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INTRODUCTION

Turbulent motion is ubiquitous in nature. While the vortex dynamics associated to turbulence necessarily involves a large range of scales, the large coherent structures supporting the fluid motion are commonly issued from a fluid instability. The nature of fluid instabilities is commonly classified as absolute and convective [1]. In the latter case (convectively unstable), the amplitude associated to the instability grows in a moving frame of reference, whereas in the former case (absolutely unstable) it grows at the very location of the source, and subsequently spreads elsewhere. Giannetti et al. [START_REF] Giannetti | Structural sensitivity of the first instability of the cylinder wake[END_REF] introduced the concept of structural sensitivity to identify the wave-maker, that is, the spatial region where the mechanism that sustains the instability is active. This concept was later generalised to include base-flow changes, saturation and non-linear effects [START_REF] Marquet | Sensitivity analysis and passive control of cylinder flow[END_REF][START_REF] Giannetti | Structural sensitivity of the secondary instability in the wake of a circular cylinder[END_REF][START_REF] Marquet | Identifying the active flow regions that drive linear and nonlinear instabilities[END_REF][START_REF] Giannetti | Sensitivity analysis and passive control of the secondary instability in the wake of a cylinde[END_REF][START_REF] Sierra | Adjoint-based sensitivity analysis of periodic orbits by the fourier-galerkin method[END_REF][START_REF] Sierra-Ausin | Efficient computation of time-periodic compressible flows with spectral techniques[END_REF]. While, for many fluid instabilities, the spatial distribution of the structural sensitivity is highly localised, e.g., the flow past a rotating particle [START_REF] Sierra-Ausín | Unveiling the competitive role of global modes in the pattern formation of rotating sphere flows[END_REF] or the flow past a spinning cylinder [START_REF] Sierra | Bifurcation scenario in the two-dimensional laminar flow past a rotating cylinder[END_REF], many other flow configurations exhibit fluid instabilities underpinned by a non-local feedbackloop. The high intensity tonal noise associated to cavity flows [START_REF] Yamouni | Interaction between feedback aeroacoustic and acoustic resonance mechanisms in a cavity flow: a global stability analysis[END_REF], impinging jets [START_REF] Varé | Generation of acoustic tones in round jets at a mach number of 0.9 impinging on a plate with and without a hole[END_REF], the flow past airfoils [START_REF] De Pando | A global analysis of tonal noise in flows around aerofoils[END_REF] or the whistling of a jet past a thick hole [START_REF] Sierra-Ausin | Acoustic instability prediction of the flow through a circular aperture in a thick plate via an impedance criterion[END_REF][START_REF] Hirschberg | Linear theory and experiments for laminar bias flow impedance: Orifice shape effect[END_REF] is supported by an acoustic-hydrodynamic feedback. Herein, we propose a decomposition of the structural sensitivity tensor, which is not localised in space, to identify the local wave-makers composing the feedback loop. In the following, the methodology is introduced in the global linear stability framework [START_REF] Fabre | A practical review on linear and nonlinear global approaches to flow instabilities[END_REF], and the extension to a generic setting integrated by a time-stepping [START_REF] Citro | Optimal explicit runge-kutta methods for compressible navier-stokes equations[END_REF] will be the core of future studies. 

-iωB| q0 + DF| q0 q = 0, with B| q0 = diag(1, ρ 0 I, ρ 0 T 0 , 0, 0), (2) 
where the Jacobian operator DF| q0 is detailed in eq. ( 1). The primitive variables [ρ, û, ŝ, T , p] T are the density, velocity, entropy, temperature and pressure fluctuations, respectively. The adjoint equations, on the other hand, read

iωB| q0 + DF † | q0 q † = 0, with B| q0 = diag(1, ρ 0 I, ρ 0 T 0 , 0, 0), (3) 
where the linear operator DF † | q0 is defined in eq. ( 4). We use an absorbing boundary condition, see fig. 1, named the complex mapping technique [START_REF] Sierra | Efficient stability analysis of fluid flows using complex mapping techniques[END_REF][START_REF] Sierra | On boundary conditions for compressible flow simulations[END_REF] for both the direct and adjoint stability computations.

Decomposition of the perturbations

We first elaborate on the decomposition of the global mode q into an acoustic, hydrodynamic and entropic component.

In particular, we adopt a Helmholtz-Hodge decomposition [START_REF] Schoder | Helmholtz's decomposition for compressible flows and its application to computational aeroacoustics[END_REF] of the perturbation velocity field into a acoustic (potential) and an hydrodynamic (solenoidal) part:

û = ûac + ûhyd = ∇ϕ c + ∇ × Ψ. (5) 
We obtain a Poisson problem after applying the divergence operator to eq. ( 5). In this case, the potential ϕ c is a solution of the following Poisson equation

∆ϕ c = ∇ • û in Ω ∇ϕ c • n = û • n on ∂Ω. ( 6 
)
The hydrodynamic component of the velocity is subsequently determined by subtracting ûhyd = ûûac = û -∇ϕ c . Alternatively, we could have determined first the stream function Ψ, by taking the curl of eq. ( 5) and solving the subsequent vector-Poisson equation. The Helmholtz decomposition is not necessarily L 2orthogonal, unless suitable boundary conditions are imposed to eq. ( 6). Herein, we adopt homogeneous boundary 

Identification of the underlying hydrodynamic-acoustic mechanism underpinning the feedback-loop

In cases where the global instability is the result of a longrange feedback-loop, e.g., the interaction between two travelling waves, a local definition of the wavemaker is not appropriate and the "active" region of the flow cannot be identified by the largest values of the structural sensitivity map. A further decomposition of fluctuating components and of the structural properties of the problem is required. Before, we introduce the localised structural sensitivity, we briefly recall the concept. The adjoint equations are herein used to evaluate the effect of a small "structural change" of the governing equation in the form of a linear harmonic term H(q) ≡ δ(x -x 0 )P H C 0 P q q, -iωB| q0 + DF| q0 q = H(q). (

) 7 
C 0 is a generic linear operator acting on q, and P H a diagonal matrix that selects the type of forcing (feedback).

In the following, we neglect mass injection to the system, and we simply consider momentum forcing and a source of heat release, that is, P H = diag(0, I, 1, 0, 0). The projection operator P q is also a diagonal matrix that selects the dependency of the forcing on the perturbation. The change in the eigenvalue produced by the "structural" change of the operator is thus expressed as

iδω = ⟨P H q † , δ(x -x 0 )C 0 P q q⟩ ≤ ||C 0 ||||P H q † || L 2 ||P q q|| L 2 = ||C 0 ||||S s (x 0 )|| F , (8) 
while the structural sensitivity tensor is defined as S s (x 0 ) ≡ P H q † ⊗ P q q. The Frobenius norm of this tensor ||S s (x 0 )|| F ≡ ||P H q † || L 2 ||P q q|| L 2 is usually referred to as the structural sensitivity map. The decomposition of the feedback term allows us to introduce a novel 

DF| q 0 q =                              u 0 • ∇ρ + ρ∇ • u 0 + û • ∇ρ 0 + ρ 0 ∇ • û ρu 0 • ∇u 0 + ρ 0 u 0 • ∇û + ρ 0 û • ∇u 0 + ∇p - 1 Re ∇ • τ (û) -γ(γ -1) M 2 ∞ Re τ (û) : D(u 0 ) + τ (u 0 ) : D(û) - γ Pr Re ∆ T + ρ 0 T 0 u 0 • ∇ŝ + ρ 0 T 0 û • ∇s 0 + ρT 0 u 0 • ∇s 0 + ρ 0 T u 0 • ∇s 0 ρ 0 T 0 ŝ + (γ -1)T 0 ρ -ρ 0 T -ρ 0 T -ρT 0 + γM 2 ∞ p (1a) (1b) (1c) (1d) (1e) DF † | q 0 q † =                                -u 0 • ∇ρ † + u 0 • ∇u 0 • û † + (u 0 • ∇s 0 )ŝ † + T 0 (γ -1) T † -p † -ρ 0 u 0 • ∇û † + ρ 0 û † • (∇u 0 ) T - 1 Re ∇ • τ (û † ) -ρ 0 ∇ρ † + 2γ(γ -1) M 2 ∞ Re ∇ • (ŝ † τ (u 0 )) + ρ 0 T 0 ŝ † ∇s 0 -ρ 0 T 0 u 0 • ∇ŝ † + ρ 0 T 0 T † ρ 0 T 0 ŝ † u 0 • ∇s 0 - γ Pr Re ∇ 2 ŝ † -ρ 0 p † -ρ 0 T † γM 2 ∞ p † -∇ • û † (4a) (4b) (4c) (4d) (4e) 
R out ∂Ω in ∂Ω slip ∂Ω axis ∂Ω wall ∂Ω wall ∂Ω out R in L H r ∞ z -∞ z=0 z=H z=-L
iδω k j = ⟨q † k , δ(x -x 0 )C 0 qj ⟩ ≤ ||C 0 ||||q † k (x 0 )||||q j (x 0 )|| = ||C 0 ||||S (j,k) s (x 0 )|| F , (9) 
where the localised structural sensitivity tensor is defined as

S (j,k) s (x 0 ) = P H q † k (x 0 ) ⊗ P q qj (x 0 ) (10) 
with j and k chosen among {ac, hyd, s}. In particular, the new structural sensitivity can provide information about the cross-interaction between vortical and acoustic components of the flow. Without further discussion, we propose the following de-composition of the adjoint mode,

û † = û † hyd + û † ac = ∇ϕ † c + ∇ × Ψ † , ŝ † = ŝ † s ρ † = ρ † ac + ρ † hyd + ρ † s , p † = p † ac = ∇ • û † γM 2 ∞ T † = T † ac + T † s = ŝ † u 0 • ∇s 0 - γ Pr Re ∆ŝ † ρ 0 - ∇ • û † γM 2 ∞ . ( 11 
)
which allows us to evaluate quantitatively the interaction among the different components.

NUMERICAL EXAMPLE: ROUNDED IMPINGING JET

Herein, we apply the previously introduced concept of the localised structural sensitivity for the case of a rounded impinging jet, sketched in fig. 1. The decomposed structural sensitivity map is displayed in fig. 2 for two different Mach numbers of the jet (M J ). In the problem of the impinging jet, the feedback loop is initiated by the hydrodynamic instability of the shear layer (a Kelvin-Helmholtz wave), which induces an acoustic response (a backward wave) when it reaches the impinging region. In turn, when the generated acoustic wave impinges on the nozzle lip promotes back the hydrodynamic instability, continuing the loop. With the novel definition, S (hyd,ac) s identifies the most sensitive region of the flow where vortical perturbations induce an acoustic response, see fig. 2 (a-b). This region for the impinging jet is expected to be located near the wall and possibly near sharp corners. The second (and third) wavemaker of interest corresponds to the excitation of a hydrodynamic response from hydrodynamic ( S (hyd,hyd) s ) or acoustic perturbations (S (ac,hyd) s

), the latter being displayed in fig. 2 (c-d). Physically, S (hyd,hyd) s determines the hydrodynamic wavemaker, which in a causal reasoning, could be argued to be the region initiating the feedback process, while S (ac,hyd) s determines the most sensitive region of the flow where an acoustic perturbation induces a hydrodynamic excitation, that is, the retroaction of the acoustic wave into the hydrodynamic instability. 

  stability Herein, we introduce the linearised compressible Navier-Stokes equations in primitive variables [ρ, û, ŝ, T , p] T . The linearised equations are

  conditions at the far-field. The acoustic and hydrodynamic pressure components are retrieved by solving an elliptic problem resulting from the application of the divergence operator onto the linearised momentum equation, while only retaining the corresponding fluctuating velocity component, cf [21, Ch. 3]. The acoustic and hydrodynamic components of the fluctuating density and temperature are recovered by considering the isentropic relationship. Finally, the entropic component is retrieved by subtraction.

Figure 1 :

 1 Figure 1: Diagram of the computational domain of the rounded impinging jet configuration. The physical domain, represented as a white area, is complemented with a radial absorbing layer (CM), shown as a light grey shaded zone.

  [1] P. Huerre and P. A. Monkewitz, "Local and global instabilities in spatially developing flows," Annual re-

Figure 2 :

 2 Figure 2: (a-b) Map S (hyd,ac) s for a global mode at (a) M J ≈ 0.9 and (b) M J ≈ 0.5. (c-d) Map S (ac,hyd) u,s for a global mode at (a) M J ≈ 0.9 and (b) M J ≈ 0.5.
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