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Lp Carleman estimates for elliptic boundary value problems and

applications to the quantification of unique continuation*

Belhassen Dehman�, Sylvain Ervedoza�, Lotfi Thabouti§

August 6, 2024

Abstract

The aim of this work is to prove global Lp Carleman estimates for the Laplace operator in dimension
d ⩾ 3. Our strategy relies on precise Carleman estimates in strips, and a suitable gluing of local and
boundary estimates obtained through a change of variables. The delicate point and most of the work thus
consists in proving Carleman estimates in the strip with a linear weight function for a second order operator
with coefficients depending linearly on the normal variable. This is done by constructing an explicit
parametrix for the conjugated operator, which is estimated through the use of Stein Tomas restriction
theorems. As an application, we deduce quantified versions of the unique continuation property for solutions
of ∆u = V u+W1 ·∇u+div (W2u) in terms of the norms of V in Lq0(Ω), ofW1 in Lq1(Ω) and ofW2 in Lq2(Ω)
for q0 ∈ (d/2,∞] and q1 and q2 satisfying either q1, q2 > (3d− 2)/2 and 1/q1 +1/q2 < 4(1− 1/d)/(3d− 2),
or q1, q2 > 3d/2.
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1 Introduction

Main result. The goal of this article is to prove global Lp Carleman estimates for the flat Laplace operator in
a smooth bounded domain of Rd (d ⩾ 3) for a general weight function satisfying the sub-ellipticity conditions of
Hörmander. As an application, we will show how these can be used to obtain quantitative unique continuation
results for solutions of elliptic equation with respect to the norms of the potentials.

To be more precise, our main result is the following one:

Theorem 1.1. Let d ⩾ 3. Let Ω ⊂ Rd be a bounded domain of class C3, and ω be a non empty open subset
of Ω with ω ⊂ Ω. Let φ ∈ C3(Ω) be such that

∀x ∈ ∂Ω, φ(x) = 0 and ∂nφ(x) < 0, (1.1)

and there exists α, β > 0 for which
inf
Ω\ω

|∇φ| > α, (1.2)

and

∀x ∈ Ω \ ω, ∀ξ ∈ Rd with |∇φ(x)| = |ξ| and ∇φ(x) · ξ = 0,

(Hessφ(x))∇φ(x) · ∇φ(x) + (Hessφ(x))ξ · ξ ⩾ β|∇φ(x)|2, (1.3)

where Hessφ denotes the Hessian matrix of φ. Let ω1 be an open subset of Ω so that ω ⊂ ω1 and ω1 ⊂ Ω,
and η be a smooth radial non-negative cut-off function (in C∞

c (Rd)) vanishing outside the ball of radius 1 and
equal to one in the ball of radius 1/2.

Then there exist C > 0 and τ0 ⩾ 1 (depending only on α, β, ∥φ∥C3(Ω), η and the geometric configuration

Ω, ω, and ω1) such that for all u ∈ H1(Ω) solution of{
−∆u = f2 + f2∗′ + divF in Ω,

u = g on ∂Ω,
(1.4)

with
f2 ∈ L2(Ω), f2∗′ ∈ L2d/(d+2)(Ω), F ∈ L2(Ω;Cd), and g ∈ H1/2(∂Ω),

we have, for all τ ⩾ τ0,

τ3/2∥eτφu∥L2(Ω) + τ1/2∥eτφ∇u∥L2(Ω) ⩽ C
(
∥eτφf2∥L2(Ω) + τ3/4−1/(2d)∥eτφf2∗′∥

L
2d/(d+2)
η,τ (Ω)

+τ∥eτφF∥L2(Ω) + τ3/4∥g∥H1/2(∂Ω) + τ3/2∥eτφu∥L2(ω1) + τ3/4∥eτφu∥
L

2d/(d−2)
η,τ (ω1)

)
, (1.5)

and

τ3/4+1/(2d)∥eτφu∥
L

2d/(d−2)
η,τ (Ω)

⩽ C
(
∥eτφf2∥L2(Ω) + τ3/4+1/(2d)∥eτφf2∗′∥

L
2d/(d+2)
η,τ (Ω)

+τ∥eτφF∥L2(Ω) + τ3/4+1/(2d)∥g∥H1/2(∂Ω) + τ3/2∥eτφu∥L2(ω1) + τ3/4+1/(2d)∥eτφu∥
L

2d/(d−2)
η,τ (ω1)

)
. (1.6)

Here, the norms ∥ · ∥Lp
η,τ (Ω) are defined for p ∈ [1,∞] for f ∈ Lp(Ω) by the formula

∥f∥2Lp
η,τ (Ω) = τd/3

∫
x0∈Ω

∥η(τ1/3(· − x0))f(·)∥2Lp(Ω) dx0.

Remark 1.2. The notations 2∗ and 2∗′ stem from the Sobolev’s embedding H1(Ω) ⊂ L2∗(Ω), with 2∗ =
2d/(d− 2) and L2∗′

(Ω) ⊂ H−1(Ω), with 2∗′ = 2d/(d+ 2).

Before going further, let us remark that the existence of a function satisfying the conditions (1.1)–(1.2)–
(1.3) for any arbitrary geometric setting is due to Fursikov and Imanuvilov [10, Lemma 1.1] (see also [21,
Proposition 3.31]). The conditions (1.2)–(1.3) are the sub-ellipticity conditions of the weight function φ with
respect to the Laplace operator, which are known to be necessary and sufficient conditions to get a local L2

Carleman estimate (i.e. (1.5) for compactly supported functions u, and with f2∗′ = 0) for the Laplace operator
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with the same powers of the Carleman parameter τ , see [12, Chapter XXVIII] and, for instance [21, Definition
3.2, Section 3.6 and Section 4.1.2] for a more recent perspective.

The Carleman estimate (1.5) coincides with the one in [14] except for the terms involving the norm

L
2d/(d+2)
η,τ (Ω). This term and the estimate (1.6) on u in L

2d/(d−2)
η,τ (Ω) are the main novelties of our result

and allow us to quantify efficiently unique continuation properties for solutions of elliptic equations with
respect to the norms of potentials in Lp(Ω).

Note that estimate (1.5) implies an estimate on τ1/2∥eτφu∥H1(Ω) from the right hand side of (1.5), thus

on τ1/2∥eτφu∥L2d/(d−2)(Ω). Therefore, estimate (1.5) does not allow to recover estimate (1.6) directly from
classical Sobolev’s embeddings.

Local Lp Carleman estimates (i.e Carleman estimates for compactly supported functions) have been derived
in many situations, but usually to focus on questions related to unique continuation. We should in particular
quote the breakthrough article [16] obtained for a radial weight log(|x|), which rather corresponds to a limiting
Carleman weight in the sense that the second condition (1.3) is satisfied with β = 0 (see also the previous
results [2, 11]). Later, several works have been devoted to get local Carleman estimates with some specific
strictly convex weights, see e.g. [3, 25, 26], which have later been revisited and improved in the works
[18, 8]. We also point out the more recent works [7, 6] for local Carleman estimates with some specific strictly
convex weight. Here, we emphasize that we will consider general weight functions satisfying the sub-ellipticity
conditions (1.2)–(1.3), similarly as in [8], which considers the more general case of second order real principal
type operators of order 2. In fact, in our context, the article [8] proves that, for all x0 ∈ Rd, if φ is subelliptic
at x0 (that is |∇φ(x0)| ≠ 0 and condition (1.3) at x = x0), there exists a neighborhood K of x0 such that the
local Carleman estimate ∥eτφu∥L2d/(d−2) ⩽ C∥eτφ∆u∥L2d/(d+2) holds for all u compactly supported in K. The
estimates (1.5)–(1.6) thus extend the result in [8] by providing a global Carleman estimate, allowing source
terms in H−1(Ω) and boundary conditions in H1/2(∂Ω), and estimating u in the H1(Ω)-norm as well.

Finally, let us also emphasize that Theorem 1.1 presents global Lp Carleman estimates, in the sense that
the Carleman estimates (1.5)–(1.6) hold for functions u having possibly non-zero trace on the boundary. To
our knowledge, this is new, as all the Lp Carleman estimates with p ̸= 2 that we have encountered in the
literature hold for compactly supported functions.

Properties of the Lpη,τ (Ω) norms. To understand the norms Lpη,τ (Ω), let us first remark that for p = 2, and
f ∈ L2

η,τ (Ω), by Fubini’s theorem, we have, for τ large enough,

∥f∥2L2
η,τ (Ω) ⩽ ∥η∥2L2(Rd)∥f∥

2
L2(Ω),

∥f∥2L2
η,τ (Ω) ⩾ ∥f∥2L2(Ω)

(
inf
x0∈Ω

τd/3
∫
x∈Ω

|η(τ1/3(x− x0))|2 dx
)

⩾ c∗∥f∥2L2(Ω).

Here, c∗ > 0 is independent of τ ⩾ τ0 if τ0 is chosen so that τ0 ⩾ ε−3
0 , where ε0 > 0 is such that for all

ε ∈ (0, ε0] and x ∈ Ω, there exists a ball of radius ε/8 contained in B(x, ε/2) ∩ Ω (it is not difficult to check
that such an ε > 0 exists by compactness and smoothness of the boundary ∂Ω). The norms L2

η,τ (Ω) are thus
equivalent to the usual L2(Ω) norm uniformly with respect to the parameter τ .

For other values of p ∈ [1,∞), these norms are less easy to describe, as they somehow encode some mean
informations on the Lp-norms localized in balls of radius τ−1/3, as one can see by writing them under the form

∥f∥Lp
η,τ (Ω) = τd/6

∥∥∥∥∥∥∥η(τ1/3(x− x0))f(x)
∥∥∥
Lp

x(Ω)

∥∥∥∥
L2

x0
(Ω)

.

In fact, for p ∈ (1,∞), again by Fubini’s theorem, there exists C > 0, such that for τ ⩾ τ0 and f ∈ Lp(Ω),

1

C
τd/3

∫
x∈Ω

∫
x0∈Ω

|η(τ1/3(x− x0))f(x)|p dx dx0

⩽ ∥f∥pLp(Ω) ⩽ Cτd/3
∫
x∈Ω

∫
x0∈Ω

|η(τ1/3(x− x0))f(x)|p dx dx0, (1.7)

i.e. the Lp norm ∥f∥Lp(Ω) is equivalent to the norm

τd/(3p)
∥∥∥∥∥∥∥η(τ1/3(x− x0))f(x)

∥∥∥
Lp

x(Ω)

∥∥∥∥
Lp

x0
(Ω)

.
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This implies in particular that, for p > 2,

∥f∥Lp
η,τ (Ω) = τd/6

∥∥∥∥∥∥∥η(τ1/3(x− x0))f(x)
∥∥∥
Lp

x(Ω)

∥∥∥∥
L2

x0
(Ω)

⩽ Cτd/6
∥∥∥∥∥∥∥η(τ1/3(x− x0))f(x)

∥∥∥
Lp

x(Ω)

∥∥∥∥
Lp

x0
(Ω)

⩽ Cτ (1/2−1/p)d/3∥f∥Lp(Ω). (1.8)

On the other hand, for p > 2, by Minkowski’s integral inequality ([28], page 271), we have, for C independent
of τ ⩾ τ0,

∥f∥Lp(Ω) =

(∫
x∈Ω

|f(x)|p dx
)1/p

⩽ C

(∫
x∈Ω

(
τd/3

∫
x0∈Ω

|η(τ1/3(x− x0))f(x)|2 dx0
)p/2

dx

)1/p

⩽ Cτd/6

(∫
x0∈Ω

(∫
x∈Ω

|η(τ1/3(x− x0))f(x)|p dx
)2/p

dx0

)1/2

= C∥f∥Lp
η,τ (Ω). (1.9)

Similarly, for p < 2, we get, using Minkowski’s integral inequality and the norm equivalence (1.7), that the
exists a constant C independent of τ ⩾ τ0,

1

C
τ (1/2−1/p)d/3 ∥f∥Lp(Ω) ⩽ ∥f∥Lp

η,τ (Ω) ⩽ C ∥f∥Lp(Ω) . (1.10)

Note that, of course, the estimates (1.8), (1.9), and (1.10) can be used to simplify the norms Lpη,τ in the
Carleman estimates (1.5) and (1.6) and replace them by the classical Lp norms.

Finally, let us point out that, for p, q, r in [1,∞] such that 1/p+1/q = 1/r, for V ∈ Lq(Ω) and u ∈ Lp(Ω),
we have the following Hölder type estimate

∥V u∥Lr
η,τ (Ω) ⩽ ∥u∥Lp

η,τ (Ω) sup
x0∈Ω

{∥V ∥Lq(B(x0,τ−1/3))} ⩽ ∥u∥Lp
η,τ (Ω)∥V ∥Lq(Ω). (1.11)

Application to the quantification of unique continuation with respect to lower order terms. Next,
as a consequence of the Carleman estimates in Theorem 1.1, we will prove (in Section 8) the following result:

Theorem 1.3. Let d ⩾ 3, Ω ⊂ Rd be a bounded domain of class C3, and ω be a non-empty open subset of
Ω with ω ⊂ Ω. Then there exists a constant C = C(Ω, ω) > 0 depending only on Ω and ω such that for any
solution u ∈ H1

0 (Ω) of
∆u = V u+W1 · ∇u+ div(W2u) in Ω,

with
V ∈ Lq0(Ω), W1 ∈ Lq1(Ω;Cd), W2 ∈ Lq2(Ω;Cd),

we have:

1. If q0 ∈ (d/2,∞], q1 ∈ ((3d− 2)/2,∞] and q2 ∈ ((3d− 2)/2,∞] and

1

q1
+

1

q2
< 4

(
1− 1/d

3d− 2

)
,

the function u satisfies

∥u∥L2(Ω) ⩽ Ce
C
(
∥V ∥γ(q0)

Lq0 (Ω)
+∥W1∥

δ(q1)

Lq1 (Ω)
+∥W2∥

δ(q2)

Lq2 (Ω)
+(∥W1∥Lq1 (Ω)∥W2∥Lq2 (Ω))

ρ(q1,q2)
)
∥u∥L2d/(d−2)(ω) , (1.12)

with

γ(q) =



1

3

2

(
1− d

2q

)
+

1

2q

if q ⩾ d, δ(q) =
2

1− 3d− 2

2q

,

1(
3

4
+

1

2d

)(
2− d

q

) if q ∈
(
d

2
, d

]
, ρ(q1, q2) =

1

1− 1

d
−
(
3

4
− 1

2d

)(
d

q1
+

d

q2

) .
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2. If q0 ∈ (d/2,∞], q1 ∈ (3d/2,∞] and q2 ∈ (3d/2,∞], the function u satisfies

∥u∥L2(Ω) ⩽ Ce
C

(
∥V ∥γ(q0)

Lq0 (Ω)
+∥W1∥

δ̃(q1)

Lq1 (Ω)
+∥W1∥

δ̃(q2)

Lq1 (Ω)

)
∥u∥L2d/(d−2)(ω) , (1.13)

with

δ̃(q) =
2

1− 3d

2q

.

Remark 1.4. Note that the conditions in item 1 and in item 2 do not overlap, in the sense that there are cases
in which the conditions in item 2 are satisfied while conditions in item 1 are not (for instance q1 = q2 = 3d/2+ϵ
with ϵ > 0 small), and reciprocally (for instance q1 = (3d− 2)/2 + ϵ with ϵ > 0 small and q2 = ∞).

Several remarks are in order.
First, unique continuation is known to hold for general V ∈ Lq0(Ω), W1 ∈ Lq1(Ω;Cd), andW2 ∈ Lq2(Ω;Cd)

for q0 ⩾ d/2, q1 ⩾ d and q2 ⩾ d, see [32], and [18] where even strong unique continuation is proved in that
case when q0 > d/2, q1 > d and q2 > d. (These classes of integrability for the potentials are sharp, see [19].)

These unique continuation results require the use of a Carleman estimate and a delicate argument from
harmonic analysis inspired by [31], see also [18]. In this argument, the weight function in the Carleman estimate
depends on the solution, making the quantification of unique continuation with respect to the norms of the
potentials difficult to track. Another related result is the article [23], which quantifies unique continuation
properties for the Laplacian operator with lower order terms in the sharp integrability class, but not with
respect to the norms of the potentials. In fact, since this work is based on [18], as said above, it is not clear
how the proof in [23] can be made quantitative with respect to the norms of the potentials.

Therefore, when trying to quantify the unique continuation property with respect to the norms of the lower
order terms, the known results rely only on the use of a Carleman estimate, which, as pointed out in [3], does
not allow to go beyond W1 ∈ L(3d−2)/2(Ω). This corresponds to what is done in [7, 6] using Lp Carleman
estimate. But the results in [7] describing the maximal order of vanishing of solutions of elliptic equations
require V and W1 respectively in Lq0(Ω) with q0 > d(3d− 2)/(5d− 2) and in Lq1(Ω) with q1 > (3d− 2)/2, and
W2 = 0. Also note that Theorem 1 in [6], which applies when W1 =W2 = 0, exhibits the same dependence in
the Lq0(Ω) norm of V as in Theorem 1.3.

Let us also mention that taking L2 Carleman estimates, one cannot reach the same integrability class as
in our case, see for instance [9].

Finally, note that using a quantitative Caccioppoli inequality with singular lower order terms, see for
instance [7, Lemma 5], and Sobolev embedding, one can show that the inequalities (1.12) and (1.13) remain
true by replacing ∥u∥L2d/(d−2)(ω) by ∥u∥L2(ω1) for ω1 an open subset satisfying ω ⊂ ω1 (Since ω is any arbitrary
non-empty open set in Theorem 1.3, this is of course a harmless condition).

Let us also note that one can be slightly more precise in Theorem 1.3, in (1.12) and (1.13), by using the
intermediate bound in (1.11) instead of the extremal one in the proof of Theorem 1.3.

Strategy of the proof of Theorem 1.1. In order to prove Theorem 1.1, we start with the easy geometric
case of a vertical strip, with a linear weight function x 7→ x1, and a second order operator of the form
∆− x1

∑d
j=2 λj∂

2
j , see Section 2 for the statements.

Although this might seem at first to be a very specific case, we will check in Section 7 that this is not the
case, due to the two following facts. First, if we localize the functions in a ball of radius sufficiently small, one
can do a change of variables (in the spirit of the normal geodesic coordinates), such that the conjugated operator

eτφ∆(e−τφ·) can be recast into the problem in the strip with an operator of the form ∆− x1
∑d
j=2 λj∂

2
j and

the linear weight function x 7→ x1. Second, one can glue the local and boundary Carleman estimates obtained
that way, and the localization terms introduced by the cut-off can be absorbed through that process if the
localization is not too strong. Therefore, we have to balance the two processes, and to choose the localization
rate appropriately. It turns out that a localization in balls of size τ−1/3 works.

Accordingly, most of the article in fact focuses on the proof of a Carleman estimate in the strip for an
operator of the form ∆− x1

∑d
j=2 λj∂

2
j with linear weight x 7→ x1. We do that in several steps.

First, due to the specific geometric setting, one can perform a Fourier transform in the tangential variables
(which are transverse to the gradient of the weight function, i.e. to the direction e1), and construct explicitly
a parametrix, see Section 3. In fact, this approach is inspired by [25, 18] and by recent works on Carleman
estimates for Laplace operator with discontinuous conductivities, for instance [22].
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Once this is done, it is clear that we will have to get estimates on the operators appearing in the parametrix.
Dealing with the Hilbertian norms can be done using classical multiplier type arguments and Parseval’s identity,
see Section 4.

It thus remains to understand how to get estimates on the operators appearing in the parametrix in
L (L2d/(d+2)(Ω), L2d/(d−2)(Ω)) for instance, and other operator norms involving non-Hilbertian spaces. In
order to do this, we will rely on the Fourier restriction Stein Tomas Theorem, recalled in Theorem 5.1, see
e.g. [30], [29, theorem 2, page 352], or [27, Corollary 2.2.2]. Similarly as in [17, 3], this approach will allow
us to give an efficient manner to estimate the norm in L (L2d/(d+2)(Rd−1), L2d/(d−2)(Rd−1)) (among others)
of operators given in Fourier, see Section 5.2.

Using these results, and the explicit formula obtained for the parametrix, we manage to get Lp Carleman
estimates in the strip for an operator of the form ∆− x1

∑d
j=2 λj∂

2
j with linear weight x 7→ x1.

Let us finally emphasize that we made the choice of presenting the proofs in a (hopefully) pedagogical
manner, and thus of giving all the technical details required to get through the whole proofs. Therefore, some
parts, for instance regarding the Hilbertian estimates or the Fourier restriction theorems, might seem merely
classical, but we made the choice to present them nevertheless since we did not find them in the literature in
the precise version we needed.

Outline. The rest of the paper is as follows. Section 2 is devoted to state Carleman estimates (namely
Theorems 2.1 and 2.4) in the specific case of a vertical strip, with a linear weight function x 7→ x1, and

for an operator of the form ∆ − x1
∑d
j=2 λj∂

2
j . Section 3 gives a parametrix of the conjugated operator

eτx1(∆ − x1
∑d
j=2 λj∂

2
j )(e

−τx1 · ). Section 4 explains how to get Hilbertian estimates on the parametrix.
Section 5 then recalls Fourier restriction theorems and explains how they can be used in our context to
estimate L (L2d/(d+2)(Rd−1), L2d/(d−2)(Rd−1)) norms (among others) of operators given in Fourier. We then
derive all the estimates needed on the operators appearing in the parametrix in Section 6 and conclude the
proof of Theorems 2.1 and 2.4. In Section 7, we explain how to derive the proof of Theorem 1.1 from Theorem
2.4. We then provide in Section 8 the proof of Theorem 1.3. Finally, in the Appendix, we provide some
reminders of classical results, namely the Hardy-Littlewood-Sobolev theorem and the stationary phase lemma
(the refined version in [1]). We also give the proof of a technical result of interpolation used in Section 7.

Notations. Here is a set of notations we will use throughout the article.
For every x ∈ Rd, x = (x1, .., xd), we set x = (x1, x

′), where x′ = (x2, .., xd) ∈ Rd−1.
The notations∇ and ∆ respectively stand for the gradient and the Laplacian with respect to x = (x1, .., xd),

and ∇′ = (∂2, .., ∂d) and ∆′ =
∑d
j=2 ∂

2
j are, respectively, the tangential gradient and Laplacian operators.

In all the document except in Section 5, the Fourier transform is always taken to be the Fourier transform
with respect to x′ = (x2, .., xd), and its dual variable ξ′ ∈ Rd−1 is then indexed by ξ′ = (ξ2, .., ξd). The Fourier

transform of a function f ∈ S (Rd−1) will be denoted by f̂ :

f̂(ξ′) =
1

(2π)(d−1)/2

∫
Rd−1

e−ix′·ξ′f(x′) dx′, ξ′ ∈ Rd−1,

and is extended by duality as usual to any f ∈ S ′(Rd−1). Note that for a function f defined on Rd such that

f(x1, ·) ∈ S (Rd), f̂(x1, ·) denotes the partial Fourier transform with respect to x′, that is:

f̂(x1, ξ
′) =

1

(2π)(d−1)/2

∫
Rd−1

e−ix′·ξ′f(x1, x
′) dx′, ξ′ ∈ Rd−1. (1.14)

2 A Carleman estimate in a strip

In this section, we focus on the case of a strip

Ω = (X0, X1)× Rd−1, (2.1)

and on the following elliptic problem ∆v − x1
∑d
j=2 λj∂

2
j v = f2 + f2∗′ + divF in Ω,

v (X0, x
′) = g(x′), for x′ ∈ Rd−1,

v (X1, x
′) = 0, for x′ ∈ Rd−1,

(2.2)
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where
f2 ∈ L2(Ω), f2∗′ ∈ L2d/(d+2)(Ω), F ∈ L2(Ω;Cd), and g ∈ H1/2(Rd−1). (2.3)

To be able to solve the elliptic problem (2.2), we assume the coercivity of the operator −∆+x1
∑d
j=2 λj∂

2
j

in Ω, that is

∃c0 > 0, ∀x1 ∈ [X0, X1], ∀ξ ∈ Rd,
1

c20
|ξ|2 ⩽

d∑
j=1

(1− x1λj)|ξj |2 ⩽ c20|ξ|2, (2.4)

where we have set λ1 = 0 for convenience. Under condition (2.4) and the integrability and regularity assump-
tions (2.3), the problem (2.2) has a unique solution v ∈ H1(Ω).

Our goal is to prove the following Carleman estimate:

Theorem 2.1. Let Ω be as in (2.1) with X0<0<X1 and max{|X0|, |X1|} ⩽ 1, and assume that the coefficients
(λj)j∈{1,··· ,d} ∈ Rd satisfy λ1 = 0, (2.4) and that there exist positive constants m∗ and M∗ such that

0 < m∗ ⩽ min
j∈{2,··· ,d}

λj ⩽ max
j∈{2,··· ,d}

λj ⩽M∗. (2.5)

Then there exists a constant C > 0 depending on c0, m∗ and M∗ (independent of X0, X1) such that for all
(f2, f2∗′ , F, g) as in (2.3), if the solution v of (2.2) satisfies (∂1v − F1)(X1, x

′) = 0 for x′ ∈ Rd−1, then we
have, for all τ ⩾ 1,

τ3/2∥veτx1∥L2(Ω) + τ1/2∥veτx1∥H1(Ω) ⩽ C
(
∥f2eτx1∥L2(Ω) + τ3/4−1/(2d)∥f2∗′eτx1∥L2d/(d+2)(Ω)

+τ∥Feτx1∥L2(Ω) + τ3/4∥geτX0∥H1/2({X0}×Rd−1)

)
, (2.6)

and

τ3/4+1/(2d)∥veτx1∥L2d/(d−2)(Ω) ⩽ C
(
∥f2eτx1∥L2(Ω) + τ3/4+1/(2d)∥f2∗′eτx1∥L2d/(d+2)(Ω)

+τ∥Feτx1∥L2(Ω) + τ3/4+1/(2d)∥geτX0∥H1/2({X0}×Rd−1)

)
. (2.7)

Remark 2.2. A solution v of (2.2) with (f2, f2∗′ , F, g) as in (2.3) only belongs a priori to H1(Ω). Therefore,
trace theorems do not allow to define directly its normal trace. However, ∇v−F satisfies ∇v−F ∈ L2(Ω;Cd)
and div (∇v − F ) ∈ L2(Ω) + L2d/(d+2)(Ω) and it is easy to check that if R ∈ L2(Ω;Cd) and divR ∈ L2(Ω) +
L2d/(d+2)(Ω), then R ·n is well-defined as an element of H−1/2(∂Ω), see [4, Theorem III.2.43]. Therefore, the
trace (∇v − F ) · n is well-defined as an element of H−1/2(∂Ω).

Remark 2.3. The strict positivity of the coefficients (λj)j∈{2,··· ,d} guaranteed by condition (2.5) is the sub-

ellipticity condition for the operator −∆ + x1
∑d
j=2 λj∂

2
j with respect to the weight function x 7→ x1, see for

instance [21, Part 1, Definition 3.30].

As one easily checks by working on w defined by w(x) = eτx1v(x) in Ω, Theorem 2.1 is implied by the
following result, whose proof is developed from Section 3 to Section 6:

Theorem 2.4. Let Ω be as in (2.1) with X0<0<X1 and max{|X0|, |X1|} ⩽ 1, and assume that the coefficients
(λj)j∈{1,··· ,d} ∈ Rd satisfy λ1 = 0, (2.4), and (2.5). Then there exist constants C > 0 and τ0 ⩾ 1 depending
on c0, m∗ and M∗ (independent of X0, X1), such that for all (f2, f2∗′ , F, g) as in (2.3), if the solution w of ∆w − x1

∑d
j=2 λj∂

2
jw − 2τ∂1w + τ2w = f2 + f2∗′ + divF in Ω,

w (X0, x
′) = g(x′), for x′ ∈ Rd−1,

w (X1, x
′) = 0, for x′ ∈ Rd−1,

(2.8)

satisfies (∂1w − F1)(X1, x
′) = 0 for x′ ∈ Rd−1, then for all τ ⩾ τ0,

τ3/2∥w∥L2(Ω) + τ1/2∥∇w∥L2(Ω)

⩽ C
(
∥f2∥L2(Ω) + τ3/4−1/(2d)∥f2∗′∥L2d/(d+2)(Ω) + τ∥F∥L2(Ω) + τ3/4∥g∥H1/2({X0}×Rd−1)

)
, (2.9)

and

τ3/4+1/(2d)∥w∥L2d/(d−2)(Ω)

⩽ C
(
∥f2∥L2(Ω) + τ3/4+1/(2d)∥f2∗′∥L2d/(d+2)(Ω) + τ∥F∥L2(Ω) + τ3/4+1/(2d)∥g∥H1/2({X0}×Rd−1)

)
. (2.10)
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In fact, the correspondence between Theorem 2.1 and 2.4 is given by

(f2, f2∗′ , F, g) →
(
(f2 − τF1)e

τx1 , f2∗′eτx1 , Feτx1 , geτX0
)
.

Theorem 2.1 and Theorem 2.4 are then completely equivalent, and we thus focus only on the latter.

3 Construction of the parametrix in the case of a strip

The goal of this section is to explicitly construct the solution w of (2.8) for τ ⩾ 1, (f2, f2∗′ , F, g) as in (2.3),
under the assumptions that the domain Ω is a strip as in (2.1), and the coefficients (λj)j∈{1,··· ,d} ∈ Rd satisfy
λ1 = 0, (2.4) and (2.5).

In order to do that, we take the partial Fourier transform in the variable x′ ∈ Rd−1 of (2.8) with dual
variable ξ′ ∈ Rd−1:

(∂1 − τ)2ŵ −
d∑
j=2

(1− x1λj)ξ
2
j ŵ = f̂2 + f̂2∗′ + ∂1F̂1 + i

d∑
j=2

ξjF̂j for (x1, ξ
′) ∈ Ω,

ŵ (X0, ξ
′) = ĝ(ξ′), for ξ′ ∈ Rd−1,

ŵ (X1, ξ
′) = 0, for ξ′ ∈ Rd−1.

(3.1)

We then show the following:

Proposition 3.1. Let Ω be as in (2.1), and assume that the coefficients (λj)j∈{1,··· ,d} ∈ Rd satisfy λ1 = 0,

(2.4) and (2.5). We introduce the function ψ : Ω → R defined by

ψ(x1, ξ
′) =

√√√√ d∑
j=2

(1− x1λj)ξ2j , x1 ∈ [X0, X1], ξ
′ ∈ Rd−1. (3.2)

For all τ ⩾ 1, for all (f2, f2∗′ , F, g) as in (2.3), the solution w of (2.8) formally satisfies

w = Kτ,0(f2 + f2∗′) +Kτ,1(F1) +

d∑
j=2

Kτ,j(Fj) +Rτ (w) +Gτ (g) +Hτ ((∂1w − F1)(X1, ·)), (3.3)

where, using the partial Fourier transform (1.14), the operators Kτ,j, for j ∈ {0, · · · , d}, and Rτ are formally
defined for f depending on (x1, x

′) ∈ Ω, by

K̂τ,jf(x1, ξ
′) =

∫
y1∈(X0,X1)

kτ,j(x1, y1, ξ
′)f̂(y1, ξ

′) dy1, (x1, ξ
′) ∈ Ω, (3.4)

R̂τf(x1, ξ
′) =

∫
y1∈(X0,X1)

rτ (x1, y1, ξ
′)f̂(y1, ξ

′) dy1, (x1, ξ
′) ∈ Ω, (3.5)

with kernels given, for (x1, y1, ξ
′) ∈ [X0, X1]

2 × Rd−1, by

kτ,0(x1, y1, ξ
′) = −1ψ(x1,ξ′)>τ

∫ min{x1,y1}

X0

e
−τ(y1−x1)−

∫ x1
x̃1

ψ(ỹ1,ξ
′) dỹ1−

∫ y1
x̃1

ψ(ỹ1,ξ
′) dỹ1 dx̃1

+ 1ψ(x1,ξ′)⩽τ1y1>x1

∫ y1

x1

e
−τ(y1−x1)+

∫ x̃1
x1

ψ(ỹ1,ξ
′) dỹ1−

∫ y1
x̃1

ψ(ỹ1,ξ
′) dy1 dx̃1, (3.6)

kτ,1(x1, y1, ξ
′) = −1ψ(x1,ξ′)⩽τ1y1>x1

e
−τ(y1−x1)+

∫ y1
x1

ψ(ỹ1,ξ
′) dỹ1

+ 1ψ(x1,ξ′)>τ1y1<x1
e
τ(x1−y1)−

∫ x1
y1

ψ(ỹ1,ξ
′) dỹ1 + kτ,0(x1, y1, ξ

′)(τ + ψ(y1, ξ
′)), (3.7)

kτ,j(x1, y1, ξ
′) = iξjkτ,0(x1, y1, ξ

′), j ∈ {2, · · · , d}, (3.8)

rτ (x1, y1, ξ) = kτ,0(x1, y1, ξ
′)∂1ψ(y1, ξ

′).

The operators Gτ and Hτ are formally given in Fourier for g0 ∈ S (Rd−1) by

Ĝτg0(x1, ξ
′) = gτ (x1, ξ

′)ĝ0(ξ
′), (x1, ξ

′) ∈ Ω, (3.9)

Ĥτg0(x1, ξ
′) = hτ (x1, ξ

′)ĝ0(ξ
′), (x1, ξ

′) ∈ Ω,
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where gτ and rτ are given, for (x1, ξ
′) ∈ [X0, X1]× Rd−1, by

gτ (x1, ξ
′) = 1ψ(x1,ξ′)⩾τe

τ(x1−X0)−
∫ x1
X0

ψ(ỹ1,ξ
′) dỹ1 , (3.10)

hτ (x1, ξ
′) = 1ψ(x1,ξ′)>τ

∫ x1

X0

e
−τ(X1−x1)−

∫ x1
x̃1

ψ(ỹ1,ξ
′) dỹ1−

∫ X1
x̃1

ψ(ỹ1,ξ
′) dỹ1dx̃1

− 1ψ(x1,ξ′)⩽τ

∫ X1

x1

e
−τ(X1−x1)+

∫ x̃1
x1

ψ(ỹ1,ξ
′) dỹ1−

∫ X1
x̃1

ψ(ỹ1,ξ
′) dỹ1dx̃1.

Remark 3.2. We emphasize that Proposition 3.1 is formal. We will prove later, in Theorem 4.1, Proposi-
tion 4.3 and in Proposition 6.2, that the operators Kτ,0, (Kτ,j)j∈{1,··· ,d}, Rτ , Gτ and Hτ respectively belong to

L (L2(Ω)+L2d/(d+2)(Ω);L2(Ω)), (L (L2(Ω);L2(Ω)))d, L (L2(Ω);L2(Ω)), L (H1(Ω);L2(Ω)), L (H1/2(∂Ω);L2(Ω)),
and L (H−1/2(Ω);L2(Ω)). A simple density argument would then allow to justify rigorously formula (3.3).

Proof. The basic strategy of proof of Proposition 3.1 consists in the factorization of the operator (∂1 − τ)2 −∑d
j=2(1− x1λj)ξ

2
j :

(∂1 − τ)2 −
d∑
j=2

(1− x1λj)ξ
2
j = (∂1 − τ − ψ(x1, ξ

′)) (∂1 − τ + ψ(x1, ξ
′))− ∂1ψ(x1, ξ

′),

where ψ is the function introduced in (3.2), and the last term should be seen as a correction term.
We thus set

Ĥ(x1, ξ
′) = f̂2(x1, ξ

′) + f̂2∗′(x1, ξ
′) + i

d∑
j=2

ξjF̂j(x1, ξ
′) + ∂1ψ(x1, ξ

′)ŵ(x1, ξ
′), x1 ∈ [X0, X1], ξ

′ ∈ Rd−1,

so that equation (3.1)(1) can be rewritten as

(∂1 − τ − ψ(x1, ξ
′)) (∂1 − τ + ψ(x1, ξ

′)) ŵ = Ĥ + ∂1F̂1, in Ω.

Accordingly, introducing the additional unknown ẑ(x1, ξ
′) = (∂1 − τ + ψ(x1, ξ

′))ŵ(x1, ξ
′), equation (3.1) can

be rewritten as a system of two first order ODE indexed by ξ′ ∈ Rd−1:
(∂1 − τ + ψ(x1, ξ

′)) ŵ(x1, ξ
′) = ẑ(x1, ξ

′) in Ω,

(∂1 − τ − ψ(x1, ξ
′)) ẑ(x1, ξ

′) = Ĥ(x1, ξ
′) + ∂1F̂1(x1, ξ

′) in Ω,
ŵ(X0, ξ

′) = ĝ(ξ′), on Rd−1,
ŵ(X1, ξ

′) = 0 on Rd−1.

(3.11)

Let ξ′ ∈ Rd−1. Solving (3.11)2 from the right, which can be done easily by working on (ẑ − F̂1)(·, ξ′), by
Duhamel’s formula we get, for x1 ∈ (X0, X1),

ẑ(x1, ξ
′) = e

−τ(X1−x1)−
∫ X1
x1

ψ(ỹ1,ξ
′) dỹ1(∂1ŵ − F̂1)(X1, ξ

′) + F̂1(x1, ξ
′)

−
∫ X1

x1

e
−τ(y1−x1)−

∫ y1
x1

ψ(ỹ1,ξ
′) dỹ1

(
Ĥ(y1, ξ

′) + (τ + ψ(y1, ξ
′))F̂1(y1, ξ

′)
)
dy1, (3.12)

where we did the additional remark that, using (3.11)(1,4), ẑ(X1, ξ
′) = ∂1ŵ(X1, ξ

′).
We then focus on the equations (3.11)(1,3,4) giving ŵ(·, ξ′) in terms of ẑ(·, ξ′). One should notice here that

(3.11)(3,4) give two boundary conditions for a first order equation. Therefore, we do a choice when solving
(3.11)(1) based on the fact that we want formulae involving only exponentials of nonpositive numbers. In order
to do such a choice, we analyse the sign of the function x1 7→ −τ +ψ(x1, ξ′). Due to conditions (2.4) and (2.5),
the function x1 7→ ψ(x1, ξ

′) is strictly decreasing on [X0, X1]. Therefore, the function x1 7→ −τ +ψ(x1, ξ′) can
vanish only once on [X0, X1], and if it vanishes at some point xτ,ξ′ ∈ [X0, X1], it is positive in [X0, xτ,ξ′) and
negative for x1 ∈ (xτ,ξ′ , X1].

Accordingly, for x1 ∈ [X0, X1] such that ψ(x1, ξ
′) ⩽ τ , we use the formula

ŵ(x1, ξ
′) = −

∫ X1

x1

e
−τ(x̃1−x1)+

∫ x̃1
x1

ψ(ỹ1,ξ
′) dỹ1 ẑ(x̃1, ξ

′) dx̃1,
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while for x1 ∈ [X0, X1] such that ψ(x1, ξ
′) > τ , we use the formula

ŵ(x1, ξ
′) = eτ(x1−X0)−

∫ x1
X0

ψ(ỹ1,ξ
′) dỹ1 ĝ(ξ′) +

∫ x1

X0

e
τ(x1−x̃1)−

∫ x1
x̃1

ψ(ỹ1,ξ
′) dỹ1 ẑ(x̃1, ξ

′) dx̃1.

These two formulae can be written in one under the form

ŵ(x1, ξ
′) = −1ψ(x1,ξ′)⩽τ

∫ X1

x1

e
−τ(x̃1−x1)+

∫ x̃1
x1

ψ(ỹ1,ξ
′) dỹ1 ẑ(x̃1, ξ

′) dx̃1

+ 1ψ(x1,ξ′)>τ

(
eτ(x1−X0)−

∫ x1
X0

ψ(ỹ1,ξ
′) dỹ1 ĝ(ξ′) +

∫ x1

X0

e
τ(x1−x̃1)−

∫ x1
x̃1

ψ(ỹ1,ξ
′) dỹ1 ẑ(x̃1, ξ

′) dx̃1

)
. (3.13)

The formulae given by Proposition 3.1 are then deduced by putting together formulae (3.12) and (3.13). Details
are left to the reader.

4 Hilbertian estimates

The goal of this section is to prove the following result:

Theorem 4.1. Let Ω be as in (2.1) with X0<0<X1 and max{|X0|, |X1|} ⩽ 1, and assume that the coefficients
(λj)j∈{1,··· ,d} ∈ Rd satisfy λ1 = 0, (2.4) and (2.5).

Then there exist constants C > 0 and τ0 ⩾ 1 depending on c0, m∗ and M∗ (independent of X0, X1) such
that for all τ ⩾ τ0, for all (f2, F, g0, g1) ∈ L2(Ω) × L2(Ω;Cd) × H1/2(Rd−1) × H−1/2(Rd−1), the function w
given by

w = Kτ,0(f2) +Kτ,1(F1) +

d∑
j=2

Kτ,j(Fj) +Gτ (g0) +Hτ (g1), (4.1)

where (Kτ,j)j∈{0,··· ,d}, Gτ and Hτ are given by Proposition 3.1, satisfies:

τ3/2∥w∥L2(Ω) + τ1/2∥∇′w∥L2(Ω) ⩽ C∥f2∥L2(Ω) +Cτ∥F∥L2(Ω) +Cτ∥g0∥H1/2(Rd−1) +Cτ∥g1∥H−1/2(Rd−1). (4.2)

Besides, for w ∈ L2(Ω) satisfying ∇′w ∈ L2(Ω), for all τ ⩾ τ0, Rτ (w) introduced in Proposition 3.1, satisfies

τ3/2∥Rτ (w)∥L2(Ω) + τ1/2∥∇′Rτ (w)∥L2(Ω) ⩽ C∥∇′w∥L2(Ω). (4.3)

Remark 4.2. The estimate (4.2) above gives estimates on the norm of the operators Kτ,j for j ∈ {0, · · · , d} as
operators in L (L2(Ω), L2(Ω)), and on the norm of the operators Gτ and Hτ in, respectively L (H1/2(Rd−1), L2(Ω))
and L (H−1/2(Rd−1), L2(Ω)), but with no claim of optimality. In fact, as we will see later in Theorem 4.4,
the estimate on the operator norm of Gτ is not sharp. On the contrary, the ones on Kτ,j for j ∈ {0, · · · , d}
are sharp, see for instance [21, Part 1, Theorem 4.4, 4.5 and Theorem 4.10] regarding Kτ,0.

In this Section and in Section 6, all the constants C depend only on c0 in (2.4) and m∗,M∗ in (2.5), and
this fact will not be mentioned in the sequel.

Proof. We first remark that w as in (4.1) satisfies by construction the following version of (3.11):

(∂1 − τ + ψ(x1, ξ
′)) ŵ(x1, ξ

′) = ẑ(x1, ξ
′) for (x1, ξ

′) ∈ Ω1,τ ,

(∂1 − τ − ψ(x1, ξ
′)) (ẑ − F̂1)(x1, ξ

′)

= f̂2(x1, ξ
′) + i

∑d
j=2 ξjF̂j(x1, ξ

′) + (τ + ψ(x1, ξ
′))F̂1(x1, ξ

′) for (x1, ξ
′) ∈ Ω,

ŵ(X0, ξ
′) = ĝ0(ξ

′), if ψ(X0, ξ
′) > τ,

ŵ(X1, ξ
′) = 0 if ψ(X1, ξ

′) ⩽ τ,

(ẑ − F̂1)(X1, ξ
′) = ĝ1(ξ

′), for ξ′ ∈ Rd−1,

(4.4)

where Ω1,τ = ({ψ(x1, ξ′) > τ} ∩ Ω) ∪ ({ψ(x1, ξ′) < τ} ∩ Ω). Note that, given ξ′ ∈ Rd−1, due to the conditions
(2.4) and (2.5), there exists at most one element x∗1(ξ

′) ∈ [X0, X1] such that ψ(x∗1(ξ
′), ξ′) = 0. Consequently,

given ξ′ ∈ Rd−1, {x1 ∈ (X0, X1), (x1, ξ
′) ∈ Ω1,τ} is either the whole interval (X0, X1) or the union of two

disjoint intervals (X0, x
∗
1(ξ

′)) ∪ (x∗1(ξ
′), X1).
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Since this system is now a family of ODE indexed by the tangential Fourier parameter ξ′ ∈ Rd−1, from
now on, we see ξ′ ∈ Rd−1 as a free parameter.

We then perform estimates on ẑ(·, ξ′) using (4.4)(2,5) by setting z̃(·, ξ′) = ẑ(·, ξ′)− F̂1(·, ξ′), which satisfies:{
(∂1 − τ − ψ(x1, ξ

′)) z̃(x1, ξ
′) = f̂2(x1, ξ

′) + i
∑d
j=2 ξjF̂j(x1, ξ

′) + (τ + ψ(x1, ξ
′))F̂1(x1, ξ

′) in Ω,

z̃(X1, ξ
′) = ĝ1(ξ

′), on Rd−1.

We then use a multiplier approach, taking the square of both sides and integrating in x1:∫ X1

X0

(
|∂1z̃(x1, ξ′)|2 +

(
(τ + ψ(x1, ξ

′))2 + ∂1ψ(x1, ξ
′)
)
|z̃(x1, ξ′)|2

)
dx1 + (τ + ψ(X0, ξ

′))|z̃(X0, ξ
′)|2

= (τ + ψ(X1, ξ
′))|z̃(X1, ξ

′)|2 +
∫ X1

X0

∣∣∣∣∣∣f̂2(x1, ξ′) + i

d∑
j=2

ξjF̂j(x1, ξ
′) + (τ + ψ(x1, ξ

′))F̂1(x1, ξ
′)

∣∣∣∣∣∣
2

dx1

⩽ (τ + ψ(X1, ξ
′))|ĝ1(ξ′)|2 + (d+ 1)

∫ X1

X0

|f̂2(x1, ξ′)|2 dx1

+ (d+ 1)

d∑
j=2

∫ X1

X0

|ξjF̂j(x1, ξ′)|2 dx1 + (d+ 1)

∫ X1

X0

(τ + ψ(x1, ξ
′))2|F̂1(x1, ξ

′)|2 dx1.

Note that, within the setting of Theorem 4.1, the function ψ defined as in (3.2) is such that there exists C1 > 0
for which

∀x1 ∈ [X0, X1], ∀ξ′ ∈ Rd−1,
|ξ′|
C1

⩽ ψ(x1, ξ
′) ⩽ C1|ξ′|, −C1|ξ′| ⩽ ∂1ψ(x1, ξ

′) ⩽ −|ξ′|
C1

. (4.5)

Accordingly, for τ ⩾ τ0 large enough, there exists C > 0 such that for all ξ′ ∈ Rd−1 and x1 ∈ [X0, X1],

1

C
(τ + |ξ′|)2 ⩽ (τ + ψ(x1, ξ

′))2 + ∂1ψ(x1, ξ
′) ⩽ C(τ + |ξ′|)2,

1

C
(τ + |ξ′|) ⩽ τ + ψ(x1, ξ

′) ⩽ C(τ + |ξ′|).

Therefore, the above estimate yields:∫ X1

X0

(τ + |ξ′|)2|z̃(x1, ξ′)|2 dx1 ⩽ C(τ + |ξ′|)|ĝ1(ξ′)|2 + C

∫ X1

X0

|f̂2(x1, ξ′)|2 dx1

+ C

d∑
j=2

∫ X1

X0

|ξjF̂j(x1, ξ′)|2 dx1 + C

∫ X1

X0

(τ + |ξ′|)2|F̂1(x1, ξ
′)|2 dx1.

Recalling that z̃(·, ξ′) = ẑ(·, ξ′)− F̂1(·, ξ′), we obtain

∫ X1

X0

(τ + |ξ′|)2|ẑ(x1, ξ′)|2 dx1 ⩽ C(τ + |ξ′|)|ĝ1(ξ′)|2 + C

∫ X1

X0

|f̂2(x1, ξ′)|2 dx1

+ C

d∑
j=2

∫ X1

X0

|ξjF̂j(x1, ξ′)|2 dx1 + C

∫ X1

X0

(τ + |ξ′|)2|F̂1(x1, ξ
′)|2 dx1.

We then derive estimates on ŵ(·, ξ′) from the equation (4.4)(1,3,4), again by taking the square of both sides of
(4.4)(1) and doing integration by parts. If for all x1 ∈ [X0, X0], ψ(x1, ξ

′) ̸= τ , we do the computation at once by
doing the integration by parts on (X0, X1), and if there exists x∗1(ξ

′) ∈ [X0, X1] such that ψ(x∗1(ξ
′), ξ′) = τ (re-

call that such an x∗1(ξ
′) is necessarily unique), we do the computations on [X0, x

∗
1(ξ

′)) and on (x∗1(ξ
′), X1], and

we sum the estimates. In this latter case, ∂1ŵ should be interpreted as 1x1<x∗
1(ξ

′)∂1ŵ(x1, ξ
′)+1x1>x∗

1(ξ
′)∂1ŵ(x1, ξ

′).
There is a priori no reason that this coincides with the derivative of ŵ(·, ξ′) in the sense of D ′(X0, X1), which
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would require some continuity conditions on ŵ(x∗1(ξ
′)±, ξ′). We get:∫ X1

X0

(
|∂1ŵ(x1, ξ′)|2 +

(
(τ − ψ(x1, ξ

′))2 − ∂1ψ(x1, ξ
′)
)
|ŵ(x1, ξ′)|2

)
dx1

+ (ψ(X1, ξ
′)− τ)|ŵ(X1, ξ

′)|2 − (ψ(X0, ξ
′)− τ)|ŵ(X0, ξ

′)|2 =

∫ X1

X0

|ẑ(x1, ξ′)|2 dx1.

Accordingly, using the boundary conditions (4.4)(3,4) and (4.5),∫ X1

X0

(
|∂1ŵ(x1, ξ′)|2 +

(
(τ − ψ(x1, ξ

′))2 + |ξ′|
)
|ŵ(x1, ξ′)|2

)
dx1

⩽ C(ψ(X0, ξ
′)− τ)1ψ(X0,ξ′)>τ |ĝ0(ξ

′)|2 + C

∫ X1

X0

|ẑ(x1, ξ′)|2 dx1.

Therefore, there exists C > 0 such that for all τ ⩾ τ0 and ξ′ ∈ Rd−1,∫ X1

X0

(
|∂1ŵ(x1, ξ′)|2 +

(
(τ − ψ(x1, ξ

′))2 + |ξ′|
)
|ŵ(x1, ξ′)|2

)
dx1

⩽ C(ψ(X0, ξ
′)− τ)1ψ(X0,ξ′)>τ |ĝ0(ξ

′)|2 + C
1

τ + |ξ′|
|ĝ1(X1, ξ

′)|2 + C
1

(τ + |ξ′|)2

∫ X1

X0

|f̂2(x1, ξ′)|2 dx1

+ C
|ξ′|2

(τ + |ξ′|)2
d∑
j=2

∫ X1

X0

|F̂j(x1, ξ′)|2 dx1 + C

∫ X1

X0

|F̂1(x1, ξ
′)|2 dx1.

We finally use that there exists a constant such that for all ξ′ ∈ Rd−1, τ ⩾ τ0, and x1 ∈ [X0, X1],(
(τ − ψ(x1, ξ

′))2 + |ξ′|
)
⩾

1

C

(
τ +

|ξ′|2

τ

)
, (ψ(X0, ξ

′)− τ)1ψ(X0,ξ′)>τ ⩽ C|ξ′|,

1

τ + |ξ′|
⩽

1

1 + |ξ′|
,

1

(τ + |ξ′|)2
⩽

1

τ2
,

|ξ′|2

(τ + |ξ′|)2
⩽ 1,

so that∫ X1

X0

(
τ |ŵ(x1, ξ′)|2 + |∂1ŵ(x1, ξ′)|2 +

1

τ
|ξ′|2|ŵ(x1, ξ′)|2

)
dx1

⩽ C|ξ′||ĝ0(ξ′)|2 + C
1

1 + |ξ′|
|ĝ1(ξ′)|2 + C

1

τ2

∫ X1

X0

|f̂2(x1, ξ′)|2 dx1 + C

d∑
j=1

∫ X1

X0

|F̂j(x1, ξ′)|2 dx1.

Integrating in ξ′ ∈ Rd−1 and using Parseval’s identity, we derive (4.2).

To prove (4.3), we simply remark that R̂τw = K̂τ,0f2 with f̂2(x1, ξ
′) = ∂1ψ(x1, ξ

′)ŵ(x1, ξ
′), which clearly

satisfies ∥f2∥L2(Ω) ⩽ C∥∇′w∥L2(Ω). Accordingly the estimates on Kτ,0 in (4.2) immediately provide (4.3).

In view of the above computations, for w as in (4.1), we have good estimates on ∂1ŵ in L2(Ω1,τ ), where

Ω1,τ = {(x1, ξ′) ∈ Ω, with ψ(x1, ξ
′) > τ} ∪ {(x1, ξ′) ∈ Ω, with ψ(x1, ξ

′) < τ}. (4.6)

Indeed, from the above computations, for w as in (4.1),

τ∥∂1ŵ∥L2(Ω1,τ ) ⩽ C∥f2∥L2(Ω) + Cτ

d∑
j=1

∥Fj∥L2(Ω) + Cτ∥g0∥H1/2(Rd−1) + Cτ∥g1∥H−1/2(Rd−1). (4.7)

In particular, if one knows that w ∈ H1(Ω), we get an estimate on ∂1w in L2(Ω).
Note that the above proof and the previous remark immediately give the following result, whose proof is

left to the reader, since all solutions w of (2.8) with source terms (f2, f2∗′ , F, g) as in (2.3) belong to H1(Ω),
and the terms ∥∇′w∥2L2(Ω) coming from Rτ (w) and (4.3) can be easily absorbed by taking τ large enough:
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Proposition 4.3. Let Ω be as in (2.1) with X0 < 0 < X1 and max{|X0|, |X1|} ⩽ 1, and assume that the
coefficients (λj)j∈{1,··· ,d} ∈ Rd satisfy λ1 = 0, (2.4) and (2.5).

Then there exist constants C > 0 and τ0 ⩾ 1 depending on c0, m∗ and M∗ (independent of X0, X1) such
that for all (f2, f2∗′ , F, g) as in (2.3) with f2∗′ = 0, if the solution w of (2.8) satisfies (∂1w − F1)(X1, x

′) = 0
in Rd−1, then for all τ ⩾ τ0,

w = Kτ,0(f2) +Kτ,1(F1) +

d∑
j=2

Kτ,j(Fj) +Rτ (w) +Gτ (g),

where the operators (Kτ,i)i∈{0,··· ,d}, Rτ and Gτ are defined in Proposition 3.1, and

τ3/2∥w∥L2(Ω) + τ∥∂1w∥L2(Ω) + τ1/2∥∇′w∥L2(Ω) ⩽ C∥f2∥L2(Ω) + Cτ∥F∥L2(Ω) + Cτ∥g∥H1/2(Rd−1).

We now check that the estimate on Gτ can indeed be improved:

Theorem 4.4. Let Ω be as in (2.1) with X0<0<X1 and max{|X0|, |X1|} ⩽ 1, and assume that the coefficients
(λj)j∈{1,··· ,d} ∈ Rd satisfy λ1 = 0, (2.4) and (2.5), and let Gτ be the operator in (3.9) and (3.10).

Then there exists a constant C > 0 depending on c0, m∗ and M∗ (independent of X0, X1) such that for all
τ ⩾ 1, for all g ∈ H1/2(Rd−1),

τ3/4∥Gτ (g)∥L2(Ω) + ∥∂̂1Gτ (g)∥L2(Ω1,τ ) + τ−1/4∥∇′Gτ (g)∥L2(Ω) ⩽ C∥g∥H1/2(Rd−1),

where Ω1,τ is defined by (4.6).

Remark 4.5. Note that the estimates in Theorem 4.4 yield better estimates than the ones of Theorem 4.1 on
the L (H1/2(Rd−1), L2(Rd)) norms of the operators Gτ and ∇′Gτ , and are in agreement with the ones obtained
in [14].

Proof. For τ ⩾ 1 and ξ′ ∈ Rd−1 such that ψ(X0, ξ
′) > τ , we introduce x∗1(ξ

′) ∈ (X0, X1] as the unique solution
of ψ(x∗1(ξ

′), ξ′) = τ if it exists, or x∗1(ξ
′) = X1 otherwise, and we compute∫ x∗

1(ξ
′)

X0

|gτ (x1, ξ′)|2 dx1 and

∫ x∗
1(ξ

′)

X0

|ξ′|2|gτ (x1, ξ′)|2 dx1, and
∫ x∗

1(ξ
′)

X0

|∂1gτ (x1, ξ′)|2 dx1.

In order to do that, we recall that, within the setting of Theorem 4.4, we have

∃C > 0, ∀ξ′ ∈ Rd−1, ∀(x1, y1) ∈ [X0, X1]
2 with y1 < x1, ψ(y1, ξ

′) ⩾ ψ(x1, ξ
′) +

1

C
|ξ′||x1 − y1|,

∃C > 0, ∀ξ′ ∈ Rd−1, ∀τ ⩾ 1, ∀x1 ∈ [X0, x
∗
1(ξ

′)],
1

C
|ξ′||x∗1(ξ′)− x1| ⩽ τ − ψ(x1, ξ

′),

so that ∫ x∗
1(ξ

′)

X0

|gτ (x1, ξ′)|2 dx1 ⩽
∫ x∗

1(ξ
′)

X0

e2τ(x1−X0)−2
∫ x1
X0

ψ(y1,ξ
′) dy1 dx1

⩽
∫ x∗

1(ξ
′)

X0

e2(τ−ψ(x1,ξ
′))(x1−X0)−|ξ′|(x1−X0)

2/C dx1

⩽
∫ x∗

1(ξ
′)

X0

e−2|ξ′|(x∗
1(ξ

′)−x1)(x1−X0)/C−|ξ′|(x1−X0)
2/C dx1

⩽
∫ (X0+x

∗
1(ξ

′))/2

X0

e−2|ξ′|(x∗
1(ξ

′)−x1)(x1−X0)/C dx1 +

∫ x∗
1(ξ

′)

(X0+x∗
1(ξ

′))/2

e−|ξ′|(x1−X0)
2/C dx1

⩽
∫ (X0+x

∗
1(ξ

′))/2

X0

e−|ξ′|(x∗
1(ξ

′)−X0)(x1−X0)/(2C) dx1 +

∫ x∗
1(ξ

′)

(X0+x∗
1(ξ

′))/2

e−|ξ′|(x∗
1(ξ

′)−X0)(x1−X0)/C dx1

⩽ 2

∫ (X0+x
∗
1(ξ

′))/2

X0

e−|ξ′|(x∗
1(ξ

′)−X0)(x1−X0)/(2C) dx1

⩽ Cmin

{
1

|ξ′||x∗1(ξ′)−X0|
, |x∗1(ξ′)−X0|

}
.
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It is then easy to check that, for τ ⩾ 1 and ξ′ ∈ Rd−1 such that ψ(X0, ξ
′) > τ ,∫ x∗

1(ξ
′)

X0

|gτ (x1, ξ′)|2 dx1|g(ξ′)|2

⩽ C

(
sup

ψ(X0,ξ′)>τ

{
min

{
1

|ξ′|2|x∗1(ξ′)−X0|
,
|x∗1(ξ′)−X0|

|ξ′|

}})
|ξ′||g(ξ′)|2 ⩽

C

τ3/2
|ξ′||g(ξ′)|2.

Integrating in ξ′ ∈ Rd−1 and using Parseval’s identity, we obtain that

τ3/4∥Gτ (g)∥L2(Ω) ⩽ C∥g∥H1/2(Rd−1).

Similarly, we prove that∫ x∗
1(ξ

′)

X0

|ξ′|2|gτ (x1, ξ′)|2 dx1|g(ξ′)|2

⩽ C

(
sup

ψ(X0,ξ′)>τ

{
min

{
1

|x∗1(ξ′)−X0|
, |ξ′||x∗1(ξ′)−X0|

}})
|ξ′||g(ξ′)|2 ⩽ Cτ1/2|ξ′||g(ξ′)|2,

so that there exists a constant C > 0 such that for all g ∈ H1/2(Rd−1),

τ−1/4∥∇′Gτ (g)∥L2(Ω) ⩽ C∥g∥H1/2(Rd−1).

We then check that
∂1gτ (x1, ξ

′) = (τ − ψ(x1, ξ
′))gτ (x1, ξ

′).

Then, if ξ′ ∈ Rd−1 is such that ψ(X0, ξ
′) > τ and ψ(X1, ξ

′) < τ , using that for all x1 ∈ [X0, x
∗
1(ξ

′)),
τ − ψ(x1, ξ

′) ⩽ C|ξ′||x∗1(ξ′)− x1|, we get∫ x∗
1(ξ

′)

X0

|∂1gτ (x1, ξ′)|2 dx1 ⩽
∫ x∗

1(ξ
′)

X0

(τ − ψ(x1, ξ
′))2e2τ(x1−X0)−2

∫ x1
X0

ψ(y1,ξ
′) dy1 dx1

⩽ C

∫ x∗
1(ξ

′)

X0

|ξ′|2(x∗1(ξ′)− x1)
2e−2|ξ′|(x∗

1(ξ
′)−x1)(x1−X0)/C−|ξ′|(x1−X0)

2/C dx1

⩽ C

∫ (X0+x
∗
1(ξ

′))/2

X0

|ξ′|2(x∗1(ξ′)−X0)
2e−2|ξ′|(x∗

1(ξ
′)−X0)(x1−X0)/C dx1

+ C

∫ x∗
1(ξ

′)

(X0+x∗
1(ξ

′))/2

|ξ′|2(x∗1(ξ′)− x1)
2e−|ξ′|(x∗

1(ξ
′)−X0)(x1−X0)/(2C) dx1

⩽ C

∫ (X0+x
∗
1(ξ

′))/2

X0

|ξ′|2(x∗1(ξ′)−X0)
2e−|ξ′|(x∗

1(ξ
′)−X0)(x1−X0)/(2C) dx1

⩽ Cmin
{
|ξ′|(x∗1(ξ′)−X0), |ξ′|2(x∗1(ξ′)−X0)

3
}
⩽ Cmin

{
ψ(X0, ξ

′)− τ,
(ψ(X0, ξ

′)− τ)3

|ξ′|

}
.

In particular,∫ x∗
1(ξ

′)

X0

|∂1gτ (x1, ξ′)|2 dx1|g(ξ′)|2

⩽ C

(
sup

ψ(X0,ξ′)>τ

{
min

{
ψ(X0, ξ

′)− τ

|ξ′|
,
(ψ(X0, ξ

′)− τ)3

|ξ′|2

}})
|ξ′||g(ξ′)|2 ⩽ C|ξ′||g(ξ′)|2.

Similar estimates can be achieved for ξ′ ∈ Rd−1 such that ψ(X1, ξ
′) ⩾ τ , and details are left to the reader.

We thus obtained that there exists a constant C > 0 such that for all g ∈ H1/2(Rd−1) and τ ⩾ 1,

∥∂1Ĝτ (g)∥L2(Ω1,τ ) ⩽ C∥g∥H1/2(Rd−1).

This concludes the proof of Theorem 4.4.
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5 Fourier Restriction theorems and applications

In this section, we first recall the classical Fourier restriction theorem, and present a version adapted to our
case. We will then explain how it can be applied to estimate the norms of operators of some specific forms,
which will encompass the ones appearing in the parametrix provided in Proposition 3.1.

In this section, n ⩾ 2 and, for a function f ∈ S (Rn), the Fourier transform f̂ ∈ S (Rn) is given by

f̂(ξ) =
1

(2π)n/2

∫
x∈Rn

e−ix·ξf(x) dx, ξ ∈ Rn,

and is extended by duality to functions in S ′(Rn) as usual. We will see later that n in fact corresponds to
d− 1 in the applications we have in mind.

5.1 Fourier restriction theorems

We start by recalling the classical Stein Tomas Fourier restriction theorem:

Theorem 5.1 ([30], see also [29, Theorem 2, page 352]). Let n ⩾ 2, and Sn−1 denote the unit sphere of Rn.
Then the map {

L1(Rn) → L2(Sn−1)

f 7→ f̂
∣∣
Sn−1

can be extended by continuity on L2(n+1)/(n+3)(Rn), and there exists a constant C > 0 such that for all
f ∈ L2(n+1)/(n+3)(Rn),

∥f̂∥L2(Sn−1) ⩽ C∥f∥L2(n+1)/(n+3)(Rn).

It is well-known that this restriction theorem can be extended to any hypersurface with non-vanishing
Gaussian curvature, (see, for example, [27, Corollary 2.2.2]).

In view of the formulae in Proposition 3.1, it is interesting for us to analyze Fourier restriction theorems
on the family of surfaces

Σa = {ξ ∈ Rn, ψ(a, ξ) = 1}, a ∈ [X0, X1], (5.1)

where by analogy with the function ψ in (3.2) and the conditions (2.4), we have set

ψ(a, ξ) =

√√√√ n∑
j=1

(1− aλj)ξ2j , a ∈ [X0, X1], ξ ∈ Rn. (5.2)

where the family of coefficients (λj)j∈{1,··· ,n} satisfies

∃c0 > 0, ∀a ∈ [X0, X1], ∀ξ ∈ Rn,
1

c0
|ξ|2 ⩽

n∑
j=1

(1− aλj)|ξj |2 ⩽ c0|ξ|2. (5.3)

Note that due to condition (5.3), for all a ∈ [X0, X1], the surface Σa is an ellipsoid and thus [27, Corollary

2.2.2] applies and yields that for all a ∈ [X0, X1], the map f 7→ f̂
∣∣
Σa

maps L2(n+1)/(n+3)(Rn) to L2(Σa).
For our purpose, we need a slightly more refined version of this result, guaranteeing that the norm of this

map is independent of a ∈ [X0, X1].

Theorem 5.2. Let n ⩾ 2. Assume that the family of coefficients (λj)j∈{1,··· ,n} satisfies (5.3) for some c0 > 0.
Then there exists a constant C > 0 depending only on c0 (and n) such that for all a ∈ [X0, X1], for all
f ∈ L2(n+1)/(n+3)(Rn),

∥f̂∥L2(Σa) ⩽ C∥f∥L2(n+1)/(n+3)(Rn). (5.4)

Note that the proof below follows the classical one of Theorem 5.1 and is mainly based on the stationary
phase lemma.

Proof. For a ∈ [X0, X1], we denote by Ta the map Ta : f ∈ L1(Rn) 7→ f̂
∣∣
Σa

∈ L2(Σa). We then consider its

adjoint operator T ⋆a : L2(Σa) → L∞(Rn): For g ∈ L2(Σa),

T ⋆a g(x) =

∫
ω∈Σa

eix·ωg(ω) dΣa(ω), x ∈ Rn.
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The operator T ⋆aTa then maps L1(Rn) to L∞(Rn) and, for f ∈ L1(Rn),

T ⋆aTaf(x) =

∫
Rn

∫
ω∈Σa

ei(x−x̃)·ω dΣa(ω)f(x̃) dx̃, x ∈ Rn. (5.5)

Next, we will prove that the operator T ⋆aTa can in fact be extended as an operator from L2(n+1)/(n+3)(Rn)
to L2(n+1)/(n−1)(Rn), uniformly with respect to a ∈ [X0, X1]. This will prove (5.4) since

∥T ⋆aTa∥L (L2(n+1)/(n+3)(Rn),L2(n+1)/(n−1)(Rn)) = ∥Ta∥2L (L2(n+1)/(n+3)(Rn),L2(Σa))
.

To start with, we parametrize the hypersurface Σa through several patches. We first remark that Σa can
be mapped into the sphere Sn−1 as follows. For ω ∈ Σa, we define ξ = Ga(ω) by

∀j ∈ {1, · · · , n}, ξj = ωj
√
1− aλj .

We then choose a spherical cap

Cn =

{
ξ ∈ Sn−1; ξn ⩾

1√
2n

}
.

It is easy to check that, if, for ϵ ∈ {−1, 1} and j ∈ {1, · · · , n}, Rϵ,j denotes the rotation that maps the basis
vector en to ϵej , and leaves all the vectors ek for k ̸= j, n invariant, then the family of Rϵ,jCn for ϵ ∈ {−1, 1}
and j ∈ {1, · · · , n} covers the whole sphere. Therefore, there exists a partition of unity (χϵ,j)ϵ∈{−1,1},j∈{1,··· ,n}
of the sphere Sn−1 such that for each ϵ ∈ {−1, 1} and j ∈ {1, · · · , n}, the function χϵ,j is smooth and compactly
supported in Rϵ,jCn. Since by construction,

∑
ϵ,j χϵ,j(ξ) = 1 for all ξ ∈ Sn−1, we have

∀ω ∈ Σa,
∑

ϵ∈{−1,1}, j∈{1,··· ,n}

χϵ,j(Ga(ω)) = 1.

Therefore,

T ⋆aTaf(x) =
∑

ϵ∈{−1,1}, j∈{1,··· ,n}

∫
Rn

∫
ω∈Σa

χϵ,j(Ga(ω))e
i(x−x̃)·ω dΣa(ω)f(x̃) dx̃, x ∈ Rn.

Besides, for all ϵ ∈ {−1, 1} and j ∈ {1, · · · , n}, χϵ,j ◦ Ga is supported in the set of all ω ∈ Σa such that
ϵωj
√
1− aλj ⩾ 1/

√
2n, i.e. the pre-image of the cap Rϵ,j(Cn) by Ga, that we denote by Cϵ,j . It is clear that

this set can be parametrized by Rn−1 as follows. Denoting ξ̌j = (ξ1, · · · , ξj−1, ξj+1, · · · , ξn), we easily obtain

Cϵ,j =

(ξ1, .., ξj−1, ϵhj(a, ξ̌j), ξj+1, .., ξn
)
;

n∑
k=1
k ̸=j

(1− aλk)ξ
2
k ⩽ 1− 1

2n

 ,

where the function hj is defined by the formula

hj(a, ξ̌j) =
1√

1− aλj

√√√√√1−
n∑
k=1
k ̸=j

(1− aλk)ξ2k, a ∈ [X0, X1], ξ̌j ∈ Va,j ,

with Va,j given by

Va,j =

ξ̌j ∈ Rn−1;

n∑
k=1
k ̸=j

(1− aλk)ξ
2
k ⩽ 1− 1

2n

 .

Therefore, the study of T ⋆aTa is reduced to the study of the family of operators

f 7→

(
x 7→

∫
Rn

∫
ξ̌j∈Va,j

χϵ,j(Ga(Hϵ,j(a, ξ̌j)))e
i(x̌j−y̌j)·ξ̌j+ϵi(xj−x̃j)h(a,ξ̌j)

√
1 + |∇hj(a, ξ̌j)|2dξ̌jf(y) dy

)
,

where Hϵ,j(a, ξ̌j) =
(
ξ1, .., ξj−1, ϵhj(a, ξ̌j), ξj+1, .., ξn

)
, for all j ∈ {1, · · · , n} and ϵ ∈ {−1, 1}.
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Thus, up to a renumbering of the coefficients, we can focus without loss of generality on the operator
corresponding to ϵ = 1 and j = n. Accordingly, we introduce the notation x′ = (x1, · · · , xn−1) and ξ′ =
(ξ1, · · · , ξn−1), and we consider the operator, defined for f ∈ L1(Rn) to L∞(Rn) by

Taf(x) =
∫
Rn

∫
ξ′∈Rn−1

χ(Ga(ξ
′, hn(a, ξ

′)))ei(x
′−x̃′)·ξ′+i(xn−x̃n)hn(a,ξ

′)
√
1 + |∇hn(a, ξ′)|2dξ′f(x̃) dx̃, (5.6)

where χ is a smooth function on the sphere Sn−1 compactly supported in the spherical cap Cn and χ(Ga(·, hn(a, ·))
is extended by 0 for ξ′ /∈ Va,n.

We have reduced the proof of Theorem 5.2 to the proof of the fact that the maps Ta defined in (5.6) belong
to the space L (L2(n+1)/(n+3)(Rn), L2(n+1)/(n−1)(Rn)) uniformly with respect to a ∈ [X0, X1].

In order to show this property, for a ∈ [X0, X1] and δ ∈ R, we introduce the family of operators, defined
from L1(Rn−1) to L∞(Rn−1) by

Ta,δf(x
′) =

∫
Rn−1

∫
ξ′∈Rn−1

χ(Ga(ξ
′, hn(a, ξ

′)))ei(x
′−x̃′)·ξ′+iδhn(a,ξ

′)
√
1 + |∇hn(a, ξ′)|2dξ′f(x̃′) dx̃′,

for which we will show that there exists a constant C > 0 such that for all a ∈ [X0, X1] and δ ∈ R,

∥Ta,δ∥L (L2(n+1)/(n+3)(Rn−1),L2(n+1)/(n−1)(Rn−1)) ⩽ C|δ|−(n−1)/(n+1). (5.7)

Indeed, if the estimate (5.7) holds, then Hardy Littlewood Sobolev theorem (recalled in Appendix in
Theorem A.1) implies that, for f ∈ L1(Rn) ∩ L2(n+1)/(n+3)(Rn),

∥Taf∥L2(n+1)/(n−1)(Rn) ⩽

∥∥∥∥∥
∥∥∥∥∫

x̃n∈R
Ta,xn−x̃n

f(·, x̃n) dx̃n
∥∥∥∥
L

2(n+1)/(n−1)

x′ (Rn−1)

∥∥∥∥∥
L

2(n+1)/(n−1)
xn (R)

⩽

∥∥∥∥∫
x̃n∈R

∥Ta,xn−x̃n
f(·, x̃n)∥L2(n+1)/(n−1)

x′ (Rn−1)
dx̃n

∥∥∥∥
L

2(n+1)/(n−1)
xn (R)

⩽ C

∥∥∥∥∫
x̃n∈R

|x̃n − xn|−(n−1)/(n+1) ∥f(·, x̃n)∥L2(n+1)/(n+3)

x̃′ (Rn−1)
dx̃n

∥∥∥∥
L

2(n+1)/(n−1)
xn (R)

⩽ C
∥∥∥∥f(·, x̃n)∥L2(n+1)/(n+3)

x̃′ (Rn−1)

∥∥∥
L

2(n+1)/(n+3)
x̃n

(R)
= C ∥f∥L2(n+1)/(n+3)(Rn) ,

since
n− 1

n+ 1
= 1−

(
n+ 3

2(n+ 1)
− n− 1

2(n+ 1)

)
.

We thus focus on the proof of estimate (5.7), which, as explained above, would conclude the proof of
Theorem 5.2. This is done in three steps.

In the first step, we check that Ta,δ maps L2(Rn−1) into itself with uniform bounds. Indeed, taking the
Fourier transform x′ → ξ′ of Rn−1, we easily get:

T̂a,δf(ξ
′) = χ(Ga(ξ

′, hn(a, ξ
′)))eiδhn(a,ξ

′)
√
1 + |∇hn(a, ξ′)|2f̂(ξ′),

so that by Parseval’s identity,

∥Ta,δ∥L (L2(Rn−1)) ⩽
∥∥∥χ(Ga(ξ′, hn(a, ξ′)))eiδhn(a,ξ

′)
√

1 + |∇hn(a, ξ′)|2
∥∥∥
L∞

ξ′ (R
n−1)

.

We then immediately get that there exists a constant C > 0 depending only on c0 in (5.3) such that for all
a ∈ [X0, X1] and δ ∈ R,

∥Ta,δ∥L (L2(Rn−1)) ⩽ C. (5.8)

In a second step, we check that Ta,δ maps continuously L1(Rn−1) to L∞(Rn−1) and get an estimate on its
norm. In fact, we clearly have that

∥Ta,δ∥L (L1(Rn−1),L∞(Rn−1)) ⩽ sup
δ′∈Rn−1

∣∣∣∣∫
Rn−1

eiδ
′·ξ′+iδhn(a,ξ

′)χ(Ga(ξ
′, hn(a, ξ

′)))
√
1 + |∇hn(a, ξ′)|2 dξ′

∣∣∣∣ . (5.9)
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Our goal is then to prove that there exists a constant C > 0 such that for all a ∈ [X0, X1] and δ ∈ R,

sup
δ′∈Rn−1

∣∣∣∣∫
Rn−1

eiδ
′·ξ′+iδhn(a,ξ

′)χ(Ga(ξ
′, hn(a, ξ

′)))
√
1 + |∇hn(a, ξ′)|2 dξ′

∣∣∣∣ ⩽ C

|δ|(n−1)/2
. (5.10)

For δ′ ∈ Rn−1 and δ ∈ R, we define λ > 0 and ω ∈ Sn−1 by

λ =
√
|δ′|2 + δ2 and ω =

1

λ
(δ′, δ).

Accordingly,∫
Rn−1

eiδ
′·ξ′+iδhn(a,ξ

′)χ(Ga(ξ
′, hn(a, ξ

′)))
√

1 + |∇hn(a, ξ′)|2 dξ′ =
∫
Rn−1

eiλΦ(ω,a,ξ′)χ̃(a, ξ′) dξ′,

where

Φ(ω, a, ξ′) = ω′ · ξ′ + ωnhn(a, ξ
′), and χ̃(a, ξ′) = χ(Ga(ξ

′, hn(a, ξ
′)))
√

1 + |∇hn(a, ξ′)|2.

Note that we immediately have that∣∣∣∣∫
Rn−1

eiλΦ(ω,a,ξ′)χ̃(a, ξ′) dξ′
∣∣∣∣ ⩽ sup

a∈[X0,X1]

∥χ̃(a, ·)∥L1(Rn−1), (5.11)

so that we are only interested in large values of δ. It is then clear that we have to use the stationary phase
lemma to get a suitable estimate on that quantity. Since we need to quantify properly in terms of the
parameters a ∈ [X0, X1] and δ ∈ R, we will use the refined version of [1, theorem 1], recalled in the appendix
in Theorem A.2.

Let Ωn ∈ (0, 1/2) be such that

Ωn sup
a∈[X0,X1]

∥∇ξ′hn(a, ξ
′)∥L∞

ξ′ (Va,n) ⩽
1

2

√
1− Ω2

n.

Then

∀ω ∈ Sn−1 with |ωn| ⩽ Ωn, inf
a∈[X0,X1], ξ′∈Va,n

|∇ξ′Φ(ω, a, ξ
′)| ⩾ |ω′|

2
.

Therefore, if ω ∈ Sn−1 with |ωn| ⩽ Ωn, applying integration by parts based on the formula

eiλΦ(ω,a,ξ′) =
1

iλ|∇ξ′Φ(ω, a, ξ′)|2
∇ξ′Φ(ω, a, ξ

′) · ∇ξ′e
iλΦ(ω,a,ξ′),

we get that, for all k ∈ N, there exists Ck > 0 and a decreasing function Fk : R → R such that∣∣∣∣∫
Rn−1

eiλΦ(ω,a,ξ′)χ̃(a, ξ′) dξ′
∣∣∣∣ ⩽ Ck

|λ|k
Fk(∥Φ(ω, ·, ·)∥Wk+1,∞([X0,X1]×Va,n))∥χ̃∥Wk+1,∞([X0,X1]×Va,n).

Therefore, for all k ∈ N, there exists a constant Ck > 0 such that for ω ∈ Sn−1 with |ωn| ⩽ Ωn and a ∈ [X0, X1],∣∣∣∣∫
Rn−1

eiλΦ(ω,a,ξ′)χ̃(a, ξ′) dξ′
∣∣∣∣ ⩽ Ck

|δ|k
. (5.12)

It remains to analyze what happens when ω ∈ Sn−1 satisfies |ωn| ⩾ Ωn. There, we use that

(Hess ξ′Φ)(ω, a, ξ
′) = ωn(Hess ξ′hn)(a, ξ

′).

Since there exists a0 > 0 such that

inf
a∈[X0,X1]

inf
ξ′∈Va,n

|det(Hess ξ′hn)(a, ξ
′)| ⩾ a0.

a direct application of Theorem A.2 yields the existence of a constant C > 0 such that for all a ∈ [X0, X1], for
all ω ∈ Sn−1 with |ωn| ⩾ Ωn,∣∣∣∣∫

Rn−1

eiλΦ(ω,a,ξ′)χ̃(a, ξ′) dξ′
∣∣∣∣ ⩽ C

|λ|(n−1)/2
⩽

C

|δ|(n−1)/2
. (5.13)
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Combining (5.11)–(5.12)–(5.13), we get (5.10), and thus from (5.9), the existence of a constant C such that
for all a ∈ [X0, X1] and δ ∈ R,

∥Ta,δ∥L (L1(Rn−1),L∞(Rn−1)) ⩽
C

|δ|(n−1)/2
. (5.14)

In a third and last step, we conclude the estimate (5.7) by M. Riesz interpolation theorem ([27, Theorem
0.1.13]) combining (5.8) and (5.14). This concludes the proof of Theorem 5.2.

5.2 Fourier multiplier operators

The goal of this section is to show how Theorem 5.2 can be applied to get estimates on some families of Fourier
multipliers operators.

To be more precise, for X0 < X1 and coefficients (λj)j∈{1,··· ,n} satisfying (5.3), we define ψ as in (5.2) and
Σa the ellipsoid defined for a ∈ [X0, X1] by (5.1).

For a ∈ [X0, X1] and k ∈ L∞(R+, L
∞(Σa)), we consider operators given as follows:

Ka,k : L2(Rn) → L2(Rn), given by K̂a,k(f)(ξ) = k

(
ψ(a, ξ),

ξ

ψ(a, ξ)

)
f̂(ξ), ξ ∈ Rn. (5.15)

We prove the following result:

Proposition 5.3. Let n ∈ N, n ⩾ 2. Let X0 < X1, and the coefficients (λj)j∈{1,··· ,n} satisfy (5.3). For
a ∈ [X0, X1], let ψ and Σa be as in (5.1)–(5.2). Then there exists a constant C > 0 such that, for all
a ∈ [X0, X1], for all k ∈ L∞(R+, L

∞(Σa))

� the Fourier multiplier operator Ka,k in (5.15) maps L2(Rn) to itself and

∥Ka,k∥L (L2(Rn)) ⩽ ∥k∥L∞(R+,L∞(Σa)). (5.16)

� if moreover, k satisfies ∫ ∞

0

∥k(λ, ·)∥L∞(Σa) λ
(n−1)/(n+1) dλ <∞,

the Fourier multiplier operator Ka,k in (5.15) belongs to L (L2(n+1)/(n+3)(Rn), L2(n+1)/(n−1)(Rn)) and

∥Ka,k∥L (L2(n+1)/(n+3)(Rn),L2(n+1)/(n−1)(Rn)) ⩽ C

∫ ∞

0

∥k(λ, ·)∥L∞(Σa) λ
(n−1)/(n+1) dλ. (5.17)

� if moreover, k satisfies ∫ ∞

0

∥k(λ, ·)∥2L∞(Σa)
λ(n−1)/(n+1) dλ <∞,

the Fourier multiplier operator Ka,k in (5.15) belongs to

L (L2(n+1)/(n+3)(Rn), L2(Rn)) ∩ L (L2(Rn), L2(n+1)/(n−1)(Rn)),

and

∥Ka,k∥L (L2(n+1)/(n+3)(Rn),L2(Rn)) ⩽ C

√∫ ∞

0

∥k(λ, ·)∥2L∞(Σa)
λ(n−1)/(n+1) dλ, (5.18)

∥Ka,k∥L (L2(Rn),L2(n+1)/(n−1)(Rn)) ⩽ C

√∫ ∞

0

∥k(λ, ·)∥2L∞(Σa)
λ(n−1)/(n+1) dλ. (5.19)

Remark 5.4. The estimates of Proposition 5.3 will play a similar role as Sogge’s spectral projection bounds
[24] for the spherical Laplacian to prove Lp Carleman estimates in the elliptic case as in [15, 26, 18].
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Proof. The proof of (5.16) follows immediately from Parseval’s identity.
The proof of (5.17) is more subtle and is done in several steps. First, based on Theorem 5.2, we analyze,

for λ > 0, the map Ta,λ : f ∈ L1(Rn) 7→ f̂
∣∣
Σa,λ

, where Σa,λ = {ξ ∈ Rn, ψ(a, ξ) = λ}. We then explain how

this yields estimate (5.17).
The first step is based on the fact that for a ∈ [X0, X1] and λ > 0, for f ∈ L1(Rn),

T ⋆a,λTa,λf(x) =

∫
x̃∈Rn

∫
ξ∈Σa,λ

ei(x−x̃).ξ dΣa,λ(ξ)f(x̃) dx̃, x ∈ Rn.

Since the function ξ 7→ ψ(a, ξ) is homogeneous of degree 1, by using a scaling argument, we get

T ⋆a,λTa,λf(x) = λn−1

∫
x̃∈Rn

∫
ω∈Σa,1

eiλ(x−x̃)·ω dΣa,1(ω)f(x̃) dx̃

= λ−1

∫
x̃∈Rn

∫
ω∈Σa,1

ei(λx−x̃)·ω dΣa,1(ω)f

(
x̃

λ

)
dx̃, x ∈ Rn.

We thus obtain (
T ⋆a,λTa,λf

)
(x) = λ−1

(
T ⋆a,1Ta,1

(
f
( ·
λ

)))
(λx), x ∈ Rn.

From this identity, a simple scaling argument shows that for all a ∈ [X0, X1] and all λ > 0,∥∥T ⋆a,λTa,λ∥∥L (L2(n+1)/(n+3)(Rn),L2(n+1)/(n−1)(Rn))
⩽ λ(n−1)/(n+1)

∥∥T ⋆a,1Ta,1∥∥L (L2(n+1)/(n+3)(Rn),L2(n+1)/(n−1)(Rn))
.

Since T ⋆a,1Ta,1 = T ⋆aTa is the operator defined in (5.5), and since Ta belongs to L (L2(n+1)/(n+3)(Rn), L2(Rn))
from Theorem 5.2, we deduce that there exists C > 0 such that for all a ∈ [X0, X1], for all λ > 0,∥∥T ⋆a,λTa,λ∥∥L (L2(n+1)/(n+3)(Rn),L2(n+1)/(n−1)(Rn))

⩽ Cλ(n−1)/(n+1),

∥Ta,λ∥L (L2(n+1)/(n+3)(Rn),L2(Σa,λ))
=
∥∥T ⋆a,λ∥∥L (L2(Σa,λ),L2(n+1)/(n−1)(Rn))

⩽ Cλ(n−1)/(2(n+1)).

The second step then consists on rewriting the operator Ka,k as follows:

Ka,k =

∫
λ>0

T ⋆a,λMa,k(λ,·)Ta,λ dλ,

where Ma,k(λ,·) is the operator defined from L2(Σa,λ) to itself as follows: for g ∈ L2(Σa,λ),

Ma,k(λ,·)g(ξ) = k

(
λ,

ξ

ψ(a, ξ)

)
g(ξ), ξ ∈ Σa,λ.

Accordingly, we have

∥Ka,k∥L (L2(n+1)/(n+3)(Rn),L2(n+1)/(n−1)(Rn))

⩽
∫
λ>0

∥∥T ⋆a,λMa,k(λ,·)Ta,λ
∥∥

L (L2(n+1)/(n+3)(Rn),L2(n+1)/(n−1)(Rn))
dλ

⩽
∫
λ>0

∥∥T ⋆a,λ∥∥L (L2(Σa,λ),L2(n+1)/(n−1)(Rn))

∥∥Ma,k(λ,·)
∥∥

L (L2(Σa,λ))
∥Ta,λ∥L (L2(n+1)/(n+3)(Rn),L2(Σa,λ))

dλ

⩽
∫
λ>0

∥k(λ, ·)∥L∞(Σa)λ
(n−1)/(n+1) dλ,

where we used the straightforward estimates:∥∥Ma,k(λ,·)
∥∥

L (L2(Σa,λ))
⩽ ∥k(λ, ·)∥L∞(Σa).

This concludes the proof of the estimate (5.17).
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Estimates (5.18)–(5.19) are based on the estimate (5.17) and the facts that the map Ka,k satisfies K⋆
a,k =

Ka,k when computing the adjoint with respect to the L2(Rn) scalar product, and K⋆
a,kKa,k = Ka,|k|2 . There-

fore,

∥Ka,k∥2L (L2(n+1)/(n+3)(Rn),L2(Rn)) =
∥∥∥Ka,k

∥∥∥2
L (L2(Rn),L2(n+1)/(n−1)(Rn))

=
∥∥Ka,|k|2

∥∥
L (L2(n+1)/(n+3)(Rn),L2(n+1)/(n−1)(Rn))

=

∫ ∞

0

∥k(λ, ·)∥2L∞(Σa)
λ(n−1)/(n+1) dλ,

which concludes the proof of Proposition 5.3, up to exchanging k and k in the above formulae.

6 Lp-Estimates on the parametrix, and proofs of Theorem 2.1 and
Theorem 2.4

This section is devoted to give estimates on the norms of the various operators appearing in Proposition 3.1,
especially in the spaces L (Lp(Ω), Lq(Ω)) for suitable values of p and q. This will be done in particular by
using the results in Proposition 5.3 with n = d−1 and the Hardy-Littlewood-Sobolev theorem (Theorem A.1).

We will also repeatedly use the straightforward lemma below, whose proof is left to the reader.

Lemma 6.1. 1. For all α ∈ R, and a ∈ [1/2, 2], there exists C > 0 such that for all µ > 1,∫ µ

1

eaλλα dλ ⩽ Ceaµ(1 + µ)α.

2. For all α > −1, there exists C > 0 such that for all µ > 0,

∫ µ

0

eλλα dλ ⩽ Ceµ
µα+1

1 + µ
.

3. For all α > −1, there exists C > 0 such that for all γ > 0,

∫
λ>γ

e−λλαdλ ⩽ Ce−γ(1 + γ)α.

4. For all α < −1, there exists C > 0 such that for all γ > 0,

∫
λ>γ

e−λλαdλ ⩽ Ce−γ
γα+1

1 + γ
.

5. For all α ∈ (−3, 0) and a ∈ [1/2, 2], there exists C > 0 such that for all γ > 0,∫
λ>γ

(λ− γ)2e−aλλα dλ ⩽ C
e−aγ

1 + γ−α
.

In the whole section, we assume the setting of Theorem 2.1. Within this setting, with ψ defined as in (3.2),
there exists c1 > 0 depending only on c0 in (2.4) such that

∀(x1, y1) ∈ [X0, X1]
2, ∀ξ′ ∈ Rd−1,

1

c1
ψ(y1, ξ

′) ⩽ ψ(x1, ξ
′) ⩽ c1ψ(y1, ξ

′). (6.1)

We also recall that in this section, all the constants C depend only on c0 in (2.4) and m∗,M∗ in (2.5).

6.1 Estimates on the operator Kτ,0 in (3.4)–(3.6)

The goal of this section is to estimate the norm of the operator Kτ,0 in (3.4)–(3.6), more precisely:

Proposition 6.2. Let Ω be as in (2.1) with X0 < 0 < X1 and max{|X0|, |X1|} ⩽ 1, and assume that the
coefficients (λj)j∈{1,··· ,d} ∈ Rd satisfy λ1 = 0, (2.4) and (2.5). Then there exist C > 0 and τ0 ⩾ 1 independent
of X0, X1 (and depending only on c0, m∗ and M∗ in (2.4) and (2.5)), such that for all τ ⩾ τ0, for all
f ∈ L2d/(d+2)(Ω),

∥Kτ,0f∥L2d/(d−2)(Ω) + τ3/4+1/(2d)∥Kτ,0f∥L2(Ω) + ∥∂1K̂τ,0f∥L2(Ω1,τ ) + τ−1/4+1/(2d)∥∇′Kτ,0f∥L2(Ω)

⩽ C∥f∥L2d/(d+2)(Ω), (6.2)

and, for all f ∈ L2(Ω),

τ3/4+1/(2d)∥Kτ,0f∥L2d/(d−2)(Ω) + τ3/2∥Kτ,0f∥L2(Ω) + τ∥∂1K̂τ,0f∥L2(Ω1,τ ) + τ1/2∥∇′Kτ,0f∥L2(Ω)

⩽ C∥f∥L2(Ω), (6.3)

with Ω1,τ as in (4.6).
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Remark 6.3. In the above estimates, we point out that the L (L2(Ω), L2d/(d−2)(Ω)) and L (L2d/(d+2)(Ω), L2(Ω))
bounds of the operator Kτ,0 are estimated by a power of the Carleman parameter that depends on d. This fact,
which does not occur for the Hilbertian estimates, has been already observed in several cases, and we refer for
instance to [3, 25, 18, 20].

Proof. In view of the results in Proposition 5.3, we first estimate weighted norms of kτ,0(x1, y1, ·) for x1 and
y1 in [X0, X1] (recall the definition of kτ,0 in (3.6)). We also identify ξ′ ∈ Rd−1 with pairs (λ, ω′) ∈ R+ ×Σx1

,
where Σx1

= {ω′ ∈ Rd−1, ψ(x1, ω
′) = 1}, through the formula ξ′ = λω′, or equivalently λ = ψ(x1, ξ

′) and
ω′ = ξ′/ψ(x1, ξ

′). With a slight abuse of notations, we denote kτ,0 similarly whether it is written in terms of
ξ′ ∈ Rd−1 or in terms of (λ, ω′) ∈ R+ × Σx1 , that is

kτ,0(x1, y1, λ, ω
′) = kτ,0(x1, y1, λω

′).

We begin with the following lemma:

Lemma 6.4. There exist constants C > 0 and C1 > 0 independent of X0, X1 (and depending only on c0, m∗
and M∗ in (2.4) and (2.5)), such that for all x1 and y1 in [X0, X1], for all τ ⩾ 1, and λ > 0,

� If λ ⩽ τ , then the kernel kτ,0 defined in (3.6) satisfies

∥kτ,0(x1, y1, λ, ·)∥L∞(Σx1
) ⩽

 C|y1 − x1|e−τ |y1−x1|, if λ|y1 − x1| ⩽ 1,

C

λ
e−(τ−λ)|y1−x1|−λ(y1−x1)

2/C1 , if λ|y1 − x1| ⩾ 1.
(6.4)

� If λ ⩾ τ , then kτ,0 satisfies

∥kτ,0(x1, y1, λ, ·)∥L∞(Σx1
) ⩽


C

λ
e−(λ−τ)|x1−y1|−λ(x1−y1)2/C1 , if y1 < x1,

C

λ
e−(λ/C+τ)|y1−x1|, if y1 > x1.

(6.5)

Setting, for x1 and y1 in [X0, X1], ξ
′ ∈ Rd−1,

kτ,0,∂1(x1, y1, ξ
′) = −1x1<y1e

−τ(y1−x1)−
∫ y1
x1

ψ(ỹ1,ξ
′) dỹ1

− 1ψ(x1,ξ′)>τ (τ − ψ(x1, ξ
′))

∫ min{x1,y1}

X0

e
−τ(y1−x1)−

∫ x1
x̃1

ψ(ỹ1,ξ
′) dỹ1−

∫ y1
x̃1

ψ(ỹ1,ξ
′) dỹ1dx̃1

+ 1ψ(x1,ξ′)⩽τ1x1<y1(τ − ψ(x1, ξ
′))

∫ y1

x1

e
−τ(y1−x1)+

∫ x̃1
x1

ψ(ỹ1,ξ
′) dỹ1−

∫ y1
x̃1

ψ(ỹ1,ξ
′) dỹ1dx̃1,

kτ,0,∂1 satisfies the following bounds:

� If λ ⩽ τ ,

∥kτ,0,∂1(x1, y1, λ, ·)∥L∞(Σx1
) ⩽ Ce−(λ/C+τ)|y1−x1| + (τ − λ)∥kτ,0(x1, y1, λ, ·)∥L∞(Σx1

). (6.6)

� If λ > τ ,

∥kτ,0,∂1(x1, y1, λ, ·)∥L∞(Σx1
) ⩽


C

λ
(λ− τ)e−(λ−τ)|x1−y1|−λ(x1−y1)2/C1 , if y1 < x1,

Ce−(λ/C+τ)(y1−x1), if y1 > x1.
(6.7)

Remark 6.5. The kernel kτ,0,∂1 corresponds to the kernel of ∂1Kτ,0 in the following sense: for all f ∈
L2((X0, X1);L

2(Rd−1)), and all (x1, ξ
′) ∈ Ω1,τ ,

∂1K̂τ,0f(x1, ξ
′) =

∫
y1∈(X0,X1)

kτ,0,∂1(x1, y1, ξ
′)f̂(y1, ξ

′) dy1. (6.8)
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Proof of Lemma 6.4. Let us first prove (6.4) corresponding to λ ⩽ τ . Let ξ′ ∈ Rd−1 and x1 ∈ [X0, X1] be such
that λ = ψ(x1, ξ

′) ⩽ τ . We then have to estimate, for y1 > x1,∫ y1

x1

e
−τ(y1−x1)+

∫ x̃1
x1

ψ(ỹ1,ξ
′) dỹ1−

∫ y1
x̃1

ψ(ỹ1,ξ
′) dỹ1 dx̃1.

For y1 ∈ [x1, X1], we introduce the map

ρ(x1, x̃1, y1, ξ
′) =

∫ x̃1

x1

ψ(ỹ1, ξ
′) dỹ1 −

∫ y1

x̃1

ψ(ỹ1, ξ
′) dỹ1,

which clearly satisfies ρ(x1, y1, y1, ξ
′) = −ρ(x1, x1, y1, ξ′) ⩾ |y1 − x1|λ/c1, and ∂x̃1

ρ(x1, x̃1, y1, ξ
′) = 2ψ(x̃1, ξ

′)
and ∂2x̃1

ρ(x1, x̃1, y1, ξ
′) = 2∂1ψ(x̃1, ξ

′) < 0 by (2.5). Therefore, by concavity in x̃1, for x1 < y1 and x̃1 ∈ [x1, y1],

ρ(x1, x̃1, y1, ξ
′) ⩽ ρ(x1, y1, y1, ξ

′)− 2ψ(y1, ξ
′)|y1 − x̃1| ⩽

∫ y1

x1

ψ(ỹ1, ξ
′) dỹ1 −

2

c1
λ|y1 − x̃1|,

where the last estimate follows from (6.1). Hence we obtain∣∣∣∣∫ y1

x1

e
−τ(y1−x1)+

∫ x̃1
x1

ψ(ỹ1,ξ
′) dỹ1−

∫ y1
x̃1

ψ(ỹ1,ξ
′) dỹ1 dx̃1

∣∣∣∣ ⩽ e−τ(y1−x1)

∫ y1

x1

e
∫ y1
x1

ψ(ỹ1,ξ
′) dỹ1−2λ|y1−x̃1|/c1 dx̃1

⩽ e
−τ(y1−x1)+

∫ y1
x1

ψ(ỹ1,ξ
′) dỹ1 min

{
|y1 − x1|,

c1
2λ

}
.

We then use that the function ỹ1 7→ ψ(ỹ1, ξ
′) is concave, so that for x1 < ỹ1, we have ψ(ỹ1, ξ

′) ⩽ ψ(x1, ξ
′) +

∂1ψ(x1, ξ
′)(ỹ1−x1). From (5.3) and (2.5), there exists a constant c2 > 0 depending only on c0, m∗ andM∗ such

that ∂1ψ(x1, ξ
′) ⩽ −c2ψ(x1, ξ′) = −c2λ. Therefore, for y1 > x1,

∫ y1
x1
ψ(ỹ1, ξ

′) dỹ1 ⩽ (y1 −x1)λ− c2λ(y1 −x1)
2,

and (6.4) follows immediately.
We then prove (6.5) corresponding to λ > τ . Let ξ′ ∈ Rd−1 and x1 ∈ [X0, X1] be such that λ = ψ(x1, ξ

′) >
τ . We then have to estimate, for y1 ∈ [X0, X1], the quantity∫ min{x1,y1}

X0

e
−τ(y1−x1)−

∫ x1
x̃1

ψ(ỹ1,ξ
′) dỹ1−

∫ y1
x̃1

ψ(ỹ1,ξ
′) dỹ1 dx̃1.

As before, one easily checks that the map x̃1 7→ −
∫ x1

x̃1
ψ(ỹ1, ξ

′) dỹ1 −
∫ y1
x̃1
ψ(ỹ1, ξ

′) dỹ1 has derivative 2ψ(x̃1, ξ
′)

and is thus strictly increasing and concave. Therefore, for all x̃1 ∈ [X0,min{x1, y1}],

−
∫ x1

x̃1

ψ(ỹ1, ξ
′) dỹ1 −

∫ y1

x̃1

ψ(ỹ1, ξ
′) dỹ1 ⩽ −

∫ max{x1,y1}

min{x1,y1}
ψ(ỹ1, ξ

′) dỹ1 + 2ψ(min{x1, y1}, ξ′)(x̃1 −min{x1, y1})

⩽ −
∫ max{x1,y1}

min{x1,y1}
ψ(ỹ1, ξ

′) dỹ1 −
2

c1
λ(min{x1, y1} − x̃1).

Accordingly,∫ min{x1,y1}

X0

e
−τ(y1−x1)−

∫ x1
x̃1

ψ(ỹ1,ξ
′) dỹ1−

∫ y1
x̃1

ψ(ỹ1,ξ
′) dỹ1 dx̃1

⩽ e
−τ(y1−x1)−

∫ max{x1,y1}
min{x1,y1} ψ(ỹ1,ξ

′) dỹ1 min
{ c1
2λ
, |min{x1, y1} −X0|

}
.

If y1 > x1, we simply use

−
∫ max{x1,y1}

min{x1,y1}
ψ(ỹ1, ξ

′) dỹ1 ⩽ − 1

c1
(y1 − x1)λ.

If y1 < x1, we use that ψ is concave decreasing and thus for all ỹ1 ∈ [y1, x1], ψ(ỹ1, ξ
′) ⩾ ψ(x1, ξ

′) + (ỹ1 −
x1)∂1ψ(y1, ξ

′). But there exists a constant c3 > 0 depending on c0, m∗ and M∗ such that ∂1ψ(y1, ξ
′) ⩽

−ψ(x1, ξ′)/c3, so that we easily get

−
∫ max{x1,y1}

min{x1,y1}
ψ(ỹ1, ξ

′) dỹ1 ⩽ −(y1 − x1)λ− 1

c3
(y1 − x1)

2λ.

23



in this case. Combining the last three estimates immediately yields (6.5).
The proof of estimates (6.6)–(6.7) follows from the fact that, for y1 > x1,

∥e−τ(y1−x1)−
∫ y1
x1

ψ(ỹ1,ξ
′) dỹ1∥L∞

ω′ (Σx1
) ⩽ e−(τ+λ/c1)(y1−x1),

and from the estimates already proved above. Details are left to the reader.

Using the bounds in Lemma 6.4, we prove the following lemma:

Lemma 6.6. There exists a constant C > 0 independent of X0, X1 (and depending only on c0, m∗ and M∗
in (2.4) and (2.5)), such that for all x1 and y1 in [X0, X1], for all τ ⩾ 1,∫

λ>0

∥kτ,0(x1, y1, λ, ·)∥L∞(Σx1
) λ

1−2/d dλ ⩽
C

|x1 − y1|1−2/d
, (6.9)(∫

λ>0

∥kτ,0(x1, y1, λ, ·)∥2L∞(Σx1 )
λ1−2/d dλ

)1/2

⩽ Ck̃τ,0(x1 − y1), (6.10)

with k̃τ,0 ∈ Ld/(d−1)(R) and ∥k̃τ,0∥Ld/(d−1)(R) ⩽ Cτ−3/4−1/(2d),(∫
λ>0

∥kτ,0,∂1(x1, y1, λ, ·)∥
2
L∞(Σx1

) λ
1−2/d dλ

)1/2

⩽ C
1

|x1 − y1|1−1/d
, (6.11)(∫

λ>0

∥λω′kτ,0(x1, y1, λ, ω
′)∥2L∞

ω′ (Σx1 )
λ1−2/d dλ

)1/2

⩽ C

(
1

|x1 − y1|1−1/d
+ ǩτ,0(x1 − y1)

)
, (6.12)

with ǩτ,0 ∈ Ld/(d−1)(R) and ∥ǩτ,0∥Ld/(d−1)(R) ⩽ Cτ1/4−1/(2d).

Proof of Lemma 6.6. We start by simply noticing that we can always impose that C1 in Lemma 6.4 is large
enough to get for all (x1, y1) ∈ [X0, X1]

2, that |x1 − y1|2/C1 ⩽ |x1 − y1|/4. This can be done by assuming for
instance C1 ⩾ 8 since |X0|, |X1| ⩽ 1. This will make some of the estimates below easier to prove properly. For
convenience, this constant C1 will next be denoted by C, similarly as generic constants which depend only on
the dimension and the parameters c0, m∗ and M∗ in (2.4), and (2.5).

Proof of (6.9). We decompose the integral in the left-hand side of (6.9) in three terms more suitable to
use the results in Lemma 6.4. The first is easily estimated as follows:∫ min{τ,1/|y1−x1|}

0

∥kτ,0(x1, y1, λ, ·)∥L∞(Σx1
) λ

1−2/d dλ ⩽ C

∫ min{τ,1/|y1−x1|}

0

|y1 − x1|e−τ |y1−x1| λ1−2/d dλ

⩽ C|y1 − x1|e−τ |y1−x1| min

{
τ,

1

|y1 − x1|

}2−2/d

⩽ C|y1 − x1|−1+2/de−τ |y1−x1| min {τ |y1 − x1|, 1}2−2/d ⩽ C|y1 − x1|−1+2/d.

Next if 1/|y1 − x1| < τ , that is τ |y1 − x1| > 1, we get∫ τ

1/|y1−x1|
∥kτ,0(x1, y1, λ, ·)∥L∞(Σx1

) λ
1−2/d dλ ⩽ C

∫ τ

1/|y1−x1|
e−(τ−λ)|y1−x1|−λ|y1−x1|2/C1λ−2/d dλ

⩽ Ce−τ |y1−x1|
∫ τ

1/|y1−x1|
eλ|y1−x1|λ−2/d dλ

⩽ C|y1 − x1|−1+2/de−τ |y1−x1|
∫ τ |y1−x1|

1

eλλ−2/d dλ

⩽ C|y1 − x1|−1+2/d 1

(1 + τ |y1 − x1|)2/d
⩽ C|y1 − x1|−1+2/d,

where, from the fourth to the fifth lines, we have used Lemma 6.1 item 1.
Finally, we also have, for y1 > x1,∫

λ>τ

∥kτ,0(x1, y1, λ, ·)∥L∞(Σx1
) λ

1−2/d dλ ⩽ C

∫
λ>τ

e−(λ/C+τ)(y1−x1)λ−2/d dλ

⩽ Ce−τ(y1−x1)

∫
λ>0

e−λ(y1−x1)/Cλ−2/d λ

⩽ Ce−τ(y1−x1)|y1 − x1|−1+2/d ⩽ C|y1 − x1|−1+2/d.
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Accordingly, estimate (6.9) holds for y1 > x1. Then for y1 < x1, it only remains to prove the following
estimate, in which we use Lemma 6.1 item 3:∫

λ>τ

∥kτ,0(x1, y1, λ, ·)∥L∞(Σx1
) λ

1−2/d dλ ⩽ C

∫
λ>τ

e−(λ−τ)(x1−y1)−λ(x1−y1)2/C1λ−2/d dλ

⩽ Ceτ(x1−y1)
∫
λ>τ

e−λ(x1−y1)λ−2/d dλ

⩽ C |x1 − y1|−1+2/d
eτ(x1−y1)

∫
λ>τ(x1−y1)

e−λλ−2/d dλ ⩽ C |x1 − y1|−1+2/d
.

This concludes the proof of (6.9) for y1 < x1 as well.
Proof of (6.10). Of course, the proof of (6.10) is very similar to the one of (6.9). We first have∫ min{τ,1/|y1−x1|}

0

∥kτ,0(x1, y1, λ, ·)∥2L∞(Σx1
) λ

1−2/d dλ ⩽ C

∫ min{τ,1/|y1−x1|}

0

|y1 − x1|2e−2τ |y1−x1| λ1−2/d dλ

⩽ C|y1 − x1|2e−2τ |y1−x1| min

{
τ,

1

|y1 − x1|

}2−2/d

⩽ Cτ−2/d
(
(τ |y1 − x1|)2/de−2τ |y1−x1| min {τ |y1 − x1|, 1}2−2/d

)
.

Next if 1/|y1 − x1| < τ , that is τ |y1 − x1| > 1, using Lemma 6.1 item 1, we have∫ τ

1/|y1−x1|
∥kτ,0(x1, y1, λ, ·)∥2L∞(Σx1 )

λ1−2/d dλ ⩽ C

∫ τ

1/|y1−x1|
e−2(τ−λ)|y1−x1|−2λ(y1−x1)

2/C1λ−1−2/d dλ

⩽ Ce−2τ |y1−x1|
∫ τ

1/|y1−x1|
e2λ(|y1−x1|−(y1−x1)

2/C1)λ−1−2/d dλ

⩽ C|y1 − x1|2/de−2τ |y1−x1|
∫ τ |y1−x1|

1

e2λ(1−|y1−x1|/C1)λ−1−2/d dλ

⩽ C|y1 − x1|2/d
e−τ(y1−x1)

2/C

(1 + τ |y1 − x1|)1+2/d
⩽ Cτ−2/d e−τ(y1−x1)

2/C

(1 + τ |y1 − x1|)
.

Finally, we also have, for y1 > x1,∫
λ>τ

∥kτ,0(x1, y1, λ, ·)∥2L∞(Σx1
) λ

1−2/d dλ ⩽ C

∫
λ>τ

e−2(λ/C+τ)(y1−x1)λ−1−2/d dλ

⩽ Ce−2τ(y1−x1)

∫
λ>τ

e−2λ(y1−x1)/Cλ−1−2/d dλ

⩽ Ce−2τ(y1−x1)

∫
λ>τ

λ−1−2/d dλ ⩽ Ce−2τ(y1−x1)τ−2/d.

On the other hand, for x1 > y1, we have that∫
λ>τ

∥kτ,0(x1, y1, λ, ·)∥2L∞(Σx1 )
λ1−2/d dλ ⩽ C

∫
λ>τ

e−2(λ−τ)(x1−y1)−2λ(x1−y1)2/C1λ−1−2/d dλ

⩽ Ce2τ(x1−y1)
∫
λ>τ

e−2λ((x1−y1)+(x1−y1)2/C1)λ−1−2/d dλ

⩽ Ce2τ(x1−y1)|x1 − y1|2/d
∫
λ>τ |x1−y1|

e−2λ(1+(x1−y1)2/C1)λ−1−2/d dλ,

so that using Lemma 6.1 item 4, for x1 > y1, we obtain∫
λ>τ

∥kτ,0(x1, y1, λ, ·)∥2L∞(Σx1 )
λ1−2/d dλ ⩽ Cτ−2/d e

−2τ(x1−y1)2/C1

1 + τ(x1 − y1)
.
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Therefore, combining the above estimates, we have

(∫
λ>0

∥kτ,0(x1, y1, λ, ·)∥2L∞(Σx1 )
λ1−2/d dλ

)1/2

⩽ Ck̃τ,0(x1 − y1),

where k̃τ,0(z1) = 1|z1|<1/ττ
−1/d + 1|z1|>1/ττ

−1/d

(
(τ |z1|)1/de−τ |z1| +

e−τ |z1|
2/C

(τ |z1|)1/2

)
. (6.13)

Easy computations then yield ∥k̃τ,0∥Ld/(d−1)(R) ⩽ Cτ−3/4−1/(2d) as announced.
Proof of (6.11). We have∫

λ>0

e−2(λ/C+τ)|y1−x1|λ1−2/d dλ ⩽ e−2τ |y1−x1||y1 − x1|−2+2/d ⩽ |y1 − x1|−2+2/d.

We also have, as before,∫ min{τ,1/|y1−x1|}

0

(τ − λ)2|y1 − x1|2e−2τ |y1−x1| λ1−2/d dλ ⩽ τ2
∫ min{τ,1/|y1−x1|}

0

|y1 − x1|2e−2τ |y1−x1| λ1−2/d dλ

⩽ Cτ2|y1 − x1|2e−2τ |y1−x1| min

{
τ,

1

|y1 − x1|

}2−2/d

⩽ C|y1 − x1|2/dτ2e−2τ |y1−x1| min {τ |y1 − x1|, 1}2−2/d

⩽ C|y1 − x1|−2+2/d(τ |y1 − x1|)2e−2τ |y1−x1| min {τ |y1 − x1|, 1}2−2/d ⩽ C|y1 − x1|−2+2/d.

If 1/|y1 − x1| < τ , that is τ |y1 − x1| > 1, we distinguish the cases 1/|y1 − x1| ⩽ τ/2 and 1/|y1 − x1| ⩾ τ/2.
If 1/|y1 − x1| ∈ [τ/2, τ ], we have∫ τ

1/|y1−x1|
(τ − λ)2e−2(τ−λ)|y1−x1|−2λ(y1−x1)

2/C1λ−1−2/d dλ

⩽ Ce−2τ |y1−x1|
∫ τ

τ/2

(τ − λ)2e2λ(|y1−x1|−(y1−x1)
2/C1)λ−1−2/d dλ

⩽ Ce−2τ |y1−x1|τ−1−2/d

∫ τ

τ/2

(τ − λ)2e2λ(|y1−x1|−(y1−x1)
2/C1) dλ

⩽ Ce−2τ |y1−x1| τ
−1−2/de2τ(|y1−x1|−(y1−x1)

2/C1)

|y1 − x1|3

⩽ C
τ−1−2/de−2τ(y1−x1)

2/C1

|y1 − x1|3
⩽ C|y1 − x1|−2+2/d(τ |y1 − x1|)−1−2/de−2τ(y1−x1)

2/C ⩽ C|y1 − x1|−2+2/d.

If 1/|y1 − x1| ⩽ τ/2, we split the integral into two parts,
∫ τ/2
1/|y1−x1| and

∫ τ
τ/2

. The second integral has been

estimated above, and, using Lemma 6.1 item 1, the first one is estimated as follows:∫
λ∈(1/|y1−x1|,τ/2)

(τ − λ)2e−2(τ−λ)|y1−x1|−2λ(y1−x1)
2/Cλ−1−2/d dλ

⩽ e−2τ |y1−x1|τ2
∫ τ/2

1/|y1−x1|
e2λ(|y1−x1|−(y1−x1)

2/C)λ−1−2/ddλ

⩽ Ce−2τ |y1−x1|τ2|y1 − x1|2/d
∫ τ |y1−x1|/2

1

e2λ(1−(y1−x1)/C)λ−1−2/d dλ

⩽ C|y1 − x1|2/dτ2e−τ |y1−x1|(τ |y1 − x1|)−1−2/d

⩽ C|y1 − x1|−2+2/d(τ |y1 − x1|)1−2/de−τ |y1−x1| ⩽ C|y1 − x1|−2+2/d.
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It remains to estimate, for y1 < x1,∫
λ>τ

(λ− τ)2e−2(λ−τ)(x1−y1)−2λ(x1−y1)2/Cλ−1−2/d dλ

⩽ Ce2τ(x1−y1)
∫
λ>τ

(λ− τ)2e−2λ((x1−y1)+(x1−y1)2/C)λ−1−2/d dλ

⩽ Ce2τ(x1−y1)|x1 − y1|−2+2/d

∫
λ>τ |x1−y1|

(λ− τ |x1 − y1|)2e−2λ(1+(x1−y1)/C)λ−1−2/d dλ.

We now use Lemma 6.1 item 5 and obtain for x1 > y1,∫
λ>τ

(λ− τ)2e−2(λ−τ)(x1−y1)−2λ(x1−y1)2/Cλ−1−2/d dλ ⩽
C|x1 − y1|−2+2/de−2τ(x1−y1)2/C

1 + (τ |x1 − y1|)1+2/d
⩽ C|x1 − y1|−2+2/d.

Proof of (6.12). We have∫ min{τ,1/|y1−x1|}

0

∥λω′kτ,0(x1, y1, λ, ω
′)∥2L∞

ω′ (Σx1
) λ

1−2/d dλ ⩽ C

∫ min{τ,1/|y1−x1|}

0

|y1 − x1|2e−2τ(y1−x1) λ3−2/d dλ

⩽ C|y1 − x1|2e−2τ(y1−x1) min

{
τ,

1

|y1 − x1|

}4−2/d

⩽ C|y1 − x1|−2+2/de−2τ(y1−x1) min {τ |y1 − x1|, 1}4−2/d ⩽ C|y1 − x1|−2+2/d.

If 1/|y1 − x1| < τ , that is τ |y1 − x1| > 1, using Lemma 6.1 item 1, we obtain∫ τ

1/|y1−x1|
∥λω′kτ,0(x1, y1, λ, ω

′)∥2L∞
ω′ (Σx1

) λ
1−2/d dλ ⩽ C

∫ τ

1/|y1−x1|
e−2(τ−λ)|y1−x1|−2λ(y1−x1)

2/Cλ1−2/d dλ

⩽ Ce−2τ |y1−x1|
∫ τ

1/|y1−x1|
e2λ(|y1−x1|−(y1−x1)

2/C)λ1−2/d dλ

⩽ C|y1 − x1|−2+2/de−2τ |y1−x1|
∫ τ |y1−x1|

1

e2λ(1−|y1−x1|/C)λ1−2/d dλ

⩽ C|y1 − x1|−2+2/de−τ(y1−x1)
2/C(τ |y1 − x1|)1−2/d

⩽ Cτ1−2/de−τ(y1−x1)
2/C |y1 − x1|−1.

Finally, using Lemma 6.1 item 3, we also have, for y1 > x1,∫
λ>τ

∥λω′kτ,0(x1, y1, λ, ω
′)∥2L∞

ω′ (Σx1
) λ

1−2/d dλ ⩽ C

∫
λ>τ

e−2(λ/C+τ)(y1−x1)λ1−2/d dλ

⩽ Ce−2τ(y1−x1)

∫
λ>τ

e−2λ(y1−x1)/Cλ1−2/d dλ

⩽ Ce−2τ(y1−x1)|y1 − x1|−2+2/d

∫
λ>τ(y1−x1)

e−2λ/Cλ1−2/d dλ

⩽ Ce−2τ(y1−x1)|y1 − x1|−2+2/d(1 + (τ |y1 − x1|))1−2/d ⩽ C|y1 − x1|−2+2/d.

Similarly, for x1 > y1,∫
λ>τ

∥λω′kτ,0(x1, y1, λ, ω
′)∥2L∞

ω′ (Σx1
) λ

1−2/d dλ ⩽ C

∫
λ>τ

e−2(λ−τ)(x1−y1)−2λ(x1−y1)2/Cλ1−2/d dλ

⩽ Ce2τ(x1−y1)
∫
λ>τ

e−2λ((x1−y1)+(x1−y1)2/C)λ1−2/d dλ

⩽ Ce2τ(x1−y1)|x1 − y1|−2+2/d

∫
λ>τ |x1−y1|

e−2λ(1+(x1−y1)/C)λ1−2/d dλ,

so that using Lemma 6.1 item 3, we get, for x1 > y1,∫
λ>τ

∥λω′kτ,0(x1, y1, λ, ·)∥
2

L∞(Σx1
) λ

1−2/d dλ ⩽ C|y1 − x1|−2+2/de−2τ(y1−x1)
2/C(1 + τ |y1 − x1|)1−2/d

⩽ C
(
1|y1−x1|⩽1/τ |y1 − x1|−2+2/d + 1|y1−x1|⩾1/ττ

1−2/d|y1 − x1|−1e−2τ(y1−x1)
2/C
)
.
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Therefore, by combining the above estimates, we have

(∫
λ>0

∥λω′kτ,0(x1, y1, λ, ·)∥
2

L∞(Σx1 )
λ1−2/d dλ

)1/2

⩽ C

(
1

|x1 − y1|1−1/d
+ ǩτ,0(x1 − y1)

)
,

where ǩτ,0(z1) = 1|z1|>1/ττ
1/2−1/de−τz

2
1/C |z1|−1/2.

Easy computations then give ∥ǩτ,0(z1)∥Ld/(d−1)(R) ⩽ Cτ1/4−1/(2d), as announced. This concludes the proof of
Lemma 6.6.

Now we are in position to conclude the proof of Proposition 6.2. First, from Proposition 5.3 with n = d−1,
estimate (6.9) and the one-dimensional Hardy-Littlewood-Sobolev inequality (recall Theorem A.1), we have,
for f ∈ L2d/(d+2)(Ω),

∥Kτ,0f∥L2d/(d−2)(Ω) ⩽
∥∥∥∥Kτ,0f(x1, ·)∥L2d/(d−2)

x′ (Rd−1)

∥∥∥
L

2d/(d−2)
x1

(X0,X1)

⩽

∥∥∥∥∥
∫ X1

X0

(∫
λ

∥kτ,0(x1, y1, λ, ·)∥L∞(Σx1
)λ

1−2/d dλ

)
∥f(y1, ·)∥L2d/(d+2)

y′ (Rd−1)
dy1

∥∥∥∥∥
L

2d/(d−2)
x1

(X0,X1)

⩽ C

∥∥∥∥∥
∫ X1

X0

1

|x1 − y1|1−2/d
∥f(y1, ·)∥L2d/(d+2)

y′ (Rd−1)
dy1

∥∥∥∥∥
L

2d/(d−2)
x1

(X0,X1)

⩽ C

∥∥∥∥∥f(y1, ·)∥L2d/(d+2)

y′ (Rd−1)

∥∥∥∥
L

2d/(d+2)
y1

(X0,X1)

= C ∥f∥L2d/(d+2)(Ω) .

Using the estimate (6.10) in Proposition 5.3, and Young’s inequality, we have, for f ∈ L2d/(d+2)(Ω),

∥Kτ,0f∥L2(Ω) ⩽
∥∥∥∥Kτ,0f(x1, ·)∥L2

x′ (Rd−1)

∥∥∥
L2

x1
(X0,X1)

⩽

∥∥∥∥∥
∫ X1

X0

(∫
λ

∥kτ,0(x1, y1, λ, ·)∥2L∞(Σx1
)λ

1−2/d dλ

)1/2

∥f(y1, ·)∥L2d/(d+2)

y′ (Rd−1)
dy1

∥∥∥∥∥
L2

x1
(X0,X1)

⩽ C

∥∥∥∥∥
∫ X1

X0

k̃τ,0(x1 − y1) ∥f(y1, ·)∥L2d/(d+2)

y′ (Rd−1)
dy1

∥∥∥∥∥
L2

x1
(X0,X1)

⩽ C
∥∥∥k̃τ,0∥∥∥

Ld/(d−1)(R)

∥∥∥∥∥f(y1, ·)∥L2d/(d+2)

y′ (Rd−1)

∥∥∥∥
L

2d/(d+2)
y1

(X0,X1)

⩽ Cτ−3/4−1/(2d) ∥f∥L2d/(d+2)(Ω) .

Similarly, for f ∈ L2(Ω), we get

∥Kτ,0f∥L2d/(d−2)(Ω) ⩽ τ−3/4−1/(2d) ∥f∥L2(Ω) . (6.14)

Using the relation (6.8), the estimate (6.11) in Proposition 5.3, and Hardy-Littlewood-Sobolev theorem
(Theorem A.1), we get, for all f ∈ L2d/(d+2)(Ω),

∥∂1K̂τ,0f∥L2(Ω1,τ ) ⩽ C ∥f∥L2d/(d+2)(Ω) .

Using the estimate (6.12) in Proposition 5.3, Hardy-Littlewood-Sobolev theorem (Theorem A.1) and
Young’s inequality, we get, for all f ∈ L2d/(d+2)(Ω),

∥∇′Kτ,0f∥L2(Ω) ⩽ Cτ1/4−1/(2d) ∥f∥L2d/(d+2)(Ω) .

The above estimates allow to conclude the estimate (6.2).
Estimate (6.3) simply consists in the combination of (6.14), Theorem 4.1, and estimate (4.7).
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6.2 Estimates on the operator Kτ,1

The goal of this section is to estimate the norm of the operator Kτ,1 in (3.4)–(3.7), more precisely:

Proposition 6.7. Let Ω be as in (2.1) with X0 < 0 < X1 and max{|X0|, |X1|} ⩽ 1, and assume that the
coefficients (λj)j∈{1,··· ,d} ∈ Rd satisfy λ1 = 0, (2.4) and (2.5). Then there exist C > 0 and τ0 ⩾ 1 independent
of X0, X1 (and depending only on c0, m∗ and M∗ in (2.4) and (2.5)), such that for all τ ⩾ τ0 and for all
f ∈ L2(Ω),

τ−1/4+1/(2d)∥Kτ,1f∥L2d/(d−2)(Ω) + τ1/2∥Kτ,1f∥L2(Ω) + ∥∂1K̂τ,1f∥L2(Ω1,τ ) + τ−1/2∥∇′Kτ,1f∥L2(Ω) ⩽ C∥f∥L2(Ω).

Proof. We use the same notations as in the proof of the previous proposition. From the definition of kτ,1 in
(3.7), adapting the proof of Lemma 6.6 to kτ,1, we can easily deduce the following result, whose proof is left
to the reader:

Lemma 6.8. There exists a constant C > 0 independent of X0, X1 (and depending only on c0, m∗ and M∗
in (2.4) and (2.5)), such that for all x1 and y1 in [X0, X1], for all τ ⩾ 1, and λ > 0,

∥kτ,1(x1, y1, λ, ·)∥L∞(Σx1
) ⩽ Ce−|τ−λ||y1−x1|−λ(y1−x1)

2/C + C(τ + λ)∥kτ,0(x1, y1, λ, ·)∥L∞(Σx1
). (6.15)

We shall then prove the following lemma:

Lemma 6.9. There exists a constant C > 0 independent of X0, X1 (and depending only on c0, m∗ and M∗
in (2.4) and (2.5)), such that for all x1 and y1 in [X0, X1], for all τ ⩾ 1,(∫

λ>0

∥kτ,1(x1, y1, λ, ·)∥2L∞(Σx1
) λ

1−2/d dλ

)1/2

⩽ C
1

|x1 − y1|1−1/d
+ k̃τ,1(x1 − y1), (6.16)

with k̃τ,1 ∈ Ld/(d−1)(R) and ∥k̃τ,1∥Ld/(d−1)(R) ⩽ Cτ1/4−1/(2d).

Proof. Using Lemma 6.1 item 2, we get∫ τ

0

e−2(τ−λ)|y1−x1|−2λ(y1−x1)
2/Cλ1−2/d dλ ⩽ Ce−2τ |y1−x1|

∫ τ

0

e2λ(|y1−x1|−(y1−x1)
2/C)λ1−2/d dλ

⩽ C|y1 − x1|−2+2/de−2τ |y1−x1|
∫ τ |y1−x1|

0

e2λ(1−|y1−x1|/C)λ1−2/d dλ

⩽ C|y1 − x1|−2+2/de−2τ(y1−x1)
2/C (τ |y1 − x1|)2−2/d

1 + τ |y1 − x1|
⩽ Cτ1−2/d|y1 − x1|−1e−2τ(y1−x1)

2/C .

Similarly, using Lemma 6.1 item 3, we get∫ ∞

τ

e−2(λ−τ)|y1−x1|−2λ(y1−x1)
2/Cλ1−2/d dλ ⩽ Ce2τ |y1−x1|

∫ ∞

τ

e−2λ(|y1−x1|+(y1−x1)
2/C)λ1−2/d dλ

⩽ C|y1 − x1|−2+2/de−2τ |y1−x1|
∫ ∞

τ |y1−x1|
e−2λ(1+|y1−x1|/C)λ1−2/d dλ

⩽ C|y1 − x1|−2+2/de−2τ(y1−x1)
2/C(1 + τ |y1 − x1|)1−2/d

⩽ C
(
1|y1−x1|⩽1/τ |y1 − x1|−2+2/d + 1|y1−x1|⩾1/ττ

1−2/d|y1 − x1|−1e−2τ(y1−x1)
2/C
)
.

Now, from (6.10), (6.12), (6.15) and the explicit formula of k̃τ,0 in (6.13), we get(∫
λ>0

(τ + λ)2∥kτ,0(x1, y1, λ)∥2 λ1−2/ddλ

)1/2

⩽ C

(
1

|x1 − y1|1−1/d
+ τ k̃τ,0(x1 − y1) + ǩτ,0(x1 − y1)

)
.

We then easily obtain (6.16).

We now conclude the proof of Proposition 6.7. As in the proof of Proposition 6.2, the estimate (6.16) easily
implies that there exists C > 0 such that for all τ ⩾ 1 and for all f ∈ L2(Ω),

τ−1/4+1/(2d)∥Kτ,1f∥L2d/(d−2)(Ω) ⩽ C∥f∥L2(Ω).

The estimates on Kτ,1 and ∇′Kτ,1 as operators from L2(Ω) to L2(Ω), and on ∂1K̂τ,1 from L2(Ω) to L2(Ω1,τ )
can then be deduced immediately from Theorem 4.1 and (4.7).
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6.3 Estimates on the operator Kτ,j for j ⩾ 2

The goal of this section is to estimate the norm of the operator Kτ,j in (3.4)–(3.8) for j ⩾ 2, more precisely:

Proposition 6.10. Let Ω be as in (2.1) with X0 < 0 < X1 and max{|X0|, |X1|} ⩽ 1, and assume that the
coefficients (λj)j∈{1,··· ,d} ∈ Rd satisfy λ1 = 0, (2.4) and (2.5). Then there exist C > 0 and τ0 ⩾ 1 independent
of X0, X1 (and depending only on c0, m∗ and M∗ in (2.4) and (2.5)), such that for all j ∈ {2, · · · , d}, for all
τ ⩾ τ0 and for all f ∈ L2(Ω),

τ−1/4+1/(2d)∥Kτ,jf∥L2d/(d−2)(Ω) + τ1/2∥Kτ,jf∥L2(Ω) + ∥∂1K̂τ,jf∥L2(Ω1,τ ) + τ−1/2∥∇′Kτ,jf∥L2(Ω) ⩽ C∥f∥L2(Ω).

Proof. We start by noticing that there exists a constant C > 0 such that for all j ∈ {2, · · · , d}, for all x1 and
y1 in [X0, X1], for all τ ⩾ 1, and λ > 0,

∥kτ,j(x1, y1, λ, ·)∥L∞(Σx1 )
⩽ Cλ∥kτ,0(x1, y1, λ, ·)∥L∞(Σx1 )

.

From (6.12), there exists a constant C > 0 such that for all x1 and y1 in [X0, X1], for all τ ⩾ 1, and for all
j ∈ {2, · · · , d},(∫

λ>0

∥kτ,j(x1, y1, λ, ·)∥2L∞(Σx1
) λ

1−2/d dλ

)1/2

⩽ C
1

|x1 − y1|1−1/d
+ ǩτ,0(x1 − y1),

with ǩτ,0 ∈ Ld/(d−1)(R) and ∥ǩτ,1∥Ld/(d−1)(R) ⩽ Cτ1/4−1/(2d).

Accordingly, there exists C > 0, such that for all j ∈ {2, · · · , d}, for all τ ⩾ 1 and for all f ∈ L2(Ω),

τ−1/4+1/(2d)∥Kτ,jf∥L2d/(d−2)(Ω) ⩽ C∥f∥L2(Ω).

We then conclude Proposition 6.10 by combining this estimate with the ones in Theorem 4.1 and (4.7).

6.4 Estimates on the operator Gτ in (3.9)–(3.10)

Proposition 6.11. Let Ω be as in (2.1) with X0 < 0 < X1 and max{|X0|, |X1|} ⩽ 1, and assume that the
coefficients (λj)j∈{1,··· ,d} ∈ Rd satisfy λ1 = 0, (2.4) and (2.5). Then there exists C > 0 independent of X0, X1

(and depending only on c0, m∗ and M∗ in (2.4) and (2.5)), such that for all τ ⩾ 1, for all g ∈ H1/2(Rd−1),

τ3/4∥Gτ (g)∥L2(Ω) + ∥∂̂1Gτ (g)∥L2(Ω1,τ ) + τ−1/4∥∇′Gτ (g)∥L2(Ω) + ∥Gτg∥L2d/(d−2)(Ω) ⩽ C∥g∥H1/2(Rd−1). (6.17)

Proof. Note that all the terms in (6.17) involving Hilbertians norms have already been estimated in Theorem
4.4, so only the estimate on Gτ in the L (H1/2(Rd−1), L2d/(d−2)(Ω))-norm remains to prove.

For g ∈ H1/2(Rd−1), we introduce g0 ∈ L2(Rd−1) so that ĝ0(ξ
′) = |ξ′|1/2ĝ(ξ′), and we notice that Gτ (g) =

Gτ,0(g0), where Gτ,0 is given as follows:

Ĝτ,0g0(x1, ξ
′) = gτ,0(x1, ξ

′)ĝ0(ξ
′), (x1, ξ

′) ∈ [X0, X1]× Rd−1,

with gτ,0(x1, ξ
′) = gτ (x1, ξ

′)/|ξ′|1/2, and gτ as in (3.10). It is then clear that the L (H1/2(Rd−1), L2d/(d−2)(Ω))-
norm of Gτ coincides with the L (L2(Rd−1), L2d/(d−2)(Ω))-norm of Gτ,0.

To estimate the L (L2(Rd−1), L2d/(d−2)(Ω))-norm of Gτ,0, we compute G∗
τ,0, where the adjoint is given

with respect to the L2(Ω) scalar product: For f ∈ L2(Ω),

Ĝ⋆τ,0f(ξ
′) =

∫
x1∈[X0,X1]

gτ,0(x1, ξ
′)f̂(x1, ξ

′) dx1, ξ′ ∈ Rd−1.

Accordingly, for f ∈ L2(Ω),

̂Gτ,0G⋆τ,0f(x1, ξ
′) =

∫
y1∈[X0,X1]

gτ,0(x1, ξ
′)gτ,0(y1, ξ

′)f̂(y1, ξ
′) dy1, (x1, ξ

′) ∈ Ω.

Our next goal is to check that the operator Gτ,0G
⋆
τ,0 actually belongs to L (L2d/(d+2)(Ω), L2d/(d−2)(Ω)).
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In order to do that, as previously, we first check that there exists a constant C such that for all x1 ∈ [X0, X1],
for all λ ⩾ 0,

∥gτ,0(x1, λ, ·)∥L∞(Σx1 )
⩽ 1λ>τ

C

λ1/2
e−(λ−τ)(x1−X0)−λ(x1−X0)

2/C . (6.18)

Consequently, for x1 ∈ [X0, X1] and y1 ∈ [X0, X1],

∥Gτ,0G⋆τ,0f(x1, ·)∥L2d/(d−2)(Rd−1)

⩽
∫
y1∈[X0,X1]

∫ ∞

τ

∥gτ,0(x1, λ, ·)∥L∞(Σx1
) ∥gτ,0(y1, λ, ·)∥L∞(Σx1

) λ
1−2/ddλ∥f(y1, ·)∥L2d/(d+2)(Rd−1) dy1

⩽
∫
y1∈[X0,X1]

∫ ∞

τ

e−(λ−τ)((x1−X0)+(y1−X0))−λ((x1−X0)
2+(y1−X0)

2)/Cλ−2/ddλ∥f(y1, ·)∥L2d/(d+2)(Rd−1) dy1

⩽
∫
y1∈[X0,X1]

((x1 −X0) + (y1 −X0))
−1+2/d e−τ((x1−X0)

2+(y1−X0)
2)/C

1 + (τ(x1 −X0 + y1 −X0))2/d
∥f(y1, ·)∥L2d/(d+2)(Rd−1) dy1,

where we have used Lemma 6.1 item 3. With straightforward bounds, we thus get

∥Gτ,0G⋆τ,0f(x1, ·)∥L2d/(d−2)(Rd−1) ⩽
∫
y1∈[X0,X1]

(y1 − x1)
−1+2/d ∥f(y1, ·)∥L2d/(d+2(Rd−1) dy1,

and then Hardy Littlewood Sobolev theorem (Theorem A.1) implies that

∥Gτ,0G⋆τ,0f∥L2d/(d−2)(Ω) ⩽ C∥f∥L2d/(d+2)(Ω).

It follows that the L (L2(Rd−1), L2d/(d−2)(Ω))-norm of Gτ,0 is bounded by a constant independent of τ as
announced, and thus this is also the case for the L (H1/2(Rd−1), L2d/(d−2)(Ω))-norm of Gτ .

Remark 6.12. One may wonder why the above proof does not rely on the estimate (5.19) directly. This is
due to the fact that it would correspond to a limit case. Indeed, from the estimate (6.18) and Proposition 5.3,
for x1 ∈ [X0, X1],

∥Gτ,0g0(x1, ·)∥L2d/(d−2)(Rd−1) ⩽ C∥g0∥L2(Rd−1)

√∫ ∞

τ

∥gτ,0(x1, λ, ·)∥2L∞(Σx1 )
λ1−2/d dλ

⩽ C∥g0∥L2(Rd−1)

√∫ ∞

τ

e−2(λ−τ)(x1−X0)−2λ(x1−X0)2/Cλ−2/d dλ

⩽ C∥g0∥L2(Rd−1)|x1 −X0|−(d−2)/(2d) e−τ(x1−X0)
2/C

1 + (τ(x1 −X0))1/d
,

where we used item 3 in Lemma 6.1. But the function

x1 7→ |x1 −X0|−(d−2)/(2d) e−τ(x1−X0)
2/C

1 + (τ(x1 −X0))1/d

does not belong to L2d/(d−2)(X0, X1), and so we cannot conclude directly that Gτ,0g0 belongs to L2d/(d−2)(Ω).

6.5 Estimates on the operator Rτ in (3.5)

For f ∈ H1(Ω), using that Rτ (f) = Kτ,0(g) with ĝ(x1, ξ
′) = ∂1ψ(x1, ξ

′)f̂(x1, ξ
′), and thus with ∥g∥L2(Ω) ⩽

C∥∇′f∥L2(Ω), we immediately deduce the following result from (6.3):

Proposition 6.13. Let Ω be as in (2.1) with X0 < 0 < X1 and max{|X0|, |X1|} ⩽ 1, and assume that the
coefficients (λj)j∈{1,··· ,d} ∈ Rd satisfy λ1 = 0, (2.4) and (2.5). Then there exist C > 0 and τ0 ⩾ 1 independent
of X0, X1 (and depending only on c0, m∗ and M∗ in (2.4) and (2.5)), such that for all τ ⩾ τ0, for all
f ∈ H1(Ω),

τ3/4+1/(2d)∥Rτf∥L2d/(d−2)(Ω) + τ3/2∥Rτf∥L2(Ω) + τ∥∂1R̂τf∥L2(Ω1,τ ) + τ1/2∥∇′Rτ,0f∥L2(Ω) ⩽ C∥∇′f∥L2(Ω).
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6.6 Proofs of Theorem 2.4 and Theorem 2.1

Within the setting of Theorem 2.4, we use Proposition 3.1 to write the solution w of (2.8) satisfying (∂1w −
F1)(X1, ·) = 0 in Rd−1 under the form (3.3). Since w ∈ H1(Ω), using the various estimates in Propositions
6.2, 6.7, 6.10, 6.11 and 6.13, we obtain, on one hand,

τ3/2∥w∥L2(Ω) + τ3/4∥∂1w∥L2(Ω) + τ1/2∥∇′w∥L2(Ω) ⩽ C
(
∥f2∥L2(Ω) + τ3/4−1/(2d)∥f2∗′∥L2d/(d+2)(Ω)

+τ∥F∥L2(Ω) + τ3/4∥g∥H1/2({X0}×Rd−1) + ∥∇′w∥L2(Ω)

)
, (6.19)

and, on the other hand,

τ3/4+1/(2d)∥w∥L2d/(d−2)(Ω) ⩽ C
(
∥f2∥L2(Ω) + τ3/4+1/(2d)∥f2∗′∥L2d/(d+2)(Ω)

+τ∥F∥L2(Ω) + τ3/4+1/(2d)∥g∥H1/2({X0}×Rd−1) + ∥∇′w∥L2(Ω)

)
. (6.20)

We then simply take τ ⩾ τ0 with τ0 ⩾ 1 large enough in order to absorb the last term in the right hand side
of (6.19) by τ1/2∥∇′w∥L2(Ω), and we get

τ3/2∥w∥L2(Ω) + τ3/4∥∂1w∥L2(Ω) + τ1/2∥∇′w∥L2(Ω)

⩽ C
(
∥f2∥L2(Ω) + τ3/4−1/(2d)∥f2∗′∥L2d/(d+2)(Ω) + τ∥F∥L2(Ω) + τ3/4∥g∥H1/2({X0}×Rd−1)

)
, (6.21)

that is estimate (2.9).
Therefore, using (6.21), the last term in (6.20) can be removed, thus yielding (2.10).
In order to prove Theorem 2.1, we simply use the correspondence w(x) = eτx1v(x) for x ∈ Ω. This proves

(2.6) and (2.7) for τ ⩾ τ0. We then deduce (2.6) and (2.7) for any τ ⩾ 1 by changing the constant if necessary
through straightforward bounds on x1 7→ exp(τx1) for τ ∈ [1, τ0].

7 General geometrical setting: Proof of Theorem 1.1

Here, we provide a proof of Theorem 1.1 using Fourier techniques as we did earlier, following the approach
developed in [5], and adapted to the case of source terms inH−1(Ω) and in L2d/(d+2)(Ω). This approach is based
on a localization argument and a gluing argument, as it is usually done for Carleman estimates. The originality
here is that we will localize the functions in balls of size τ−1/3, that is depending on the Carleman parameter
τ . Doing that choice allows to somehow approximate the weight function φ by its quadratic approximation,
and to reduce the problem through a suitable change of variables to the case of a strip with linear coefficients
as in Theorem 2.4 (see Lemma 7.1 and its proof).

For τ ⩾ 1, we introduce

w = eτφu, f̃2 = eτφ(f2 − τ∇φ · F ), f̃2∗′ = eτφf2∗′ , F̃ = eτφF, g̃ = g,

so that the function u solves (1.4) if and only if w solves{
∆w − 2τ∇φ · ∇w + τ2|∇φ|2w − τ∆φw = f̃2 + f̃2∗′ + div (F̃ ), in Ω,
w = g̃ on ∂Ω.

(7.1)

7.1 Local estimates

Our first step is to introduce a local version of (7.1). Namely, for x0 ∈ Ω \ ω, we introduce ηx0
(x) a cut-off

function, which will be made more precise in (7.5), and set

wx0
(x) = ηx0

(x)w(x), x ∈ Ω,

which solves {
∆wx0

− 2τ∇φ · ∇wx0
+ τ2|∇φ|2wx0

= f2,x0
+ f2∗′,x0

+ div (Fx0
), in Ω,

wx0 = g̃x0 on ∂Ω,
(7.2)
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where

f2,x0 = ηx0 f̃2 −∇ηx0 · F̃ + τ∆φwx0 + 2∇ηx0 · ∇w +∆ηx0w − 2τ∇φ · ∇ηx0w,

f2∗′,x0 = ηx0 f̃2∗′ , Fx0 = ηx0 F̃ , gx0 = ηx0 g̃.

We claim that, provided the localization is strong enough, we can get a local Carleman estimate:

Lemma 7.1. There exist constants C > 0 and τ0 ⩾ 1 (depending only on α, β, ∥φ∥C3(Ω)) such that for all

τ ⩾ τ0, for all x0 ∈ Ω \ ω, and for all

f2,x0
∈ L2(Ω), f2∗′,x0

∈ L2d/(d+2)(Ω), Fx0
∈ L2(Ω;Cd), and gx0

∈ H1/2(∂Ω),

and wx0 satisfying (7.2) and supported in B(x0, τ
−1/3) ∩ Ω, we have

τ3/2∥wx0
∥L2(Ω) + τ1/2∥∇wx0

∥L2(Ω) + τ3/4−1/(2d)∥wx0
∥L2d/(d−2)(Ω)

⩽ C
(
∥f2,x0

∥L2(Ω) + τ3/4−1/(2d)∥f2∗′,x0
∥L2d/(d+2)(Ω) + τ∥Fx0

∥L2(Ω) + τ3/4∥gx0
∥H1/2(∂Ω)

)
, (7.3)

and

τ3/4+1/(2d)∥wx0
∥L2d/(d−2)(Ω) + τ3/2∥wx0

∥L2(Ω) + τ1/2∥∇wx0
∥L2(Ω)

⩽ C
(
∥f2,x0

∥L2(Ω) + τ3/4+1/(2d)∥f2∗′,x0
∥L2d/(d+2)(Ω) + τ∥Fx0

∥L2(Ω) + τ3/4+1/(2d)∥gx0
∥H1/2(∂Ω)

)
. (7.4)

The proof of Lemma 7.1 is postponed to the next section, and will be based on a suitable change of variables
and the Carleman estimate in Theorem 2.4.

In the following, we will thus choose the localization as follows:

ηx0(x) = η(τ1/3(x− x0)), x ∈ Rd, (7.5)

where η is a non-negative smooth radial function (in C∞
c (Rd)) such that η(ρ) = 1 for |ρ| ⩽ 1/2 and vanishing

outside the unit ball, so that Lemma 7.1 applies to wx0 , and the estimates (7.3) and (7.4) hold uniformly with
respect to x0 ∈ Ω \ ω.

It thus remains to prove Lemma 7.1, which is done in Section 7.2, and to show how to glue the estimates
in Lemma 7.1 to conclude Theorem 1.1, which is explained in Section 7.3.

7.2 Proof of Lemma 7.1: A suitable change of coordinates

The proof of Lemma 7.1 mainly reduces to a suitable change of variables allowing to link the Carleman
estimates (7.3) and (7.4) in small balls around x0 with the Carleman estimates (2.9)-(2.10) in the strip proved
in Theorem 2.4.

We let x0 ∈ Ω \ ω, and we introduce L1 ∈ Rd and A1 ∈ Rd×d as follows:

L1 = ∇φ(x0) ∈ Rd, A1 = Hessφ(x0) ∈ Rd×d.

The bilinear form
ξ ∈ Rd 7→ (Hessφ(x0))ξ · ξ

is symmetric on Rd and on Span {L1}⊥. Accordingly, there exists a family of orthogonal vectors (Lj)j∈{2,··· ,d}
of Span {L1}⊥ which diagonalizes this form, that we normalize so that for all j ∈ {2, · · · , d}, |Lj | = |L1|.
Since the family (Lj)j∈{2,··· ,d} of Span {L1}⊥ diagonalizes the form ξ 7→ (Hessφ(x0))ξ · ξ in Span {L1}⊥, for
all j ∈ {2, · · · , d}, there exist αj and µj in R such that

(Hessφ(x0))Lj = µjLj + αjL1, j ∈ {2, · · · , d}.

Note that by symmetry of Hessφ(x0), we then necessarily have

(Hessφ(x0))L1 = µ1L1 +
∑
k⩾2

αkLk,
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where

µ1 =
1

|L1|2
(Hessφ(x0))L1 · L1 =

1

|∇φ(x0)|2
(Hessφ(x0))∇φ(x0) · ∇φ(x0).

For j ∈ {2, · · · , d}, we then introduce the self-adjoint matrix Aj ∈ Rd×d defined by
AjL1 = −αjL1 − µjLj ,
AjLk = αkLj − αjLk, if k ∈ {2, · · · , d} \ {j},
AjLj = −µjL1 +

∑
k⩾2

αkLk.
(7.6)

(It is easy to check that the matrix Aj defined that way is indeed symmetric.)
We shall then introduce the following change of coordinates for x in a neighborhood of x0:

y1(x) = φ(x)− φ(x0),

for j ∈ {2, · · · , d}, yj(x) = Lj · (x− x0) +
1

2
Aj(x− x0) · (x− x0).

By construction, there exists a neighborhood, whose size depends on the C2 norm of φ only, such that x 7→ y(x)
is a local diffeomorphism between a neighborhood V of x0 in Ω \ ω and a neighborhood of 0, that we call Ωy,
and which may thus contain the image of a part of ∂Ω. If it exists, we will denote it by Γy = y(∂Ω ∩ V).

For τ large enough, we can ensure that the ball of center x0 and radius τ−1/3, when intersected with Ω, is
included in a set on which x 7→ y(x) is a diffeomorphism, and its image is included in a ball B(0, Cτ−1/3).

Therefore, for wx0
solving (7.2), we set

w̌(y) = wx0
(x) for y = y(x),

Explicit computations then give that w̌ satisfies

d∑
j,k=1

bj,k(x)∂yj∂yk w̌(y(x)) +∇yw̌(y(x)) ·∆xy(x)− 2τ

d∑
j=1

cj(x)∂yj w̌(y(x)) + τ2|∇φ(x)|2w̌(y(x))

=
(
∆wx0 − 2τ∇φ · ∇wx0 + τ2|∇φ|2wx0

)
(x), for x ∈ Ω ∩B(x0, τ

−1/3),

where

bj,k(x) = ∇xyj(x) · ∇xyk(x), and cj(x) =

d∑
i=1

∂iφ(x)∂iyj(x).

We then remark that cj(x) = bj,1(x) and that bj,k(x) = bk,j(x) for all x. We now briefly analyze the coefficients
bj,k. By construction of the coordinates (yj)j∈{1,··· ,d}, we easily check that for (j, k, ℓ) ∈ {1, · · · , d}2,

bj,k(x0) = |L1|2δj,k,

∂ℓbj,k(x0) =

d∑
i=1

(∂ℓ∂iyj(x0)∂iyk(x0) + ∂iyj(x0)∂ℓ∂iyk(x0))

=

d∑
i=1

(Ajei · eℓ)(Lk · ei) + (Lj · ei)(Akei · eℓ) = (AjLk +AkLj) · eℓ,

so that we have in particular that

Lℓ · ∇bj,k(x0) = (AjLk +AkLj) · Lℓ,

For convenience, we also write separately

|∇φ(x0)|2 = |L1|2, and ∂ℓ(|∇φ|2)(x0) = 2
∑
i

∂ℓ∂iφ(x0)∂iφ(x0) = 2A1L1 · eℓ.
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We can thus analyze bj,k/|∇φ|2 close to x = x0:

bj,k
|∇φ|2

(x0) = δj,k,

Lℓ · ∇
(

bj,k
|∇φ|2

)
(x0) =

1

|L1|2
((AjLk +AkLj) · Lℓ − 2δj,kA1L1 · Lℓ) .

In particular, since AjLk +AkLj = 0 for all j, k ∈ {1, · · · , d} with j ̸= k,

∀j, k ∈ {1, · · · , d} with j ̸= k, ∀ℓ ∈ {1, · · · , d}, Lℓ · ∇
(

bj,k
|∇φ|2

)
(x0) = 0.

When j = k = 1, it is obvious that

∀ℓ ∈ {1, · · · , d}, Lℓ · ∇
(

b1,1
|∇φ|2

)
(x0) = 0.

When j = k ⩾ 2, the choices (7.6) yield

Lℓ · ∇
(

bj,j
|∇φ|2

)
(x0) = 0 when ℓ ∈ {2, · · · , d},

and

L1 · ∇
(

bj,j
|∇φ|2

)
(x0) = − 2

|L1|2
(A1Lj · Lj +A1L1 · L1).

Consequently, as a consequence of Taylor expansion of bj,k/|∇φ|2 close to x = x0,

bj,k(x)

|∇φ(x)|2
= δj,k(1− λjy1(x)) +O(|x− x0|2),

where

λ1 = 0, λj =
2

|L1|2
(A1Lj · Lj +A1L1 · L1) for j ∈ {2, · · · , d}. (7.7)

Accordingly, setting

b̌j,k(y) =
bj,k(x)

|∇φ(x)|2
for y = y(x),

we have
b̌j,k(y) = δj,k(1− λjy1) +O(|y|2) and ∇y(b̌j,k(y)− δj,k(1− λjy1)) = O(|y|).

Thus, using that w̌ is supported in B(0, Cτ−1/3), writing

d∑
j,k=1

b̌j,k(y)∂yj∂yk w̌(y)−
d∑
j=1

(1− λjy1)∂
2
yj w̌

=

d∑
j,k=1

∂yj
((
b̌j,k(y)− δj,k(1− λjy1)

)
∂yk w̌

)
−

d∑
j,k=1

∂yj (b̌j,k(y)− δj,k(1− λjy1))∂yk w̌,

we get that
d∑

j,k=1

b̌j,k(y)∂yj∂yk w̌(y)−
d∑
j=1

(1− λjy1)∂
2
yj w̌ = f̌2,a + div (F̌a),

where

f̌2,a(y) = −
d∑

j,k=1

∂yj (b̌j,k(y)− δj,k(1− λjy1))∂yk w̌, F̌a,j(y) =

d∑
k=1

(
b̌j,k(y)− δj,k(1− λjy1)

)
∂yk w̌

satisfy
∥f̌2,a∥L2(Ωy) ⩽ Cτ−1/3∥∇yw̌∥L2(Ωy), and ∥F̌a∥L2(Ωy) ⩽ Cτ−2/3∥∇yw̌∥L2(Ωy).
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Similarly,

−2τ

d∑
j=1

b̌1,j(y)∂yj w̌(y) + 2τ∂y1w̌(y) = f̌2,b(y),

with
∥f̌2,b∥L2(Ωy) ⩽ Cτ1/3∥∇yw̌∥L2(Ωy).

Finally,

f̌2,c(y) = − 1

|∇φ(x(y))|2
∇yw̌(y) ·∆xy(x(y)),

where x(y) denotes the inverse of the change of variables x 7→ y(x), also satisfies

∥f̌2,c∥L2(Ωy) ⩽ C∥∇yw̌∥L2(Ωy).

We then set

ρj,k(y) =
∂xk

yj(x(y))

|∇φ(x(y))|2
,

and introduce

f̌2(y) =
1

|∇φ(x(y))|2
f2,x0(x(y))−

∑
j,k

∂yjρk,jFx0,k(x(y)) + f̌2,a(y) + f̌2,b(y) + f̌2,c(y),

f̌2∗′(y) =
1

|∇φ(x(y))|2
f2∗′,x0

(x(y)),

F̌j(y) =

d∑
k=1

ρk,j(y)Fx0,k(x(y)) + F̌j,a(y), j ∈ {1, · · · , d},

and we get that w̌ satisfies in Ωy,

d∑
j=1

(1− λjy1)∂
2
yj w̌ − 2τ∂y1w̌ + τ2w̌ = f̌2 + f̌2∗′ + divy F̌ .

If Γy is not empty, then we simply recall that the weight function φ has been chosen such that φ = 0 on the
boundary of ∂Ω. In particular, the set Γy is simply parametrized by y1(x) = Y0 for some Y0 = −φ(x0) ⩽ 0,
and Ω can be locally defined by y1 > Y0. Thus, in this case, the equation of w̌ should be completed with

w̌(Y0, y
′) = ǧ(y′), for y′ ∈ Rd−1,

where
ǧ(y′) = gx0(x(Y0, y

′)), for y′ ∈ Rd−1 such that (Y0, y
′) ∈ Γy.

Due to the form of Ωy and the fact that we are considering functions which are supported in sets included
in balls of the form B(0, Cτ−1/3), we can then simply extend all the source terms in a strip of the form
[Y0, Y1]× Rd−1, where the functions are extended by 0 outside Ωy, and w̌ then satisfies

∆yw̌ − y1
∑d
j=2 λj∂

2
yj w̌ − 2τ∂y1w̌ + τ2w̌ = f̌2 + f̌2∗′ + divy F̌ in (Y0, Y1)× Rd−1,

w̌ (Y0, y
′) = ǧ(y′), for y′ ∈ Rd−1,

w̌ (Y1, y
′) = 0, for y′ ∈ Rd−1,

∂y1w̌ (Y1, y
′) = 0, for y′ ∈ Rd−1.

In the following, for convenience, we also write Ωy for the strip (Y0, Y1) × Rd−1. Now, we come back to the
definition of λj in (7.7) and remark that the condition (1.3), when taken at x = x0, is equivalent to the
condition (2.5). Accordingly, the Carleman estimates in Theorem 2.4 apply: for τ ⩾ τ0, we have

τ3/2∥w̌∥L2(Ωy) + τ1/2∥∇w̌∥L2(Ωy) + τ3/4−1/(2d)∥w̌∥L2d/(d−2)(Ωy)

⩽ C
(
∥f̌2∥L2(Ωy) + τ3/4−1/(2d)∥f̌2∗′∥L2d/(d+2)(Ωy) + τ∥F̌∥L2(Ωy) + τ3/4∥ǧ∥H1/2({Y0}×Rd−1)

)
,
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and

τ3/4+1/(2d)∥w̌∥L2d/(d−2)(Ωy) + τ3/2∥w̌∥L2(Ωy) + τ1/2∥∇w̌∥L2(Ωy)

⩽ C
(
∥f̌2∥L2(Ωy) + τ3/4+1/(2d)∥f̌2∗′∥L2d/(d+2)(Ωy) + τ∥F̌∥L2(Ωy) + τ3/4+1/(2d)∥ǧ∥H1/2({Y0}×Rd−1)

)
.

We then simply remark that, from the expression of f̌2, f̌2∗′ , F̌ and ǧ,

∥f̌2∥L2(Ωy) + τ3/4−1/(2d)∥f̌2∗′∥L2d/(d+2)(Ωy) + τ∥F̌∥L2(Ωy) + τ3/4∥ǧ∥H1/2({Y0}×Rd−1)

⩽ C
(
∥f2,x0

∥L2(Ω) + τ3/4−1/(2d)∥f2∗′,x0
∥L2d/(d+2)(Ω) + τ∥Fx0

∥L2(Ω) + τ3/4∥gx0
∥H1/2(∂Ω)

)
+Cτ1/3∥∇yw̃∥L2(Ωy),

and

∥f̌2∥L2(Ωy) + τ3/4+1/(2d)∥f̌2∗′∥L2d/(d+2)(Ωy) + τ∥F̌∥L2(Ωy) + τ3/4+1/(2d)∥ǧ∥H1/2({Y0}×Rd−1)

⩽ C
(
∥f2,x0

∥L2(Ω) + τ3/4+1/(2d)∥f2∗′,x0
∥L2d/(d+2)(Ω) + τ∥Fx0

∥L2(Ω) + τ3/4+1/(2d)∥gx0
∥H1/2(∂Ω)

)
+ Cτ1/3∥∇yw̃∥L2(Ωy).

Accordingly, taking τ0 ⩾ 1 larger if necessary, we get for all τ ⩾ τ0,

τ3/2∥w̌∥L2(Ωy) + τ1/2∥∇w̌∥L2(Ωy) + τ3/4−1/(2d)∥w̌∥L2d/(d−2)(Ωy)

⩽ C
(
∥f̌2∥L2(Ωy) + τ3/4−1/(2d)∥f̌2∗′∥L2d/(d+2)(Ωy) + τ∥F̌∥L2(Ωy) + τ3/4∥ǧ∥H1/2({Y0}×Rd−1)

)
,

and

τ3/4+1/(2d)∥w̌∥L2d/(d−2)(Ωy) + τ3/2∥w̌∥L2(Ωy) + τ1/2∥∇w̌∥L2(Ωy)

⩽ C
(
∥f̌2∥L2(Ωy) + τ3/4+1/(2d)∥f̌2∗′∥L2d/(d+2)(Ωy) + τ∥F̌∥L2(Ωy) + τ3/4+1/(2d)∥ǧ∥H1/2({Y0}×Rd−1)

)
.

Undoing the change of variables on the left hand side, we easily deduce the estimates (7.3) and (7.4).
The fact that the constants above do not depend on x0 ∈ Ω\ω can be tracked in the above proof: it comes

from uniformity properties of the diffeomorphism x 7→ y, and relies heavily on the uniform bounds (1.2)–(1.3),
on the fact that φ ∈ C3(Ω), and that the constants in Theorem 2.4 depend only on c0, m∗ and M∗ in (2.4),
and (2.5) for X0 < 0 < X1 with |X0|, |X1| ⩽ 1. This ends the proof of Lemma 7.1.

7.3 A gluing argument: End of the proof of Theorem 1.1

We then perform a gluing argument, which essentially consists in integrating the local Carleman estimates
(7.3) and (7.4), or rather the square of these estimates, with respect to x0 ∈ Ω\ω, in order to deduce estimates
(1.5) and (1.6), respectively. We will only explain how to deduce estimate (1.5) from the estimate (7.3), since
the other argument is completely similar.

We thus start from (7.3): There exist constants C > 0 and τ0 ⩾ 1 such that for all x0 ∈ Ω \ ω and τ ⩾ τ0,

τ3∥wx0∥2L2(Ω) + τ3/2−1/d∥wx0∥2L2d/(d−2)(Ω) + τ∥∇wx0∥2L2(Ω)

⩽ C
(
∥f2,x0∥2L2(Ω) + τ3/2−1/d∥f2∗′,x0∥2L2d/(d+2)(Ω) + τ2∥Fx0∥2L2(Ω) + τ3/2∥gx0∥2H1/2(∂Ω)

)
.

Using the explicit expressions of the source terms, we obtain:

τ3∥wx0
∥2L2(Ω) + τ3/2−1/d∥wx0

∥2L2d/(d−2)(Ω) + τ∥∇wx0
∥2L2(Ω)

⩽ C
(
∥ηx0

f̃2∥2L2(Ω) + τ3/2−1/d∥ηx0
f̃2∗′∥2L2d/(d+2)(Ω) + τ2∥ηx0

F̃∥2L2(Ω) + τ3/2∥ηx0
g̃∥2H1/2(∂Ω)

)
+ C

(
∥∇ηx0

· F̃∥2L2(Ω) + τ2∥wx0
∥2L2(Ω) + ∥∇ηx0

· ∇w∥2L2(Ω) + ∥∆ηx0
w∥2L2(Ω) + τ2∥|∇ηx0

|w∥2L2(Ω)

)
.
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By taking τ0 ⩾ 1 larger if necessary (which can be done uniformly in x0 ∈ Ω \ ω), we can absorb the term
τ2∥wx0

∥2L2(Ω), and we get for all x0 ∈ Ω \ ω, for all τ ⩾ τ0,

τ3∥wx0
∥2L2(Ω) + τ3/2−1/d∥wx0

∥2L2d/(d−2)(Ω) + τ∥∇wx0
∥2L2(Ω)

⩽ C
(
∥ηx0

f̃2∥2L2(Ω) + τ3/2−1/d∥ηx0
f̃2∗′∥2L2d/(d+2)(Ω) + τ2∥ηx0

F̃∥2L2(Ω) + τ3/2∥ηx0
g̃∥2H1/2(∂Ω)

)
+ C

(
∥∇ηx0

· F̃∥2L2(Ω) + ∥∇ηx0
· ∇w∥2L2(Ω) + ∥∆ηx0

w∥2L2(Ω) + τ2∥|∇ηx0
|w∥2L2(Ω)

)
.

Now, integrating in x0 on Ω \ ω and using Fubini’s identity for the Hilbertian norms, we get

τ3
∫
Ω

ρ0(x)|w(x)|2 dx+ τ

∫
Ω

ρ0(x)|∇w(x)|2 dx+ τ3/2−1/d

∫
Ω\ω

∥ηx0
w∥2L2d/(d−2)(Ω) dx0

⩽ C

(∫
Ω

ρ0(x)|f̃2(x)|2 dx+

∫
Ω

(τ2ρ0(x) + ρr,1(x))|F̃ (x)|2 dx
)

+ C

(
τ3/2−1/d

∫
Ω\ω

∥ηx0
f̃2∗′∥2L2d/(d+2)(Ω) dx0 + τ3/2

∫
Ω\ω

∥ηx0
g̃∥2H1/2(∂Ω) dx0

)

+ C

(∫
Ω

(ρr,2(x) + τ2ρr,1(x))|w(x)|2 dx+

∫
Ω

ρr,1(x)|∇w(x)|2 dx
)
,

where the weights ρ0, ρr,i are defined as follows:

ρ0(x) =

∫
Ω\ω

|ηx0
(x)|2 dx0, ρr,1(x) =

∫
Ω\ω

|∇ηx0
(x)|2 dx0, ρr,2(x) =

∫
Ω\ω

|∆ηx0
(x)|2 dx0.

Taking an open subset ωa such that ω ⊂ ωa and ωa ⊂ ω1, it is easy to check from the choice (7.5) that

∀x ∈ Ω \ ωa, |ρ0(x)| ⩾
τ−d/3

3
∥η∥2L2 ,

∀x ∈ Ω, |ρ0(x)| ⩽ Cτ−d/3, (7.8)

∀x ∈ Ω, |ρr,1(x)| ⩽ Cτ2/3−d/3, (7.9)

∀x ∈ Ω, |ρr,2(x)| ⩽ Cτ4/3−d/3.

Thus, for τ large enough,

τ3
∫
Ω\ωa

|w(x)|2 dx+ τ

∫
Ω\ωa

|∇w(x)|2 dx+ τ3/2+d/3−1/d

∫
Ω\ω

∥ηx0w∥2L2d/(d−2)(Ω) dx0

⩽ C

∫
Ω

|f̃2(x)|2 dx+ C

(
τ2
∫
Ω

|F̃ (x)|2 dx+ τ3/2+d/3−1/d

∫
Ω\ω

∥ηx0
f̃2∗′∥2L2d/(d+2)(Ω) dx0

)

+ C

(
τ3/2+d/3

∫
Ω\ω

∥ηx0 g̃∥2H1/2(∂Ω) dx0 + τ8/3
∫
ω

|w(x)|2 dx+ τ2/3
∫
ω

|∇w(x)|2 dx

)
.

We then add

τ3
∫
ωa

|w(x)|2 dx+ τ

∫
ωa

|∇w(x)|2 dx+ τ3/2+d/3−1/d

∫
ωa

∥ηx0
w∥2L2d/(d−2)(Ω) dx0

to both sides of the previous estimate and get

τ3
∫
Ω

|w(x)|2 dx+ τ

∫
Ω

|∇w(x)|2 dx+ τ3/2+d/3−1/d

∫
Ω

∥ηx0
w∥2L2d/(d−2)(Ω) dx0 ⩽ C

∫
Ω

|f̃2(x)|2 dx

+ C

(
τ2
∫
Ω

|F̃ (x)|2 dx+ τ3/2+d/3−1/d

∫
Ω\ω

∥ηx0
f̃2∗′∥2L2d/(d+2)(Ω) dx0 + τ3/2+d/3

∫
Ω\ω

∥ηx0
g̃∥2H1/2(∂Ω) dx0

)

+ C

(
τ3
∫
ωa

|w(x)|2 dx+ τ

∫
ωa

|∇w(x)|2 dx+ τ3/2+d/3−1/d

∫
ωa

∥ηx0w∥2L2d/(d−2)(Ω) dx0

)
. (7.10)

We claim the following lemma, proven in Appendix B:

38



Lemma 7.2. With ηx0
as in (7.5), there exists a constant C > 0 such that for all τ ⩾ τ0 and g ∈ H1/2(∂Ω),

τ3/2+d/3
∫
Ω\ω

∥ηx0g∥2H1/2(∂Ω) dx0 ⩽ τ3/2∥g∥2H1/2(∂Ω) + τ11/6∥g∥2L2(∂Ω). (7.11)

We thus have the bound

τ3/2+d/3
∫
Ω\ω

∥ηx0
g̃∥2H1/2(∂Ω) dx0 ⩽ τ3/2∥g̃∥2H1/2(∂Ω) + τ11/6∥g̃∥2L2(∂Ω).

Now, g̃ is the trace of the function w ∈ H1(Ω). Taking X ∈W 1,∞(Ω;Rd) such that X · n = 1 on ∂Ω,

∥g̃∥2L2(∂Ω) =

∫
Ω

div (X|w|2) dx =

∫
Ω

div (X)|w|2 dx+ 2

∫
Ω

X · ∇ww dx ⩽ C∥w∥2L2(Ω) + ∥w∥L2(Ω)∥∇w∥L2(Ω).

It follows that the term τ11/6∥g̃∥2L2(∂Ω) can in fact be absorbed by the left hand side of (7.10) by taking τ0
larger if necessary, and we obtain:

τ3
∫
Ω

|w(x)|2 dx+ τ

∫
Ω

|∇w(x)|2 dx+ τ3/2+d/3−1/d

∫
Ω

∥ηx0
w∥2L2d/(d−2)(Ω) dx0

⩽ C

(∫
Ω

|f̃2(x)|2 dx+ τ2
∫
Ω

|F̃ (x)|2 dx+ τ3/2∥g̃∥2H1/2(∂Ω) + τ3/2+d/3−1/d

∫
Ω\ω

∥ηx0
f̃2∗′∥2L2d/(d+2)(Ω) dx0

)

+ C

(
τ3
∫
ωa

|w(x)|2 dx+ τ

∫
ωa

|∇w(x)|2 dx+ τ3/2+d/3−1/d

∫
ωa

∥ηx0
w∥2L2d/(d−2)(Ω) dx0

)
.

We then go back to the variable u and get the following estimate:

τ3∥eτφu∥2L2(Ω) + τ∥eτφ∇u∥2L2(Ω) + τ3/2+d/3−1/d

∫
Ω

∥ηx0
ueτφ∥2L2d/(d−2)(Ω) dx0

⩽ C

(
∥eτφf2∥2L2(Ω) + τ3/2+d/3−1/d

∫
Ω

∥ηx0
f2∗′eτφ∥2L2d/(d+2)(Ω) dx0 + τ2∥eτφF∥2L2(Ω) + τ3/2∥eτφg∥2H1/2(∂Ω)

+τ3∥eτφu∥2L2(ωa)
+ τ∥eτφ∇u∥2L2(ωa)

+ τ3/2+d/3−1/d

∫
ωa

∥ηx0
ueτφ∥2L2d/(d−2)(Ω) dx0

)
. (7.12)

We finally explain how to remove the term τ∥eτφ∇u∥2L2(ωa)
from the right hand side of (7.12). In order to do

that, we choose an open subset ωb of Ω such that ωa ⊂ ωb and ωb ⊂ ω1, and a smooth compactly supported
function ηω, taking value 1 in ωa and vanishing in Ω \ ωb. We then multiply (1.4) by ηωue

2τφ, which yields:∫
Ω

ηω|∇u|2e2τφ dx =

∫
Ω

ηωf2ue
2τφ dx+

∫
Ω

ηωf2∗′ue2τφ dx−
∫
Ω

F · ∇(ηωe
2τφ)u dx

−
∫
Ω

F · ∇u ηωe2τφ dx+
1

2

∫
Ω

∆(ηωe
2τφ)|u|2 dx.

Using the bound ∣∣∣∣∫
Ω

F · ∇uηωe2τφ dx
∣∣∣∣ ⩽ 1

2
∥Feτφ∥2L2(Ω) +

1

2

∫
Ω

ηω|∇u|2e2τφ dx,

we easily get

∥eτφ∇u∥2L2(ωa)
⩽ C∥f2eτφ∥L2(Ω)∥ueτφ∥L2(ωb) + C∥Feτφ∥2L2(Ω)

+ Cτ∥Feτφ∥L2(Ω)∥ueτφ∥L2(ωb) + Cτ2∥ueτφ∥2L2(ωb)
+ C

∣∣∣∣∫
Ω

ηωf2∗′ue2τφ dx

∣∣∣∣ .
Only the last term is unusual. In order to estimate it, we remark that, for all x ∈ ωb (recall that ω1, hence ωb,
is at a positive distance from ∂Ω), taking τ0 ⩾ 1 larger if necessary, for all τ ⩾ τ0,∫

x0∈Ω

ηx0(x)
2 dx0 = ∥η∥2L2(Rd)τ

−d/3.

39



Accordingly, ∫
Ω

ηωf2∗′ue2τφ dx =
τd/3

∥η∥2
L2(Rd)

∫
x0∈Ω

∫
x∈Ω

ηωf2∗′ue2τφηx0
(x)2 dx dx0

⩽ Cτd/3
∫
x0∈Ω

∥ηx0
f2∗′eτφ∥L2d/(d+2)(Ω)∥ηx0

ueτφ∥L2d/(d−2)(ωb) dx0

⩽ Cτd/3∥ηx0f2∗′eτφ∥
L2

x0
(Ω;L

2d/(d+2)
x (Ω))

∥ηx0ue
τφ∥

L2
x0

(Ω;L
2d/(d−2)
x (ωb))

.

One then easily gets that

τ∥eτφ∇u∥2L2(ωa)
⩽ C

(
∥eτφf2∥2L2(Ω) + τ3/2+d/3−1/d∥ηx0

f2∗′eτφ∥2
L2

x0
(Ω;L

2d/(d+2)
x (Ω))

+ τ2∥eτφF∥2L2(Ω)

+τ3/2∥eτφg∥2H1/2(∂Ω) + τ3∥eτφu∥2L2(ωb)
+ τ3/2+d/3−1/d∥ηx0

ueτφ∥2
L2

x0
(Ω;L

2d/(d−2)
x (ωb))

)
,

which concludes the proof of (1.5) since we obviously have

∥ηx0
ueτφ∥2

L2
x0

(Ω;L
2d/(d−2)
x (ωb))

⩽ ∥ηx0
ueτφ∥2

L2
x0

(ω1;L
2d/(d−2)
x (ω1))

for τ0 sufficiently large so that τ
1/3
0 ⩾ 1/d(ωb,Ω \ ω1).

8 Proof of Theorem 1.3: Quantitative unique continuation

First, by restricting ω if necessary, we assume that ω is a non empty open subset of Ω with ω ⊂ Ω. Then, for
ω0 a non-empty open subset such that ω0 ⊂ ω, there exists a function φ satisfying conditions (1.2)–(1.3) in
ω0 (see for instance [10, Lemma 1.1] or [21, Proposition 3.31]), so that the Carleman estimates (1.5)–(1.6) in
Theorem 1.1 with ω1 = ω hold.

For V ∈ Lq0(Ω), W1 ∈ Lq1(Ω;Cd), and W2 ∈ Lq2(Ω;Cd), we consider decompositions of the form

V = Vd/2 + Vd + V∞, with Vd/2 ∈ Ld/2(Ω), Vd ∈ Ld(Ω), V∞ ∈ L∞(Ω),

W1 =W1,d +W1,∞, with W1,d ∈ Ld(Ω;Cd), W1,∞ ∈ L∞(Ω;Cd),
W2 =W2,d +W2,∞, with W2,d ∈ Ld(Ω;Cd), W2,∞ ∈ L∞(Ω;Cd),

which will be made precise later.
In particular, applying (1.5) for u solution of (1.4), with f2∗′ = Vd/2u+Vdu+W1,d·∇u, f2 = V∞u+W1,∞·∇u,

and using (1.8) and (1.11), we get the existence of C1 > 0 such that for τ ⩾ τ0:

τ3/2∥eτφu∥L2(Ω) + τ1/2∥eτφ∇u∥L2(Ω)

⩽ C1∥eτφ(V∞u+W1,∞ · ∇u)∥L2(Ω) + C1τ
3/4−1/(2d)∥eτφ(Vd/2u+ Vdu+W1,d · ∇u)∥L2d/(d+2)

η,τ (Ω)

+ C1τ∥eτφ(W2,du+W2,∞u)∥L2(Ω) + C1

(
τ3/2∥eτφu∥L2(ω) + τ3/4∥eτφu∥

L
2d/(d−2)
η,τ (ω)

)
⩽ C1

(
∥V∞∥L∞(Ω) + τ3/4−1/(2d)∥Vd∥Ld(Ω) + τ∥W2,∞∥L∞(Ω)

)
∥eτφu∥L2(Ω) (8.1)

+ C1

(
∥W1,∞∥L∞(Ω) + τ3/4−1/(2d)∥W1,d∥Ld(Ω)

)
∥eτφ∇u∥L2(Ω)

+ C1

(
τ3/4−1/(2d)∥Vd/2∥Ld/2(Ω) + τ∥W2,d∥Ld(Ω)

)
∥eτφu∥

L
2d/(d−2)
η,τ (Ω)

+ C1τ
3/2∥eτφu∥L2d/(d−2)(ω).

Similarly, applying (1.6) with f2∗′ = Vd/2u+W1,d · ∇u, f2 = Vdu+ V∞u+W1,∞ · ∇u, we obtain the existence
of a constant C2 > 0 such that for τ ⩾ τ0,

τ3/4+1/(2d)∥eτφu∥
L

2d/(d−2)
η,τ (Ω)

⩽ C2

(
∥V∞∥L∞(Ω) + τ∥W2,∞∥L∞(Ω)

)
∥eτφu∥L2(Ω) (8.2)

+ C2

(
∥W1,∞∥L∞(Ω) + τ3/4+1/(2d)∥W1,d∥Ld(Ω)

)
∥eτφ∇u∥L2(Ω)

+ C2

(
∥Vd∥Ld(Ω) + τ3/4+1/(2d)∥Vd/2∥Ld/2(Ω) + τ∥W2,d∥Ld(Ω)

)
∥eτφu∥

L
2d/(d−2)
η,τ (Ω)

+ C2τ
3/2∥eτφu∥L2d/(d−2)(ω).
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Thus, if we have

2C1

(
∥V∞∥L∞(Ω) + τ3/4−1/(2d)∥Vd∥Ld(Ω) + τ∥W2,∞∥L∞(Ω)

)
⩽ τ3/2, (8.3)

2C1

(
∥W1,∞∥L∞(Ω) + τ3/4−1/(2d)∥W1,d∥Ld(Ω)

)
⩽ τ1/2, (8.4)

2C2

(
∥Vd∥Ld(Ω) + τ3/4+1/(2d)∥Vd/2∥Ld/2(Ω) + τ∥W2,d∥Ld(Ω)

)
⩽ τ3/4+1/(2d), (8.5)

estimates (8.1)–(8.2) yield:

τ3/2∥eτφu∥L2(Ω) + τ1/2∥eτφ∇u∥L2(Ω)

⩽ 2C1

(
τ3/4−1/(2d)∥Vd/2∥Ld/2(Ω) + τ∥W2,d∥Ld(Ω)

)
∥eτφu∥

L
2d/(d−2)
η,τ (Ω)

+ 2C1τ
3/2∥eτφu∥L2d/(d−2)(ω),

and

τ3/4+1/(2d)∥eτφu∥
L

2d/(d−2)
η,τ (Ω)

⩽ 2C2

(
∥V∞∥L∞(Ω) + τ∥W2,∞∥L∞(Ω)

)
∥eτφu∥L2(Ω)

+ 2C2

(
∥W1,∞∥L∞(Ω) + τ3/4+1/(2d)∥W1,d∥Ld(Ω)

)
∥eτφ∇u∥L2(Ω) + 2C2τ

3/2∥eτφu∥L2d/(d−2)(ω).

Following, under conditions (8.3)–(8.4)–(8.5), we also have

τ3/2∥eτφu∥L2(Ω) + τ1/2∥eτφ∇u∥L2(Ω)

⩽ 4C1C2τ
−3/4−1/(2d)

(
τ3/4−1/(2d)∥Vd/2∥Ld/2(Ω) + τ∥W2,d∥Ld(Ω)

) (
∥V∞∥L∞(Ω) + τ∥W2,∞∥L∞(Ω)

)
∥eτφu∥L2(Ω)

+ 4C1C2τ
−3/4−1/(2d)

(
τ3/4−1/(2d)∥Vd/2∥Ld/2(Ω) + τ∥W2,d∥Ld(Ω)

)
×
(
∥W1,∞∥L∞(Ω) + τ3/4+1/(2d)∥W1,d∥Ld(Ω)

)
∥eτφ∇u∥L2(Ω)

+ 2C1

(
C2

(
τ3/4−1/(2d)∥Vd/2∥Ld/2(Ω) + τ∥W2,d∥Ld(Ω)

)
τ3/4 + τ3/2

)
∥eτφu∥L2d/(d−2)(ω).

Note that this estimate yields an observation estimate if the additional following conditions are also satisfied:

8C1C2τ
−3/4−1/(2d)

(
τ3/4−1/(2d)∥Vd/2∥Ld/2(Ω) + τ∥W2,d∥Ld(Ω)

) (
∥V∞∥L∞(Ω) + τ∥W2,∞∥L∞(Ω)

)
⩽ τ3/2 (8.6)

8C1C2τ
−3/4−1/(2d)

(
τ3/4−1/(2d)∥Vd/2∥Ld/2(Ω) + τ∥W2,d∥Ld(Ω)

)
(8.7)

×
(
∥W1,∞∥L∞(Ω) + τ3/4+1/(2d)∥W1,d∥Ld(Ω)

)
⩽ τ1/2.

Indeed, in this case, one would obtain

τ3/2∥eτφu∥L2(Ω) + τ1/2∥eτφ∇u∥L2(Ω)

⩽ 2C1

(
C2

(
τ3/4−1/(2d)∥Vd/2∥Ld/2(Ω) + τ∥W2,d∥L∞(Ω)

)
τ3/4 + τ3/2

)
∥eτφu∥L2d/(d−2)(ω). (8.8)

Therefore, our next step is to understand how, given V ∈ Lq0(Ω), W1 ∈ Lq1(Ω;Cd), and W2 ∈ Lq2(Ω;Cd),
one can minimize the value of τ for which we can find decompositions such that conditions (8.3)–(8.4)–(8.5)–
(8.6)–(8.7) are satisfied.

Before going further, let us remark that (8.3)–(8.4)–(8.5)–(8.6)–(8.7) are satisfied provided, for c0 > 0 small
enough,

∥V∞∥L∞(Ω) ⩽ c0τ
3/2, ∥Vd∥Ld(Ω) ⩽ c0τ

3/4+1/(2d), ∥Vd/2∥Ld/2(Ω) ⩽ c0,

∥W1,∞∥L∞(Ω) + ∥W2,∞∥L∞(Ω) ⩽ c0τ
1/2, τ1/4−1/(2d)

(
∥W1,d∥Ld(Ω) + ∥W2,d∥Ld(Ω)

)
⩽ c0,

τ1/2∥W1,d∥Ld(Ω)∥W2,d∥Ld(Ω) ⩽ c0.

(8.9)

The case V ∈ Lq0(Ω) with q0 ∈ (d/2, d]. For V ∈ Lq0(Ω) with q0 ∈ (d/2, d] and λ0 > 0 to be chosen
later, we set Vd/2 = = V 1|V |>λ0

, Vd = V 1|V |⩽λ0
, V∞ = 0, for which we have the following estimates:

λ
q0−d/2
0 ∥Vd/2∥

d/2

Ld/2(Ω)
⩽ ∥V ∥q0Lq0 (Ω), ∥Vd∥dLd(Ω) ⩽ λd−q00 ∥V ∥q0Lq0 (Ω).
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Similarly, for W1 ∈ Lq1(Ω) and W2 ∈ Lq2(Ω) and λ1, λ2 positive numbers to be chosen later, we set
W1,d = W11|W1|>λ1

, W1,∞ = W11|W1|⩽λ1
, and W2,d = W21|W2|>λ2

, W2,∞ = W21|W2|⩽λ2
, for which we have

the estimates: {
λq1−d1 ∥W1,d∥dLd(Ω) ⩽ ∥W1∥q1Lq1 (Ω), ∥W1,∞∥L∞(Ω) ⩽ λ1,

λq2−d2 ∥W2,d∥dLd(Ω) ⩽ ∥W2∥q2Lq2 (Ω), ∥W2,∞∥L∞(Ω) ⩽ λ2.
(8.10)

Conditions (8.9) are thus satisfied provided
λ
1−q0/d
0 ∥V ∥q0/dLq0 (Ω) ⩽ c0τ

3/4+1/(2d), λ
1−2q0/d
0 ∥V ∥2q0/dLq0 (Ω) ⩽ c0,

λ1 + λ2 ⩽ c0τ
1/2, τ1/4−1/(2d)(λ

1−q1/d
1 ∥W1∥q1/dLq1 (Ω) + λ

1−q2/d
2 ∥W2∥q2/dLq2 (Ω)) ⩽ c0,

τ1/2λ
1−q1/d
1 ∥W1∥q1/dLq1 (Ω)λ

1−q2/d
2 ∥W2∥q2/dLq2 (Ω) ⩽ c0.

(8.11)

We then choose λ0 = τα0∥V ∥Lq0 (Ω), λ1 = τα1∥W1∥Lq1 (Ω) and λ2 = τα2∥W2∥Lq2 (Ω) for some real parameters
α0, α1, α2, so that conditions (8.11) yield:

τα0(1−q0/d)−3/4−1/(2d)∥V ∥Lq0 (Ω) ⩽ c0, τα0(1−2q0/d)∥V ∥Lq0 (Ω) ⩽ c0,

τα1−1/2∥W1∥Lq1 (Ω) + τα2−1/2∥W2∥Lq2 (Ω) ⩽ c0,

τ1/4−1/(2d)+α1(1−q1/d)∥W1∥Lq1 (Ω) + τ1/4−1/(2d)+α2(1−q2/d)∥W2∥Lq2 (Ω) ⩽ c0,

τ1/2+α1(1−q1/d)+α2(1−q2/d)∥W1∥Lq1 (Ω)∥W2∥Lq2 (Ω) ⩽ c0.

(8.12)

For q0 ∈ (d/2, d], q1 > (3d − 2)/2, q2 > (3d − 2)/2 with 1/q1 + 1/q2 < 4(1 − 1/d)/(3d − 2), we choose
α0 = (3/4 + 1/(2d))d/q0, α1 = (3/4− 1/(2d))d/q1, α2 = (3/4− 1/(2d))d/q2, so that system (8.12) is satisfied
provided, for some C large enough,

τ (2−d/q0)(3/4+1/(2d)) ⩾ C∥V ∥Lq0 (Ω),

τ1/2−(3/4−1/(2d))d/q1 ⩾ C∥W1∥Lq1 (Ω), τ1/2−(3/4−1/(2d))d/q2 ⩾ C∥W2∥Lq2 (Ω),

τ1−1/d−(3/4−1/(2d))(d/q1+d/q2) ⩾ C∥W1∥Lq1 (Ω)∥W2∥Lq2 (Ω),

that is, with the notations of Theorem 1.3,

τ ⩾ C
(
∥V ∥γ(q0)Lq0 (Ω) + ∥W1∥δ(q1)Lq1 (Ω) + ∥W2∥δ(q2)Lq2 (Ω) + (∥W1∥Lq1 (Ω) ∥W2∥Lq2 (Ω))

ρ(q1,q2)
)
. (8.13)

For q0 ∈ (d/2, d], q1 > 3d/2, and q2 > 3d/2, one can alternatively choose α0 = (3/4 + 1/(2d))d/q0, α1 =
3d/(4q1), α2 = 3d/(4q2), so that system (8.12) is satisfied provided, for some C large enough,

τ (2−d/q0)(3/4+1/(2d)) ⩾ C∥V ∥Lq0 (Ω), τ1/2−3d/(4q1) ⩾ C∥W1∥Lq1 (Ω), τ1/2−3d/(4q2) ⩾ C∥W2∥Lq2 (Ω),

that is, with the notations of Theorem 1.3,

τ ⩾ C
(
∥V ∥γ(q0)Lq0 (Ω) + ∥W1∥δ̃(q1)Lq1 (Ω) + ∥W2∥δ̃(q2)Lq2 (Ω)

)
. (8.14)

Taking τ large enough that saturates condition (8.13), respectively condition (8.14), bounding the weight
function eτφ from below and from above in (8.8), we easily deduce Theorem 1.3 item 1, respectively item 2
for q0 ∈ (d/2, d].

The case V ∈ Lq0(Ω) with q0 ∈ [d,∞]. For V ∈ Lq0(Ω) with q0 ∈ [d,∞] and λ0 > 0 to be chosen later,
we set Vd/2 = 0, Vd = V 1|V |>λ0

, V∞ = V 1|V |⩽λ0
, for which we have the following estimates:

λq0−d0 ∥Vd∥dLd(Ω) ⩽ ∥V ∥q0Lq0 (Ω), ∥V∞∥L∞(Ω) ⩽ λ0.

The potentialsW1 ∈ Lq1(Ω) andW2 ∈ Lq2(Ω) are decomposed as beforeW1 =W1,d+W1,∞,W2 =W2,d+W2,∞
with the estimates (8.10) for positive parameters λ1 and λ2 to be chosen later. Similarly as before, conditions
(8.9) are thus satisfied provided

λ
1−q0/d
0 ∥V ∥q0/dLq0 (Ω) ⩽ c0τ

3/4+1/(2d), λ0 ⩽ c0τ
3/2,

λ1 + λ2 ⩽ c0τ
1/2, τ1/4−1/(2d)(λ

1−q1/d
1 ∥W1∥q1/dLq1 (Ω) + λ

1−q2/d
2 ∥W2∥q2/dLq2 (Ω)) ⩽ c0,

τ1/2λ
1−q1/d
1 ∥W1∥q1/dLq1 (Ω)λ

1−q2/d
2 ∥W2∥q2/dLq2 (Ω) ⩽ c0.

(8.15)
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Similarly as before, for q0 ∈ [d,∞], q1 > (3d−2)/2, q2 > (3d−2)/2 with 1/q1+1/q2 < 4(1−1/d)/(3d−2), we
choose α0 = (3/4 − 1/(2d))d/q0, α1 = (3/4 − 1/(2d))d/q1, α2 = (3/4 − 1/(2d))d/q2, and λ0 = τα0∥V ∥Lq0 (Ω),
λ1 = τα1∥W1∥Lq1 (Ω) and λ2 = τα2∥W2∥Lq2 (Ω). We then deduce that system (8.15) is satisfied provided, for
some C large enough,

τ (2−d/q0)(3/4−1/(2d)) ⩾ C∥V ∥Lq0 (Ω),

τ1/2−(3/4−1/(2d))d/q1 ⩾ C∥W1∥Lq1 (Ω), τ1/2−(3/4−1/(2d))d/q2 ⩾ C∥W2∥Lq2 (Ω),

τ1−1/d−(3/4−1/(2d))(d/q1+d/q2) ⩾ C∥W1∥Lq1 (Ω)∥W2∥Lq2 (Ω),

that is (8.13) with the notations of Theorem 1.3.
Here again, for q0 ∈ [d,∞], q1 > 3d/2, and q2 > 3d/2, one can alternatively choose α0 = (3/4−1/(2d))d/q0,

α1 = 3d/(4q1), α2 = 3d/(4q2), so that conditions (8.15) are implied by

τ (3/2−d/q0)(3/4+1/(2d)) ⩾ C∥V ∥Lq0 (Ω), τ1/2−3d/(4q1) ⩾ C∥W1∥Lq1 (Ω), τ1/2−3d/(4q2) ⩾ C∥W2∥Lq2 (Ω),

that is (8.14) with the notations of Theorem 1.3.
We then deduce Theorem 1.3 in the case q ⩾ d immediately from (8.8) as in the case q ⩽ d.

Remark 8.1. In fact, if we focus on the conditions λ1 + λ2 ⩽ c0τ
1/2, τ1/4−1/(2d)(λ

1−q1/d
1 ∥W1∥q1/dLq1 (Ω) + λ

1−q2/d
2 ∥W2∥q2/dLq2 (Ω)) ⩽ c0,

τ1/2λ
1−q1/d
1 ∥W1∥q1/dLq1 (Ω)λ

1−q2/d
2 ∥W2∥q2/dLq2 (Ω) ⩽ c0,

(8.16)

which appear in the second and third lines of system (8.11) and (8.15), and choose λ1 = τα1∥W1∥Lq1 (Ω) and
λ2 = τα2∥W2∥Lq2 (Ω), one can find τ large enough so that system (8.16) is satisfied provided

α1 <
1

2
, α2 <

1

2
,

α1

(q1
d

− 1
)
>

1

4
− 1

2d
, α2

(q2
d

− 1
)
>

1

4
− 1

2d
, α1

(q1
d

− 1
)
+ α2

(q2
d

− 1
)
>

1

2
.

(8.17)

Indeed, in this case, it suffices to take, for a sufficiently large constant C,

τ ⩾ C
(
∥W1∥

aq1 (α1)

Lq1 (Ω) + ∥W2∥
aq2 (α2)

Lq2 (Ω) +
(
∥W1∥Lq1 (Ω)∥W2∥Lq2 (Ω)

)b(α1,α2)
)
, (8.18)

with

aq(α) = max

 1
1

2
− α

,
1

α
( q
d
− 1
)
− 1

4
+

1

2d

 , bq1,q2(α1, α2) =
1

α1

(q1
d

− 1
)
+ α2

(q2
d

− 1
)
− 1

2

.

Although it is rather easy to check that the system (8.17) admits solutions (α1, α2) if q1 and q2 satisfy q1 >
3d/2−1, q2 > 3d/2−1 and q1+ q2 > 3d, it is not clear how to choose α1 and α2 satisfying (8.17) to minimize
τ in (8.18). We have thus decided in the above proof of Theorem 1.3 to restrict ourselves to the case in which
both terms in aq(α) are equal (this choice corresponds to item 1 in Theorem 1.3), or to consider, instead of
(8.16), the sufficient conditions

λ1 + λ2 ⩽ c0τ
1/2, τ1/4(λ

1−q1/d
1 ∥W1∥q1/dLq1 (Ω) + λ

1−q2/d
2 ∥W2∥q2/dLq2 (Ω)) ⩽ c0,

this choice yielding to item 2 in Theorem 1.3.

A Reminder of some classical results in harmonic analysis

We start by recalling the classical Hardy-Littlewood-Sobolev theorem.

43



Theorem A.1 ([13, Theorem 4.5.3.] Hardy-Littlewood-Sobolev theorem). Let n ∈ N. For (p, q, r) ∈ (1,∞)3

such that
1

r
= 1−

(
1

p
− 1

q

)
,

there exists a constant Cp,q,n such that for all f ∈ Lp(Rn),∥∥∥∥x 7→
∫
Rn

|x− y|−n/rf(y) dy
∥∥∥∥
Lq(Rn)

⩽ Cp,q,n∥f∥Lp(Rn).

In the article, we have also used the stationary phase lemma. Although it is a very classical lemma of
harmonic analysis, we used the following version proved in [1], which presents the advantage of quantifying
precisely the constants in the stationary phase lemma:

Theorem A.2 ([1, Theorem 1] Stationary phase lemma). Let Φ ∈ C∞ (Rd;R), b ∈ C∞
0

(
Rd;R

)
. For λ ∈ R,

we introduce

IΦ,b(λ) =

∫
Rd

eiλΦ(ξ)b(ξ)dξ.

Set K = supp b and let V be an open neighborhood of K, and use the following notations:

� Md+2 :=
∑

2⩽|α|⩽d+2 supξ∈V

∣∣∣Dα
ξ Φ(ξ)

∣∣∣,
� Nd+1 :=

∑
|α|⩽d+1 supξ∈K

∣∣∣Dα
ξ b(ξ)

∣∣∣,
and assume that there exists a0 > 0 such that for all ξ ∈ V , |det(HessΦ(ξ))| ⩾ a0, where HessΦ(ξ) denotes
the Hessian matrix of Φ at ξ.

There exists a constant C independent of (Φ, b) satisfying the above assumptions, such that for all λ ⩾ 1,

|IΦ,b(λ)| ⩽
C

a1+d0

(
1 +Md/2+d2

d+2

)
Nd+1λ

−d/2.

B Proof of Lemma 7.2

The proof of Lemma 7.2 relies on a suitable interpolation estimate.
First, for τ ⩾ τ0, we define the operator Λτ : L2(∂Ω) → L2(Ω \ ω;L2(∂Ω)) by

Λτg(x0) = ηx0,τ (·)g(·), x0 ∈ Ω \ ω,

where we recall that ηx0,τ is the function given by ηx0,τ (x) = η(τ1/3(x − x0)) for x ∈ Rd, for a smooth
compactly supported function η.

Using (7.8)–(7.9), it is easy to check that there exists a constant C > 0 such that

∀g ∈ L2(∂Ω), ∥Λτg∥2L2(Ω\ω;L2(∂Ω)) ⩽ Cτ−d/3∥g∥2L2(∂Ω),

∀g ∈ H1(∂Ω), ∥Λτg∥2L2(Ω\ω;H1(∂Ω)) ⩽ Cτ−d/3
(
∥g∥2H1(∂Ω) + τ2/3∥g∥2L2(∂Ω)

)
.

We can then deduce easily the estimate (7.11). More precisely, by interpolation, Λτ maps H1/2(∂Ω)
to L2(Ω \ ω;H1/2(∂Ω)). To estimate the operator in this norm with appropriate powers of τ , we proceed
as follows. We let (Φj)j∈N be the basis of eigenfunctions of the Laplace Beltrami operator −∆ on ∂Ω, with
corresponding eigenvalues (λ2j )j∈N, which are non-negative and going to infinity. Accordingly, for g =

∑
j ajΦj ,

the L2(∂Ω), H1(∂Ω) and H1/2(∂Ω) norms of g can be read as, respectively, ∥(aj)∥ℓ2(N), ∥(aj(λj + 1))∥ℓ2(N),
and ∥(aj(λj + 1)1/2)∥ℓ2(N).

Writing g ∈ H1/2(∂Ω) under the form g =
∑
j∈N ajΦj , we then introduce the function

f(z) =
∑
j∈N

aj(λj + 1 + τ1/3)1/2−zΛτΦj , z ∈ C with ℜ(z) ∈ [0, 1].
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The function f is holomorphic in {z ∈ C with ℜ(z) ∈ (0, 1)} with values in L2(Ω \ ω;L2(∂Ω)), f(1/2) = Λτg,
and

∀β ∈ R, ∥f(iβ)∥2L2(Ω\ω;L2(∂Ω)) ⩽ Cτ−d/3
∑
j

|aj |2(λj + 1 + τ1/3),

∀β ∈ R, ∥f(1 + iβ)∥2L2(Ω\ω;H1(∂Ω)) ⩽ Cτ−d/3
∑
j

|aj |2(λj + 1 + τ1/3).

Since L2(Ω \ ω;H1/2(∂Ω)) = [L2(Ω \ ω;L2(∂Ω)), L2(Ω \ ω;H1(∂Ω))]1/2, we deduce from the above estimates

that there exists C > 0 such that for all g ∈ H1/2(∂Ω) and τ ⩾ τ0,

∥Λτg∥2L2(Ω\ω;H1/2(∂Ω)) ⩽ Cτ−d/3
(
∥g∥2H1/2(∂Ω) + τ1/3∥g∥2L2(∂Ω)

)
.

This concludes the proof of Lemma 7.2.
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