEG activity.

3. Dataset and Experiments
We used data from 8 subjects of the MEG-MASC dataset [33].
The activity from 208 MEG sensors was recorded while each
subject listened to naturalistic spoken stories selected from the
Open American National Corpus (“Cable spool boy”, “LW1”,
“Black willow” and “Easy money”). MEG preprocessing We
performed the minimal processing steps described in [33]. On
raw MEG data and for each subject separately, using MNE-
Python defaults parameters, we (i) bandpass filtered the MEG
data between 0.5 and 30.0 Hz, (ii) temporally-decimated the
data 10x, (iii) segmented these continuous signals between -200
ms and 600 ms after word onset, (iv) applied a baseline correc-
tion between -200 ms and 0 ms, and (v) clipped the MEG data
between fifth and ninety-fifth percentile of the data across chan-
nels. Word Processing Since MEG data is sampled at a higher
rate (1000Hz) than word presentation, epoching and downsam-
pling yields, for each word, 81 times points recorded at 208 sen-



Figure 2: Only BERT representations significantly encode
MEG activity. Plain lines represent mean significant R2 score
(permutation test, p < 0.05, FDR correction) between pre-
dicted and real MEG activity, across sensors and subjects. Ar-
eas around lines represent standard error across subjects. Dots
above the figure represent significant difference with 0, for all
timestep (one-sample t-test, p < 0.05, FDR correction) (color
is matching the legend). Word onset is at 200ms.

sors. There are total of 8567 words across four stories. In our
experiments, for each word, the model makes a prediction of
MEG activity for all of these 16848 = 208 × 81 values. Here,
each word is transformed into one of the feature representations
described in section 2.

4. Models and evaluations
Encoding Model To explore how and when syntactic and se-
mantic specific features are represented in the brain when lis-
tening to stories, we extract different features describing each
stimulus word and used them in an encoding model to predict
brain responses (Fig. 1(d)). MEG encoder models attempt to
predict brain responses associated with each MEG sensor and
each time point when given audio stimuli (spoken words in
our case). We trained a model per subject separately. Follow-
ing the literature on brain encoding [1, 15, 3, 4], we chose to
use a ridge regression as encoding model. The ridge regres-
sion objective function for the stimulus features is f(Xs) =
min
Ws

∥Yb − XsWs∥2F + λ∥Ws∥2F . Here, Xs denotes the input

stimuli representation, Ws ∈ RFs×LT are the learnable weight
parameters, Fs denotes the number of features in stimuli rep-
resentation (768), L corresponds to number of MEG sensors
(208), T represents the time dimension of the brain activity
(81), s denotes the sample stimulus s ∈ RFs , ∥.∥F denotes
the Frobenius norm, and λ > 0 is a tunable hyper-parameter
representing the regularization weight. λ was tuned on a small
disjoint validation set obtained from the training set. Cross-
Validation We follow 4-fold (K=4) cross-validation. All the
data samples from K-1 folds (3 stories data) were used for train-
ing, and the model was tested on samples of the left-out fold (1
story data). Evaluation Metrics We compute the coefficient
of determination R2 [34] between real and predicted MEG ac-
tivity to measure prediction performance for each sensor loca-
tion and each timepoint within epochs. R2 scores were then
averaged over all epochs and across all folds. Along with R2

score, we also use Root-Mean-Square (RMS) to measure the
predicted evoked response, averaged across all MEG sensors,
tasks and subjects. RMS scores are reported in supplemen-
tary materials. Statistical Significance We check R2 scores
statistical significance using a permutation test. We permute
blocks of MEG predictions and compute R2 scores between
permuted predictions and real data 5000 times to estimate an
empirical distribution of chance performance and correspond-
ing p-values. Finally, the Benjamini-Hochberg False Discovery
Rate (FDR) correction [35] is applied on all tests to control the

type I error rate. Implementation Details for Reproducibility
All experiments were conducted on a machine with 1 NVIDIA
GEFORCE-GTX GPU with 4GB GPU RAM. We used ridge-
regression with the following parameters: MSE loss function,
and L2-decay (λ) varied from 10−1 to 10−3.

5. Results
In order to assess the performance of MEG encoder models
learned using syntactic and semantic representations, we com-
puted the R2-score between predicted MEG and ground-truth
recordings of the evoked response at word onset, across all sen-
sors, folds and subjects. Each figure reports the average R2-
scores of the different features, where all values are first filtered
by significance for each time point (i.e. we set to 0 the score
values for sensors where p < 0.05 after the permutation test
and FDR correction procedure described in section 4).
Encoding Performance of Syntactic and Semantic Methods
From Fig. 2, we make the following observations: (i) Only
BERT-based feature representations significantly correlate to
MEG activity, starting around 0.25s (0.05s after word onset).
(ii) Basic syntactic (CM, POS and DEP), and non-contextual
semantic features (GloVe) are, on average, not correlated with
the considered window of MEG activity. These features poor
performance may be explained by their overly simple nature or
their limited contextual information. To better visualize the pre-
dicted MEG performance using these simple features, we report
the RMS plot in supplementary. It is observed that the RMS plot
for these methods is not closer to the original MEG in compar-
ison to BERT.
Contextual BERT Embeddings: effect of length To assess
whether the direction and length of context are important for
predicting MEG activity during story listening, we report the
R2-score performance from both past and future BERT contex-
tual representations in Fig. 4. From Fig. 4 (left), we observe
that context length plays a crucial role in predicting MEG ac-
tivity. The performance of this prediction is proportional to
the length of the context. However, above a context length of
5, no significant improvement in MEG predictivity is notice-
able. Moreover, the difference between context’s performance
is mainly observed between 300ms to 425ms (100–325ms from
word onset). This suggests that MEG activity results from the
integration of past auditory information on a short time horizon.
Contextual BERT Embeddings: effect of direction From
Fig. 4 (right), we observe that there is a significant effect on
the direction of context. All features created from future con-
text display a low correlation with regard to features created
using past context. Interestingly, this effect is inversely propor-
tional to context length for future context, where BERT features
extracted from a future context of length 5 achieve better R2

scores than the same features created from a future context of
length 20. This suggests that the MEG brain activity mostly
correlates to past and current contexts. Inference of future con-
text could not be detected, and if present, only on a short time
horizon. Since length 5 context contains the current word, the
relative importance of the current word could account for its
relatively correct performance in its 5-word context, which is
diluted in a 20-word context.
Contextual BERT Embeddings (Residuals vs. Lag) To inves-
tigate whether the removal of word-level information (current
word, two nearest words, three nearest) from context has any
effect in predicting MEG activity, we report the R2-score per-
formance of residuals in both past and future contexts, as shown
in Fig. 3. We also report the lag representations performance,



Figure 3: R2-score performance of encoding for different lag and residuals of BERT representations. Plots wt−n report, for n ∈ [3, 1],
the performance of lag n and residuals n when encoding MEG activity at word wt using its past context. Similarly, plots wt+n reports
performance of lag and residuals n using future context. Plot wt displays performance of context 5. Lines, areas and dots figures same
metrics as Fig. 2. Word onset is at 200ms.
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Figure 5: Significantly predicted MEG activity for each time-
point and each sensor position (permutation test, p < 0.05,
FDR correction) using BERT past context 5 word embeddings.
Color denotes, for each sensor and timepoint, the number of
subjects whose MEG activity was significantly predicted. Word
onset is at 200ms.

which represents the performance of the previous word repre-
sentations in predicting the current word MEG. From Fig. 3, we
make the following observations: (i) complete removal of cur-
rent word information from past context through residual rep-
resentations (i.e wt−n) has a significant drop in R2-score. (ii)
Similarly, in the future context, the R2-score performance of
residuals is always zero or significantly below chance. (iii) In
contrast to residuals, lag representations display significant per-
formance only for lag 1 in the past context. Though, lag 2 and 3
in past contexts display significant above-chance performance.
However, this performance is negligible compared to lag 1 per-
formance. (iv) Similar to future context residuals, future con-
text lag representations yield below-chance performance. From
these results, we hypothesize that the current word MEG activ-
ity is the product of short-term past context and current word
information. Both pieces of information are required to render
MEG activity at a given word onset accurately. Future con-
text information is not detectable in MEG activity. Cognitive
Insights Fig. 5 reports MEG sensor locations which are signif-

icantly predicted across subjects by 5-context BERT represen-
tations (permutation tests, p < 0.05, FDR correction). Best
brain MEG alignments are in the bilateral temporal and frontal
regions between 250ms to 750ms (word onset is at 200ms).

6. Discussion & Conclusion
In this paper, we evaluated the alignment of basic syntactic, dis-
tributed word embeddings, and contextualized word represen-
tations (varying different context lengths, past vs. future con-
text, residuals, and lags) with MEG brain responses in time.
We showed that BERT representations, contrary to other fea-
tures or GloVe, lead to a significant prediction in brain align-
ment across auditory and language regions between 50-550ms
(250ms to 750ms with word onset at 200ms). Noteworthy, this
prediction performance is a function of the amount of available
past context, and only past context future or current word.

It is surprising that BERT current word representation
alone w1

t (BERT-1) allows so weak predictions compared to
wpast≥3

t (BERT with contexts higher than 3) (Fig. 4). More-
over, lag results of Fig.3 shows that the previous BERT-5 word
wpast3&future1

t−1 allows higher R2 score than current word with
low context wpast≤5

t . Additionally, it is surprising that near fu-
ture context wfuture5

t which includes the current word is not
relevant for MEG prediction, as if the brain was making no or
very few predictions of future incoming words.

This suggests that the “word encoding center of mass” is
few words behind the current word, as if the brain would wait
for more future context before encoding “fully” the word, or
similarly that the current representation of the incoming word is
encoded in a transient representation that is changing until the
next words come in. This is coherent with previous studies from
Gwilliams et al. that showed that the several past phonemes
information (with position and order in sequence) are kept in
memory [36], and that current incoming word lexical informa-
tion is retrieved in a context-sensitive manner (rather than using
the most probable lexical category of the word) [37].

We hypothesise that such “encoding center of mass” lying
in the past is also what is happening in the speaker’s brain.
Songbirds such as canaries need to keep track of long-time
dependencies in the sequences of phrases performed in order
to produce the next syllables at syntax branching points cor-
rectly [38]: the brain area managing these dependencies prefer-
entially encodes past actions rather than future actions. Spe-
cific neuron populations preferentially encoding past actions
were actually more active during the rare phrases that involve
history-dependent transitions in song [38]. This is also coher-
ent with the results of [36] where phoneme representations are
sustained longer when linguistic identity is uncertain. Overall,
it seems that the representations of past events or actions are
kept in memory until they have been used to disambiguate fu-
ture events/actions.
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