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Abstract

The aim of this work is to prove global L? Carleman estimates for the Laplace operator in dimension
d > 3. Our strategy relies on precise Carleman estimates in strips, and a suitable gluing of local and
boundary estimates obtained through a change of variables. The delicate point and most of the work thus
consists in proving Carleman estimates in the strip with a linear weight function for a second order operator
with coefficients depending linearly on the normal variable. This is done by constructing an explicit
parametrix for the conjugated operator, which is estimated through the use of Stein Tomas restriction
theorems. As an application, we deduce quantified versions of the unique continuation property for solutions
of Au = Vu+W;-Vu+div (Wau) in terms of the norms of V in L (), of Wi in L9 (2) and of W5 in L2 ()
for go € (d/2,00] and q1 and g2 satisfying either g1, g2 > (3d —2)/2 and 1/g1 +1/g2 < 4(1—1/d)/(3d — 2),
or qi, g2 > 3d/2.
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1 Introduction

Main result. The goal of this article is to prove global LP Carleman estimates for the flat Laplace operator
in a smooth bounded domain of R? (d > 3) for a general weight function satisfying the strict pseudo-convexity
conditions of Hormander. As an application, we will show how these can be used to obtain quantitative unique
continuation results for solutions of elliptic equation with respect to the norms of the potentials.

To be more precise, our main result is the following one:

Theorem 1.1. Let d > 3. Let 2 C R? be a bounded domain of class C3, and w be a non empty open subset
of Q withw C Q. Let ¢ € C3(Q) be such that

Vo € 09, o(x) =0 and O,p(z) < 0, (1.1)
and there ezists a, B > 0 for which
inf |Vo| > a, (1.2)
QN\w

and
Vo € Q\ w, V€ € R with |Vo(z)| = €| and Ve(x) - € =0,
(Hess p(2)) V(@) - Vip() + (Hess p(2))€ - € = B| V(@) (1.3)

where Hess ¢ denotes the Hessian matriz of . Let wy be an open subset of Q0 so that W C wy and Wy C £,
and n be a smooth radial non-negative cut-off function (in €>°(R?)) vanishing outside the ball of radius 1 and
equal to one in the ball of radius 1/2.

Then there exist C > 0 and 19 > 1 (depending only on «, S, H@”(ﬁ(ﬁ)’ 1 and the geometric configuration

Q, w, and wy ) such that for all u € H(Q) solution of

{—Au = fo+ fow +divF  inQ, (1.4)

u=y on 082,

with
f2 € LX), fow € LY (Q), FeL*(CY), and ge H'?(09),

we have, for all T > 719,
7-3/2||eT‘9u||L2(Q) + 7_1/2Her<pvu“L2(Q) <C (”674‘0]“2”[,2(9) + 7_3/471/(2d) ||e‘r§0f2*/ HL?,d.f(d'*'m(Q)
7€ Fllzaey + 7 Nl arvvzom + 72 1€ Pulay + 7 e Pul sy, ) - (15)
and
7'3/4+1/(2d)||ew“||1:’:‘,f‘,/<d*2>(sz) <C (HewfzﬂLz(Q) + 7'3/4+1/(2d)||€T¢f2*'||L%’,‘f,/(d+2>(Q)
+7)|€7F || 2y + 74T CD | g gis2 o) + T2 l€7Pul Loy + 74T/ ) ||ewu\|L377/<d72>(wl)) . (1.6)

Here, the norms || - |1z (q) are defined for p € [1,00] for f € LP(S2) by the formula

2
LP

n,T

/]

o = [ = @) O gy doo
o€

Remark 1.2. The notations 2x and 2’ stem from the Sobolev’s embedding H'(Q) C L**(Q), with 2x =
2d/(d — 2) and L** (Q) C H=1(Q), with 2¥' = 2d/(d + 2).

Before going further, let us remark that the existence of a function satisfying the conditions 77
for any arbitrary geometric setting is due to Fursikov and Imanuvilov [I0, Lemma 1.1] (see also |21}
Proposition 3.31]). The conditions 7 are the pseudo-convexity conditions of the weight function ¢
with respect to the Laplace operator, which are known to be necessary and sufficient conditions to get a local
L? Carleman estimate (i.e. for compactly supported functions u, and with fo,, = 0) for the Laplace



operator with the same powers of the Carleman parameter 7, see [12, Chapter XXVIII] and, for instance [21],
Section 3.6 and Section 4.1.2] for a more recent perspective.
The Carleman estimate (1.5 coincides with the one in [I4] except for the terms involving the norm

Lg,fi/(dﬂ)(Q). This term and the estimate on u in L2d/(d 2)(Q) are the main novelties of our result
and allow us to quantify efficiently unique contlnuatlon properties for solutions of elliptic equations with
respect to the norms of potentials in LP(€2).

Note that estimate implies an estimate on 7'/2|[e™¥u| 1 () from the right hand side of (L.5), thus
on 71/2||eT“"u||L2d/(d_2)(Q). Therefore, estimate does not allow to recover estimate directly from
classical Sobolev’s embeddings.

Local L? Carleman estimates (i.e Carleman estimates for compactly supported functions) have been derived
in many situations, but usually to focus on questions related to unique continuation. We should in particular
quote the breakthrough article [I6] obtained for a radial weight log(|x|), which rather corresponds to a limiting
Carleman weight in the sense that the second condition is satisfied with 8 = 0 (see also the previous
results [2 [I1]). Later, several works have been devoted to get local Carleman estimates with some specific
strictly convex weights, see e.g. [3| 25, [26], which have later been revisited and improved in the works [I8] §].
We also point out the more recent works [7, [6] for local Carleman estimates with some specific strictly convex
weight. Here, we emphasize that we will consider general weight functions satisfying the strict pseudo-convexity
conditions 7, similarly as in [8]. In fact, the article [§] proves that, for all 2o € R, if ¢ is pseudo-
convex at g (that is |Ve(xo)| # 0 and condition at © = xg), there exists a neighborhood K of xy such
that the local Carleman estimate |e™?u||p2a/(a—2 < C|l€”? Au||p24/(a+2) holds for all v compactly supported in
K. The estimates | . . ) thus extend the result in [8] by providing a global Carleman estimate, allowing
source terms in () and boundary conditions in H'/2(99), and estimating  in the H!(2)-norm as well.

Finally, let us also emphasize that Theorem [I.1] presents global LP Carleman estimates, in the sense that
the Carleman estimates 7 hold for functions u having possibly non-zero trace on the boundary. To
our knowledge, this is new, as all the LP Carleman estimates with p # 2 that we have encountered in the
literature hold for compactly supported functions.

Properties of the L7 -(£2) norms. To understand the norms L%T(Q), let us first remark that for p = 2, and
fe L +(Q), by Fubuu s theorem, we have, for 7 large enough,

I£1I22 () < Mz 11220

17122 ) ||f||L2<m(mf 74/ / QI??(T”?’(IIo))lzdfv>>c*||flliz(m-
’ (A

Here, ¢, > 0 is independent of 7 > 7y if 79 is chosen so that 79 > ¢ 3 where g9 > 0 is such that for all
e € (0,e0] and z € Q, there exists a ball of radius €/8 contained in B(x,e/2) N Q (it is not difficult to check
that such an € > 0 exists by compactness and smoothness of the boundary 9€). The norms L%J(Q) are thus
equivalent to the usual L?(€) norm uniformly with respect to the parameter 7.

For other values of p € [1,00), these norms are less easy to describe, as they somehow encode some mean
informations on the LP-norms localized in balls of radius 7—!/3, as one can see by writing them under the form

(772 (@ = 2o)) £ (@)

£l ) = 7°

L@z, @)

In fact, for p € (1,00), again by Fubini’s theorem, there exists C' > 0, such that for 7 > 79 and f € LP(),

G [ [ e = o) @) dedos
zEQ :IJOEQ
Wy <€ [ [ e = o) g @) drdo, (17
zeQ JxgeN

i.e. the LP norm || f| Lr(q) is equivalent to the norm

4/ (3p)

7560 = s

2@ ||z )



This implies in particular that, for p > 2,

d/6

(72 (@ = 20) £ (@)

P =T
||fHL7,7—(Q) LE(Q) LiO(Q)

<7 ||ln(r1 3 @ — w0)) £ (@) < Cr2 DA £l ). (18)

L2, ()

L3 (Q)

On the other hand, for p > 2, by Minkowski’s integral inequality ([28], page 271), we have, for C' independent

of 7 > 79,
1/p p/2
f(z)|P dx) <C </ (Td/3/ (T3 (x — 20)) f () |? dmo) dx)
e ToEN

avier = ([
2/p 1/2
< Crd/s (/ (/ (/3 (@ — 0)) £ ()[” dx) dﬂfo) =C|fllez - (1.9)
20€Q \Jzen

Similarly, for p < 2, we get, using Minkowski’s integral inequality and the norm equivalence , that the
exists a constant C independent of 7 > 7,

1/p

1 _
ST 7 0 < g < 1 oy (1.10)

Note that, of course, the estimates (1.8)), , and ([1.10) can be used to simplify the norms Lp _ in the
Carleman estimates ((1.5) and (|1.6) and replace them by the classical LP norms.

Finally, let us point out that, for p, ¢, r in [1, 00] such that 1/p+1/q = 1/r, for V € L9(Q) and u € LP(Q),
we have the following Hélder type estimate

[Vl

L@ < lullzz @ Sue%{|‘VHL‘1(B(9¢0,T*1/3))} < Mullzr @ IVIiza@)- (1.11)
To

Application to the quantification of unique continuation with respect to lower order terms. Next,
as a consequence of the Carleman estimates in Theorem we will prove (in Section |8) the following result:

Theorem 1.3. Let d > 3, Q C R? be a bounded domain of class C3, and w be a non-empty open subset of
Q with w C Q. Then there exists a constant C = C(Q,w) > 0 depending only on Q and w such that for any
solution u € H} () of
Au=Vu+ Wi -Vu+div(Wau) in Q,
with
VeLoQ), W,eL"(Q;C%, W,eL%=(Q;C%),
we have:

1. If go € (d/2,00], ¢1 € ((3d —2)/2,00] and g2 € ((3d — 2)/2, 00| and
1+1<4<1_1/d>,

@ 3d —2

the function u satisfies

) )
1€ IV Iy HIW I ) HIWa 15200 I oy Wl aa gy ) 4192 )

lull 20y < e pe reEe [ull p2a/a-2) (0 » (1.12)
with
1 . 2
2 2q 2q 2q
v(q) =




2. If qo € (d/2,0], q1 € ((3d —2)/2,00] and g2 € ((3d — 2)/2, 0], the function u satisfies

(a0) §(q1) 5(a2)
€ (VI8 1WA Ny 1WA 1520, )

||U||L2(Q) < Ce HUHde/(d—z)(w) ) (1.13)

with

M) = —5.

1— =
2q

Remark 1.4. Note that the conditions in item 1 and in item 2 do not overlap, in the sense that there are cases
in which the conditions in item 2 are satisfied while conditions in item 1 are not (for instance 1 = q2 = 3d/2+¢
with € > 0 small), and reciprocally (for instance ¢1 = (3d — 2)/2 + € with € > 0 small and gz = o).

Several remarks are in order.

First, unique continuation is known to hold for general V € L% (Q), W € L9 (Q;C%), and Wy € L%(Q; C?)
for g9 > d/2, g1 > d and ¢qo > d, see [32], and [I8] where even strong unique continuation is proved in that
case when go > d/2, ¢ > d and g3 > d. (These classes of integrability for the potentials are sharp, see [19].)

These unique continuation results require the use of a Carleman estimate and a delicate osculation argument
inspired by [31], see also [I8]. In this argument, the weight function in the Carleman estimate depends on the
solution, making the quantification of unique continuation with respect to the norms of the potentials difficult
to track. Another related result is the article [23], which quantifies unique continuation properties for the
Laplacian operator with lower order terms in the sharp integrability class, but not with respect to the norms
of the potentials. In fact, since this work is based on [I8], as said above, it is not clear how the proof in [23]
can be made quantitative with respect to the norms of the potentials.

Therefore, when trying to quantify the unique continuation property with respect to the norms of the lower
order terms, the known results rely only on the use of a Carleman estimate, which, as pointed out in [3], does
not allow to go beyond Wy € L34=2)/2(Q). This corresponds to what is done in [7, [6] using LP Carleman
estimate. But the results in [7] describing the maximal order of vanishing of solutions of elliptic equations
require V' and W respectively in L% () with ¢o > d(3d —2)/(5d —2) and in L9 (Q) with ¢; > (3d —2)/2, and
W5 = 0. Also note that Theorem 1 in [6], which applies when W; = Wy = 0, exhibits the same dependence in
the L%(Q) norm of V as in Theorem

Let us also mention that taking L? Carleman estimates, one cannot reach the same integrability class as
in our case, see for instance [9].

Finally, note that using a quantitative Caccioppoli inequality with singular lower order terms, see for
instance [7, Lemma 5], and Sobolev embedding, one can show that the inequalities and remain
true by replacing |[ul|f24/(a-2) () bY [[u]|£2(w,) for w1 an open subset satisfying @ C w; (Since w is any arbitrary
non-empty open set in Theorem this is of course a harmless condition).

Let us also note that one can be slightly more precise in Theorem in (1.12) and (1.13), by using the
intermediate bound in (1.11]) instead of the extremal one in the proof of Theorem

Strategy of the proof of Theorem In order to prove Theorem [1.1] we start with the easy geometric
case of a vertical strip, with a linear weight function z — x;, and a second order operator of the form
A —x 2?22 )\]0?, see Section [2| for the statements.

Although this might seem af first to be a very specific case, we will check in Section [7] that this is not the
case, due to the two following facts. First, if we localize the functions in a ball of radius sufficiently small, one
can do a change of variables (in the spirit of the normal geodesic coordinates), such that the conjugated operator
e™?A (e~ 7%-) can be recast into the problem in the strip with an operator of the form A — x4 2?22 )\JOJZ and
the linear weight function « — z;. Second, one can glue the local and boundary Carleman estimates obtained
that way, and the localization terms introduced by the cut-off can be absorbed through that process if the
localization is not too strong. Therefore, we have to balance the two processes, and to choose the localization
rate appropriately. It turns out that a localization in balls of size 7—1/3 works.

Accordingly, most of the article in fact focuses on the proof of a Carleman estimate in the strip for an
operator of the form A — x; Zj:2 )\]8]2- with linear weight x — x1. We do that in several steps.

First, due to the specific geometric setting, one can perform a Fourier transform in the tangential variables
(which are transverse to the gradient of the weight function, i.e. to the direction e;), and construct explicitly
a parametrix, see Section [3] In fact, this approach is inspired by [25] 18] and by recent works on Carleman
estimates for Laplace operator with discontinuous conductivities, for instance [22].



Once this is done, it is clear that we will have to get estimates on the operators appearing in the parametrix.
Dealing with the Hilbertian norms can be done using classical multiplier type arguments and Parseval’s identity,
see Section [l

It thus remains to understand how to get estimates on the operators appearing in the parametrix in
L(L2@+2)(Q), L24/(4=2)(Q)) for instance, and other operator norms involving non-Hilbertian spaces. In
order to do this, we will rely on the Fourier restriction Stein Tomas Theorem, recalled in Theorem [5.1] see
e.g. [30], [29, theorem 2, page 352], or [27, Corollary 2.2.2]. Similarly as in [I7), [3], this approach will allow
us to give an efficient manner to estimate the norm in Z(L?¥/(4+2)(R4=1) [24/(d=2)(RI=1)) (among others)
of operators given in Fourier, see Section [5.2

Using these results, and the explicit formula obtained for the parametrix, we manage to get L? Carleman
estimates in the strip for an operator of the form A — zy 2?22 )\j8]2- with linear weight = +— x1.

Let us finally emphasize that we made the choice of presenting the proofs in a (hopefully) pedagogical
manner, and thus of giving all the technical details required to get through the whole proofs. Therefore, some
parts, for instance regarding the Hilbertian estimates or the Fourier restriction theorems, might seem merely
classical, but we made the choice to present them nevertheless since we did not find them in the literature in
the precise version we needed.

Outline. The rest of the paper is as follows. Section [2] is devoted to state Carleman estimates (namely
Theorems and in the specific case of a vertical strip, with a linear weight function x — 7, and
for an operator of the form A — 3 2?22 Ajaf. Section [3| gives a parametrix of the conjugated operator
(A — 1y Z?:z )\j(‘??)(e*”“ -). Section || explains how to get Hilbertian estimates on the parametrix.
Section [| then recalls Fourier restriction theorems and explains how they can be used in our context to
estimate .Z(124/(d4+2)(Rd—1) [2d/(d=2)(R4=1)) norms (among others) of operators given in Fourier. We then
derive all the estimates needed on the operators appearing in the parametrix in Section [f] and conclude the
proof of Theorems [2.1] and [2:4] In Section[7} we explain how to derive the proof of Theorem [I.I] from Theorem
We then provide in Section [8| the proof of Theorem Finally, in the Appendix, we provide some
reminders of classical results, namely the Hardy-Littlewood-Sobolev theorem and the stationary phase lemma
(the refined version in [I]). We also give the proof of a technical result of interpolation used in Section

Notations. Here is a set of notations we will use throughout the article.

For every z € R%, 2 = (11,..,24), we set x = (21, 2’), where 2’ = (12,..,24) € RI1,

The notations V and A respectively stand for the gradient and the Laplacian with respect to x = (1, .., z4),
and V' = (02,..,04) and A’ = 2?22 8]2- are, respectively, the tangential gradient and Laplacian operators.

In all the document except in Section 5| the Fourier transform is always taken to be the Fourier transform
with respect to 2’ = (z2, .., 24), and its dual variable ¢’ € R9~! is then indexed by ¢’ = (&, ..,&,). The Fourier
transform of a function f € .#/(R?!) will be denoted by f:

~ 1 Py
f(fl) _ m /]Rdi1 e iT - f(x') dx', gl c Rdfl'

Note that for a function f defined on R? such that f(z,-) € .7/(R%), f(a:l, -) denotes the partial Fourier
transform with respect to x’, that is:
o~ 1 vy
N —iz"-& / / / d—1
f(z1,€) = @ /}R‘H e f(zy,2")da’, ¢ e R (1.14)

2 A Carleman estimate in a strip
In this section, we focus on the case of a strip
Q= (Xo, X;) x R, (2.1)
and on the following elliptic problem
Av — 23 2?22 Ajafv = fo+ fow +divFE in Q,

v (Xo,2") = g(a'), for 2/ € RI-1, (2.2)
v(Xy,2") =0, for 2’ € R41,



where
fo € LA(Y), fow € L2VEFD(Q), Fe L2(Q;CY, and ge HY/2(RYY). (2.3)

To be able to solve the elliptic problem ([2.2), we assume the coercivity of the operator —A + 1 Z;l:z ,\jaJZ
in Q, that is

d
Jeo >0, VY € [Xo, X1], VE € RY, 7 <Y 1= mM)Ig1* < lél, (2.4)

j=1
where we have set A\; = 0 for convenience. Under condition (2.4 and the integrability and regularity assump-

tions (2.3]), the problem (2.2]) has a unique solution v € H* ().
Our goal is to prove the following Carleman estimate:

Theorem 2.1. Let Q be as in (2.1) with Xo < 0 < X3 and max{|Xo|,|X1|} < 1, and assume that the
coefficients (Aj)jeqi,....ay € R? satisfy A1 = 0, ([2.4) and that there exist positive constants m, and M, such
that
0<m, < min A < max A\ < M,. (2.5)
j€{2,.d} je{2,.d}
Then there exists a constant C' > 0 depending on cg, ms and M, (independent of Xo, X1) such that for all

(f2, foxr, Fyg) as in [2.3), if the solution v of [2.2) satisfies (O1v — F1)(X1,2') = 0 for ' € R~ then we
have, for all T > 1,

3/2 1/2

[ve™ [ r2(0) + 7 [lve™ [0y < C (||fz€m1 2@ + 74V D four e | p2asarn ()

+T||F6T11 HLQ(Q) + 7'3/4||g6TX0HHl/Q({Xo}XRd_l)) 3 (26)

and

PR CD 9™ | a2 () < C (|\f2€m||L2(Q) + 73T CD| £y €7 | L2ascaran (@
7l e | 2y +T3/4+1/(2d)||geTXoHHW({XO}XRLH))_ (2.7)

Remark 2.2. A solution v of with (fa, fos, F,g) as in only belongs a priori to HY(Q). Therefore,
trace theorems do not allow to define directly its normal trace. However, Vv — F satisfies Vv — F € L?(; C%)
and div(Vv — F) € L*(Q) + L*Y/(@+2(Q) and it is easy to check that if R € L*(Q;C%) and divR € L*(Q) +
L24/(d+2)(Q) | then R-n is well-defined as an element of H='/2(9Q), see [4, Theorem II1.2.43]. Therefore, the
trace (Vv — F) - n is well-defined as an element of H=/2(9Q).

Remark 2.3. The strict positivity of the coefficients (\j);eqa,... ay guaranteed by condition (2.5)) is the strict

pseudo-convexity condition for the operator —A + x1 2?22 )\]8]2- with respect to the weight function x — x1,
see for instance [21, Part 1, Definition 8.30].

As one easily checks by working on w defined by w(z) = e™v(x) in 2, Theorem is implied by the
following result, whose proof is developed from Section [3] to Section [6}

Theorem 2.4. Let Q be as in with Xo < 0 < X7 and max{|Xo|, | X1|} < 1, and assume that the
coefficients (\j)je(1,... .4y € R? satisfy Ay = 0, , and , Then there exist constants C' > 0 and 19 > 1
depending on cq, m, and M, (independent of Xo, X1 ), such that for all (fa, fow, F,g) as in , if the solution
w of

Aw — a1 Z?:z Ajafw — 2710w+ T2w = fo+ fow + divE  in Q,

w(Xo,2') = gla'), for ' € R, (2.8)

w(Xy,2') =0, for ' € R,

satisfies (01w — Fy)(X1,2") =0 for ' € R4Y then for all T > 70,
72 |wl| 20 + 72Vl 220

c (||f2HL2(Q) + AV CD | o || p2asasar iy + TIF |2 () + 7_3/4HgHHl/?({Xg}de*l)) , (29



and
7_3/4+1/(2d) ||w||L2d/(d_2>(Q)
<C (Ifallzz) + 74 D) four| aascarnay + TIF Iz + 74 @Dl g oy xpary) - (210)
In fact, the correspondence between Theorem [2.1] and 2.4]is given by

(f27 f2*’v Fv g) - ((f2 - TFl)eTxl ) f2*’67w1 ) Fe™ ) geTXO) .
Theorem [2.1] and Theorem [2.4] are then completely equivalent, and we thus focus only on the latter.

3 Construction of the parametrix in the case of a strip

The goal of this section is to explicitly construct the solutlon w of . ) for 7 > 1, (fa, fasr, F,g) as in ,
under the assumptions that the domain () is a strip as in , and the coefficients (A\j)jeft,ay € R? satlsfy
A1 =0, and .

In order to do that, we take the partial Fourier transform in the variable 2/ € R?~! of with dual
variable ¢ € R4~1:

4 d
(01 —7)? Z — T §w—f2+f2*/+81F1+IZ§J for (z1,¢') € 2,
=2 Jj=2 (31)
@ (X0,€) = 3¢, for & € R,
w(Xy,£) =0, for ¢ € RI-1,

We then show the following:

Proposition 3.1. Let Q be as in (2.1)), and assume that the coefficients (\;)jeq1,....ap € R? satisfy Ay = 0,
.4) and [.5). We introduce the function 1 : Q — R defined by

d
P(@1,8) = | Y (1 —21)))E2, 1 € [Xo, X1, € e R (3.2)
j=2
For all T > 1, for all (f2, fow, F,g) as in ., the solution w of . formally satisfies
d
w = KT,O(f2 + f2*’) + K‘r,l(Fl) + ZKT,j(Fj) + R'r(w) + G'r(g) + H‘r((alw - Fl)(Xla ))’ (33)
j=2

where, using the partial Fourier transform (1.14), the operators K, ;, for j € {0,--- ,d}, and R are formally
defined for f depending on (x1,7') € Q, by

Iz»j\f(mhg/> = / (Xo.X )k‘r,j(xhyhg/) A(ylagl) dyh <x17£/) € Q7 (34)
Y1€(Xo,X1

ﬁr\f(ffl,fl) :/ (XoxX )Tr(xl,yhf’)A(ylafl)dyh (#1,€) € Q, (3.5)
Y1 0,41

with kernels given, for (x1,y1,&") € [Xo, X1]2 x R4™L by
kro(z1,y1,€) = —Ly(ar,e)> /mm{xl,yl} —T—a) =[5 @) dn =[5 v E0E) din dz,
T, ) 9 1, T
Xo

y1_7—_ 1 o7 £ dus — (Y1 7. L~
+1¢(w17§,)<71y1>m1/ (T ) B[ B ) g 36)

Z1

krp(z1,91,8) = —1w(z1,§')g71y1>z1€7T(y17w1)+f;11 v L) din

+ 1¢(m1,§/)>71y1<11€T(I17y1)7f’;11 voE) Ero(z1,y1,E) (T +¥(y1,€)), (3.7)
k'r,j(l'laylvg/) = igjk‘r,()(xlvylagl)v .7 € {27 e ad}v (38)
TT(‘Tlayhf) = kT,O(mlayl;fl)alw(ylvé-/)'



The operators G and H, are formally given in Fourier for gy € .7 (RI1) by

Grgo(z1,€') = gr (21,90 (€), (21,€) € Q, (3.9)
Hygo(1,€") = by (21,€)50(€"), (21,¢) €9,

where g, and r are given, for (x1,£) € [Xo, X1] X Rd—l} by

gf(th/) _ 1w(x1,§’)2re‘r(xl Xo)= [xp ¥(T1,€’ )dyl (3.10)

z1 o
hr(21,¢") = 1w(m1,£’)>7/ e T Ja @8 - fil @ )dyldﬁ
Xo

X1 T ~ ’ ~ X1 ~ ’ ~
yerener / T a7 V@) A= [ v ) din g
T

Remark 3.2. We emphasize that Proposition is formal. We will prove later, in Theorem [{.1], Proposi-
tion and in Proposition that the operators K+, (K7 j)jeq1,... ay, Br, Gr and H respectively belong to
L(LA( )+ L2 (Q); L2(Q)), (L(L2(Q); LA())?, L(L2(Q); LA (), L(H'(Q); L (), L(H'/?(09Q); L*(2)),
and L(H2(Q); L>()). A simple density argument would then allow to justify rigorously formula (3.3).

Proof. The basic strategy of proof of Proposition consists in the factorization of the operator (9; — 7)% —
d
Zj:Q(l - xl/\j)szi

d

01 =7 =D (=2 ))& = (0 — 7 — (21,£)) (01 — 7 +(21,£)) — Drep(1,€)),

=2

where 1) is the function introduced in (3.2), and the last term should be seen as a correction term.
We thus set

H(x1,€) = fa(x1,€) + Jow (21,6 +IZ§g (21,&) + (a1, £ )(21,€), 1 € [Xo, X1, & € R,

so that equation (3.1))(;) can be rewritten as
(0 — 7 — (21,8)) (0 — T+ (21, 6)) B = H+ 0 Fy, Q.

Accordingly, introducing the additional unknown z(z1,&') = (01 — 7 + ¢ (z1, &) W(x1, '), equation (3.1) can
be rewritten as a system of two first order ODE indexed by ¢’ € R4~

(01 =7 +9(21,6)) D21, €) = E@r,€) in 2,

(01— 7 — (@1, €)) 2ar, &) = H(a1,€) + 0, Fi(21,€) i Q, (3.11)
D(Xo0,&) = §(E), on RYT, |
w(X1,8) =0 on R

Let ¢ € R4~1. Solving (3.11])» from the right, which can be done easily by working on (Z — ﬁl)(~,§’), by
Duhamel’s formula we get, for z; € (Xo, X1),

x AW O =~ -
2y, &) = e "KL VO I (g, 5 B (X, €) + By (21, €)
X1 ~ ’ ~ ~ -
_/ e T O I () 4 (7 ey, €D P (,€)) dyr, (3.12)
x1

where we did the additional remark that, using (1 1), 2(X1,§') = 010(X1, ).

We then focus on the equations (3.11))(1 3 4y giving @(-,£’) in terms of 2Z(-,£’). One should notice here that
3.11)(3,4) give two boundary conditions for a first order equation. Therefore, we do a choice when solving
3.11) (1) based on the fact that we want formulae involving only exponentials of nonpositive numbers In order
to do such a choice, we analyse the sign of the function 1 — —7 +1(z1,¢’). Due to conditions (2.4) and (2.5),
the function x; — ¥ (x1,£’) is strictly decreasing on [Xy, X1]|. Therefore, the function zq — —7 +1/1(:L'1,§ ) can




vanish only once on [Xy, X;], and if it vanishes at some point z, ¢ € [Xo, X1], it is positive in [Xo, z,¢) and
negative for z1 € (z, ¢, X1].
Accordingly, for z; € [Xg, X1] such that ¢ (z1,£") < 7, we use the formula

X1 ~ T N
w(xy,&') = __/ e T@EmE)HT (e )dylg(flvfl) dzy,
x1
while for 21 € [Xo, X1] such that ¢ (x1,&") > 7, we use the formula

q - N g~ Z1 _F [T TN di -
@(a1, &) = o7 (@1=Xo0) =[x, ¥(F1.€ )dyyg(g/) Jr/ oT@1=T) [ Y(T1€ )dylz(xl,fl) 47,
Xo

These two formulae can be written in one under the form

X1 P~ Ty ~ eI\ g~
T €) = ypner [ TETIIOO DG, ) am,

Z1

(21— Xo0)— [t $(F1,E") dj1~ ‘
+ Ly(an,e)>r <6 (F1 = X0)= g w0£ et 9(5')+/
X

0

1 ~ z oty g
eT(wl_Zl)_ffll P(Y1,€ )dylg(%hfl) d%l) . (313)

The formulae given by Proposition 3.1 are then deduced by putting together formulae ([3.12) and (3.13). Details
are left to the reader. O

4 Hilbertian estimates

The goal of this section is to prove the following result:

Theorem 4.1. Let Q be as in (2.1) with Xo < 0 < X3 and max{|Xo|,|X1|} < 1, and assume that the
coefficients (\j)jeq1,.. .ay € R? satisfy Ay =0, (2.4) and [2.5).

Then there exist constants C > 0 and 19 > 1 depending on co, m. and M, (independent of Xy, X1) such
that for all T > 1o, for all (f2,F,go,g1) € L*(Q) x L*>(Q;C%) x HY/2(R41) x H-Y/2(R41Y), the function w

given by
d

w=K,o(fo) + K1 (F) + Y K- j(Fy) + G- (g0) + Hr (1), (4.1)

j=2
where (K7 j)jeq0,.. ,ay, G- and H. are given by Proposz'tz'on satisfies:

T3/2||’u}||L2(Q) + 7'1/2||V/w||L2(Q) < C||f2||L2(Q) + CTHF”L?(Q) + CTHgo‘lHl/Z(Rd—l) + C’THg1 ||H—1/2(Rd—1). (4.2)
Besides, for w € L?(Q) satisfying V'w € L?(Q), for all T > 10, R, (w) introduced in Proposition satisfies
T2 Re (w)l| 20 + 72V Re (w)| 12(0) < ClIV'w]l 20 (4.3)

Remark 4.2. The estimate (4.2)) above gives estimates on the norm of the operators K, ; for j € {0,--- ,d} as
operators in L (L?*(Q), L*(Q)), and on the norm of the operators G and H, in, respectively & (HY?(R4~1), L?(Q))
and L(H-Y2(R1), L2(Q)), but with no claim of optimality. In fact, as we will see later in Theorem
the estimate on the operator norm of G, is not sharp. On the contrary, the ones on K, ; for j € {0,--- ,d}
are sharp, see for instance [21, Part 1, Theorem 4.4 and Theorem 4.10] regarding K, q.

In this Section and in Section @ all the constants C' depend only on ¢y in (2.4) and m., M, in (2.5)), and
this fact will not be mentioned in the sequel.

Proof. We first remark that w as in (4.1)) satisfies by construction the following version of (3.11]):

(00— 7+ 6(1,€)) B0, €) = Far, ) for (¢1,€) € .

(01 =7 —=(21,§)) - F)(21,8) ~
:fz(thl)+iZ;l:2§ij(9U1»§/)+(T+¢($1,§/))Fl($1,§/) for (21,£') € Q, (4.4)

{U\(XO?gl) = .66(6/)7 if w(Xo,f/) > T, ’

B(X,,€) =0 it (X1 €) < 7

(Z - F1)(X1,¢) = 1(§), for ¢ € RI-1,
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where Q1 , = ({¥(21,¢') > 7} NQ) U {¢(x1,¢) < 7} N Q). Note that, given ¢’ € R¥~L, due to the conditions
and , there exists at most one element z3(¢’) € [Xo, X1] such that ¢(z7(¢’),¢") = 0. Consequently,
given ¢ € R {z € (Xo,X1), (#1,£") € Qi +} is either the whole interval (X, X1) or the union of two
disjoint intervals (Xo, z3(£')) U (z5(¢'), X1).

Since this system is now a family of ODE indexed by the tangential Fourier parameter ¢ € R?~! from
now on, we see £’ € R4~ as a free parameter. R

We then perform estimates on Z(-, ¢') using (4.4) (2,5) by setting z(-, &) = 2(-,&') — Fi(-,¢'), which satisfies:

{(alrw(xl,g))z(xl,s) Fala1,€) + 100, & (21, €) + (7 + (1, €) Fi(a1,€) in Q,
z(Xlagl) = ./g\l(fl), on R4-1,

We then use a multiplier approach, taking the square of both sides and integrating in x1:

X1
/X (1012(x1, &) + (7 + (21, €))* + O1p(w1,£")) Z(21,€)[?) dwy + (7 + (X0, £))|Z(Xo, &)

2

X1 ~
= (T+w(X17£/))|z(Xla£/)|2 +/X f2 £E17 IZ£J xl? (T—'—w(xlvf/))Fl(xlagl) dxl

X1
< (4 (X ENFEN + (d+ 1) /X Falar, €2 day

X1

d Xl ~ ~
+<d+1)Z/ &, Fj (21, € dy + (d + 1)/ (7 + (21, )| Fy (21, &) day.
j=27%Xo

Xo

Note that, within the setting of Theorem the function v defined as in (3.2 is such that there exists C; > 0
for which

€1 <Y(z1,8) < CilE], —Cil€| < oz, ¢) < _kl (4.5)

Vo, € [Xo, X1], V&' e R, .
Cy Ch

Accordingly, for 7 > 7y large enough, there exists C' > 0 such that for all ¢ € R?~! and x; € [X, X1],

L+l )? < (7 +0(21,€)* + 01(21,€) < C(7 +I€))?,

THIE) <7+ P(r1,€) <O +[E)).

|—Q

ol
Therefore, the above estimate yields:

X1 X1
/ (r + €)% 2, €) diry < C(r + ENIGEN + C / |l )2 day

Xo

X1
+02/ &, >|2dx+c/ (r + 1€ )| B (21, €)2 dry.

~

Recalling that z(-,&') = 2(-, &) — F1(+, &), we obtain

X1 X1
/ (7 + €)% Z(21, &) P day < C(r + |€)D]G(€)]* + C/ | fo(@1, &) day

Xo

X1
+CZ/ &5, (a1, &) 2 dx1+c/ (r + €D P2, &) das.

We then derive estimates on w(-,¢’) from the equation (173’4), again by taking the square of both sides of
(1) and doing integration by parts. If for all z; € [Xo, Xo], ¥(x1,&’) # 7, we do the computation at once by
doing the integration by parts on (X, X1), and if there exists a7 (¢') € [Xo, X1] such that ¥(z7(¢'),&) = 7 (re-
call that such an x7(£’) is necessarily unique), we do the computations on [Xg, 21 (£’)) and on (z7(¢'), X1], and
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we sum the estimates. In this latter case, 01w should be interpreted as 1, <z (¢/) 010 (71, ")+ 14, 521 (61 1 W (21, §').
There is a priori no reason that this coincides with the derivative of @(+,¢’) in the sense of 2'(Xy, X1), which
would require some continuity conditions on @(x%(&)*,¢’). We get:

X1
/ (lov@ (21, &) + (7 = (21,€))? = (21, £)) [(1,€)[?) dan

Xo

X1
+ (U(X1,€) = )|D(X1, )] — (Y(Xo, &) — 7)|[@(Xo, ) :/ Z(21,&")|? das.

Xo

Accordingly, using the boundary conditions (4.4 3 4) and ( .,

X1
/X (18181, €2 + ((r — B, €))? + [€]) |@(a1, €)2) da
0 “
< COHX0,€) = ) Lyxocnor Gol€) + C / 21, €2 diry.

Xo

Therefore, there exists C' > 0 such that for all 7 > 75 and ¢ € R4~

X1
/ (1001, )] + ((r — l1,€)? + [€']) |1, €)|2) das

Xo

X1
XL+ C 1‘)/ Faler, )2 day

+|€’| (T +1¢1)?
‘5 |2 Z |2d C X F )2d
T+ €2 (71, € 1+ | 1(z1,8")|" dxy.

We finally use that there exists a constant such that for all & € R™1 7 > 74, and 2; € [Xo, X1],

< C(W(Xo0,&) = T)ly(x0.)>7 190 (&) + C—

2
(= v+ > 5 (+EL) @ e) - s < el
1 1 1 1 |€"|?

— —oms S L

T STEET GHEDR S G

so that

X1
/ (Twm,w T (e, € + 1|s'|2w<x1,5/>|2) dy

Xo

X1
< CIE (€ + Ol @+ 05 [ 1tane |2dx+CZ/ a0, € din,

Integrating in ¢ € R?~! and using Parseval’s identity, we derive (4.2).
To prove (4.3), we simply remark that R,w = K, ofs with fa(z1,£) = O1¢(z1, &)W (21, "), which clearly
satisfies || f2 z2() < Cl|V'w||12(q). Accordingly the estimates on K, in (4.2)) immediately provide (4.3)). [

In view of the above computations, for w as in (4.1, we have good estimates on 9@ in L?*(Q4 ), where

Q. = {(@1,€) € Q, with d(@1,€) > 7} U{(21,€) € Q, with d(a1,€) < 7). (4.6)
Indeed, from the above computations, for w as in (4.1)),
d
7101@| 20, ) < Cllf2llzz@) + C7 Y I1F 220 + CTllgoll /2 a1y + C7llg1ll r-1/2ga-ry- (4.7)
j=1

In particular, if one knows that w € H'(£2), we get an estimate on dyw in L?(12).

Note that the above proof and the previous remark immediately give the following result, whose proof is
left to the reader, since all solutions w of with source terms (fa, foxr, F, g) as in belong to H'(Q),
and the terms ||V’w||i2(9) coming from R, (w) and can be easily absorbed by taking 7 large enough:
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Proposition 4.3. Let Q be as in (2.1) with Xo < 0 < X7 and max{|Xo|,|X1|} < 1, and assume that the

coefficients (Nj)jeq1,.. .y € R? satisfy Ay =0, (2.4) and [2.5).
Then there exist constants C > 0 and 19 > 1 depending on ¢y, m. and M, (independent of Xy, X1) such

that for all (fa, fowr, Fyg) as in (2.3) with fo.r = 0, if the solution w of (2.8) satisfies (01w — Fy1)(X1,2') =0
in R¥=1, then for all T > 19,

d
w =K o(f2) + Kr1(F) + Y Krj(Fj) + Re(w) + G-(g),

j=2
where the operators (Kr;)ic{o,... .a}, Br and G, are defined in Proposz'tion and

2w 2() + TlO1wl L2() + T2V Wl r20) < Cllfellze@) + CTIF |22 (9) + CTllgll vz a1y,

We now check that the estimate on G can indeed be improved:

Theorem 4.4. Let Q be as in (2.1) with Xo < 0 < X3 and max{|Xo|,|X1|} < 1, and assume that the

coefficients (\j)jeq1,... .ay € R? satisfy \y =0, (2.4) and (2.5), and let G, be the operator in (3.9) and (3.10).
Then there exists a constant C' > 0 depending on ¢y, m. and M, (independent of Xo, X1) such that for all
7> 1, for all g € HY/?(R41),

G (92 + 101G () L2y + 7 VG (@) l2(2) < Cllgll gz @a-1y,

where Q0 -+ is defined by (4.6).

Remark 4.5. Note that the estimates in Theorem[{.4) yield better estimates than the ones of Theorem[{.1] on
the L (HY?(R4™1), L2(R?)) norms of the operators G, and V'G,, and are in agreement with the ones obtained

Proof. For 7 > 1 and ¢ € R?~! such that ¥(X,, &) > 7, we introduce x5 (¢') € (X, X1] as the unique solution
of (a3 (&),&) = 7 if it exists, or z3(¢’) = X1 otherwise, and we compute

’

&)
0197 (21, &) das.

zi(¢) ) zy (&) ) ) x7 (
/ lgr (21, &) dzy  and / €' Plgr (21, €)P der, and /
Xo

Xo Xo

In order to do that, we recall that, within the setting of Theorem [£.4] we have
. 1
HC > 03 Vf/ S Rd_la v(xhyl) S [X07X1}2 Wlth Y1 < X, ¢(y1751) 2 w(xhg/) + a‘ng.’E] - y1|7
1
IC > 0) Vfl € Rd_la VT > 1; v5(:1 € [XOamy{(gl)]a 6|£l||xi(€l> - '/I"1| ST - 1/1(351,5/)7

so that

z7 (¢") zy (&) © ,
[ ol < [ e e i g
Xo Xo

zy(€)

< eQ(T—w(wl75'))(331—Xo)—\fll(xl—Xo)z/C dry

o~

Xo
z7(¢)

< 6—2\5'|(£I(f’)—fﬂl)(fﬂl—Xo)/C—lf/l(-Tl—Xo)z/c dr;

5\

(Xo+z1(£))/2 z7 (&)

g/ e—2|§'|<mi(s')—zn(zl—xo)/odml+/ 1€ =X02/C g

Xo (Xo+a3 (€))/2
(Xotai€N/z . #1(€) o

g/ o= 1€I(@1 (€)= Xo) (21— X0)/(2C) d$1+/ €11 (€)= Xo) @1~ X0)/C gy
Xo (Xo+a7(€))/2

(Xo+z7(¢")/2 okt
< 2/ e~ €@ (€)= Xo) (31 X0)/(20) g,
Xo

. 1 N
<len{wa|xl(§) X0|}'
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It is then easy to check that, for 7 > 1 and ¢ € R~! such that ¢(Xo, &) > 7,

x1 (&)
/ g0 (21, € dera |9 (€1) 2

Xo

. 1 ‘mi(gl) X0|}} ’ "2 C / N2
~ O ) X .
< (wxi??»f foin { b L ) €110(E) < oy l€la(e))

Integrating in ¢ € R?~! and using Parseval’s identity, we obtain that

G (g)ll 2 () < Cllgll 172 @a—1y.-
Similarly, we prove that

* (ol

Il( )
/ 1€ 9o (21, €)[2 dia[g(€)]?

Xo

. 1 ATy AN ! |2 1/2)¢1 |2
<C<¢<Xi‘f§?>>T{mm{|x;<e>xoy'f“xl(f) Xol}}> €llg(€1 < CrIlg(€P,

so that there exists a constant C' > 0 such that for all g € HY/?(R%~1),
7—71/4||V/GT(9)”L2(Q) < Ollgll g2 ga-1y-

We then check that

Ngr(x1,E) = (1 —(21,€))gr (21,8).
Then, if ¢ € R9! is such that ¥(Xo,&') > 7 and ¥(X1,¢') < 7, using that for all z; € [Xo,x%(¢")),
T =P(z1, &) < CE|21(E) — 21|, we get

z; (&) x} (&) . ,
/ 0197 (21, &) * dy < / (1 — (1, 5/))2627(“4{0)72 g ¢ w187 dun dxq

Xo Xo
7 (€")
<C ' €12 (2% (&) — a1)2e 2 1@ (E) =21) (21 =X0) /O~ 1€ (21 = X0)*/C g,
Xo
(Xo+27(£1)/2 Nt (e
< C/ 1€ (at (¢ — X0)26*2|5 (27 (€)= Xo) (21 =X0)/C g4,
Xo
zi(¢) o
n c/ IE2(2% (&) — 1) 26~ 1€ 1 (€)=X0)(@1-X0)/(2€) g,
(Xo+zi(£))/2
(Xo+o1(¢)))/2 R
<C €2 (23 (€)) — Xo)2e 1€1@1(€) = Xo) (21 = X0)/(2C) g
Xo

ko) ="}

< Cmin {[¢'](27() = Xo), [€'*(27(§) — X0)°} < C'min {ﬂ)(Xo, §)—r, T

In particular,
zy(¢") o i
[ e O danlgte))

Xo

N _ N _ 3

<o sup o {PEREIST CEREZI ) il ? < o)
$(Xo,8)>T 14 14

Similar estimates can be achieved for ¢’ € R4~! such that ¥(X1,&’) > 7, and details are left to the reader.
We thus obtained that there exists a constant C' > 0 such that for all g € H'/2(R4"!) and 7 > 1,

[01G-(9)2 (0 ..) < Cllgllprrz@a-1).-
This concludes the proof of Theorem [4.4] O
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5 Fourier Restriction theorems and applications

In this section, we first recall the classical Fourier restriction theorem, and present a version adapted to our
case. We will then explain how it can be applied to estimate the norms of operators of some specific forms,
which will encompass the ones appearing in the parametrix provided in Proposition

In this section, n > 2 and, for a function f € .#(R"), the Fourier transform f € .#(R™) is given by

. 1 .
(&) = W/%Rn et f(x) da, §eR",

and is extended by duality to functions in .#’/(R™) as usual. We will see later that n in fact corresponds to
d — 1 in the applications we have in mind.

5.1 Fourier restriction theorems
We start by recalling the classical Stein Tomas Fourier restriction theorem:

Theorem 5.1 ([30], see also [29, Theorem 2, page 352]). Let n > 2, and S"~! denote the unit sphere of R™.
Then the map

{ LY(R"™) — L%(S"1)
F flgnan
can be extended by continuity on L>+D/(43)(R™) and there exists a constant C' > 0 such that for all
f c L2(n+1)/(n+3)(Rn)}
221y < Cllfll L2t/ e @y -

It is well-known that this restriction theorem can be extended to any hypersurface with non-vanishing
Gaussian curvature, (see, for example, [27, Corollary 2.2.2]).

In view of the formulae in Proposition [3.1] it is interesting for us to analyze Fourier restriction theorems
on the family of surfaces

= {f € Rn) ?ﬁ(aaf) = 1}’ a € [X07X1L (51)

where by analogy with the function v in (3.2) and the conditions (2.4)), we have set

n

P(a, &) = | > (1—a))E, a € [Xo, X1], £ €R™. (5.2)

Jj=1

where the family of coefficients (\;);eq1,... n) satisfies

n

Jeo >0, Va € [Xo, X1], V&€ €R™, |§|2 < Z (1 — a1 < col€)?. (5.3)

Note that due to condition (5.3)), for all a € [X, X1], the surface ¥, is an ellipsoid and thus [27, Corollary
2.2.2] applies and yields that for all a € [Xo, X1, the map f ~— f |E maps L2(MHD/(n+3)(R7) to L2(%,).

For our purpose, we need a slightly more refined version of this result, guaranteeing that the norm of this
map is independent of a € [Xo, X1].

Theorem 5.2. Letn > 2. Assume that the family of coefficients (\j)je{1,... my satisfies (5.3) for some co > 0.
Then there exists a constant C > 0 depending only on co (and n) such that for all a € [Xo,X1], for all
f c L2(n+1)/(n+3)(Rn)7

171 z2(20) < ClLFNl L2t/ @y (5.4)

Note that the proof below follows the classical one of Theorem and is mainly based on the stationary
phase lemma.

Proof. For a € [Xo, X1], we denote by T, the map T, : f € L'(R") ~ f|2 € L?(3,). We then consider its
adjoint operator T : L?(X,) — L®(R"): For g € L?(%,),

Trg(z) = / eiw'“g(w) d¥,(w), z € R™.
wEX,
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The operator T T, then maps L'(R™) to L>°(R") and, for f € L'(R"),
T3Tof(z) = / / AE=Dw gy, (w) f(7) d7, z eR". (5.5)
n JweL,

Next, we will prove that the operator T;T,, can in fact be extended as an operator from L2("+1)/(n+3)(Rn)
to L2+ 1)/(n=1)(R™) uniformly with respect to a € [Xo, X1]. This will prove (5.4) since

||T(:Ta||$(L2(n+l)/(n+3)(R"),L2("+1)/("’1)(R")) = ”Ta”?%(L?('rﬂrl)/(nﬁ)(R"),LQ(EG))'

To start with, we parametrize the hypersurface 3, through several patches. We first remark that ¥, can
be mapped into the sphere S*~! as follows. For w € ¥, we define £ = G, (w) by

Vie{l,---,n}, & =wjy/1—al;.
We then choose a spherical cap

n—1, 1
It is easy to check that, if, for ¢ € {—1,1} and j € {1,--- ,n}, R, ; denotes the rotation that maps the basis
vector e, to ee;, and leaves all the vectors ey, for k # j,n invariant, then the family of R, ;%,, for e € {—1,1}
and j € {1,---,n} covers the whole sphere. Therefore, there exists a partition of unity (Xc,j)ec{-1,1},je{1,-- ,n}
of the sphere S"~! such that for each € € {—1,1} and j € {1,--- ,n}, the function y. ; is smooth and compactly
supported in R, ;%,. Since by construction, ZEJ Xe,j(€) =1 for all £ € S"~!, we have

Yw € 2, > Xe.j(Ga(w)) = 1.
ec{—1,1}, je{1,--- ,n}
Therefore,
L= Y [ ] xeGue)d P s, )@ TR,
nJwEX,

ee{-1,1}, je{l,-+,n}

Besides, for all e € {—1,1} and j € {1,--- ,n}, x; © Gq is supported in the set of all w € X, such that
ewjy/1 —aXj > 1/4/2n, i.e. the pre-image of the cap R, ;(%,) by G,, that we denote by %, ;. It is clear that

this set can be parametrized by R"~! as follows. Denoting fj = (&, &-1,&41, - ,&n), we easily obtain
. 2 1
Cgﬁ,j = (517"7§j7176hj(aa£j)7§j+17"agn) ) Z(l_aAk)é-]% < 1- % )
k=1
k#j
where the function h; is defined by the formula
. 1 - .
h](a7£]):7 I*Z(I*CLAk)gz, ac [XOaxl]agj EVa,jy
\/ 1-— a/\j =1
k]
with V, ; given by
n 1
Voi=R&eR"™ 5N 1 —a))e3 <1 — —
i & Z( ak)&j; om

k=1
k#j

Therefore, the study of 17T, is reduced to the study of the family of operators

f— <ac »—>/ / XCJ(GQ(HGJ'(G/,gj)))ei(ij_gj)‘gj-FEi(Ej_Ej)h(a,gj) 1+ |th(a,£j)\2déjf(y) dy) :
" JE €V,
where H, ;(a, éj) = (51,..,§j_1,ehj(a,gj)7§j+1, ,_,gn)7 forall j € {1,---,n} and e € {—1,1}.
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Thus, up to a renumbering of the coefficients, we can focus without loss of generality on the operator
corresponding to e = 1 and j = n. Accordingly, we introduce the notation ' = (21, -+ ,z,-1) and £ =
(&1, ,&,-1), and we consider the operator, defined for f € L*(R") to L (R") by

/ / ! h(a,€)))el® T @ T (@8 /1 1 [T, (a,€) 2dE f(7) dT,  (5.6)
n /eRn 1

where ¥ is a smooth function on the sphere S"~! compactly supported in the spherical cap 6, and x(G4(-, hn(a, "))
is extended by 0 for &' ¢ V, .

We have reduced the proof of Theorem [5.2| to the proof of the fact that the maps 7, defined in (5.6) belong
to the space L (L2(+1)/(n+3) (Rn), LQ(”“) ~1(R™)) uniformly with respect to a € [Xp, X;].

In order to show this property, for a € [Xg, X;] and 6 € R, we introduce the family of operators, defined
from LY(R"~1) to L>=°(R"~1) by

:/ / X(Ga(€' hn(a,€)))el =) EH0nu(@) /T LT h, (a, &) [2d f(7) dT’
Rn—l /e]Rn—l

for which we will show that there exists a constant C' > 0 such that for all a € [Xo, X;] and ¢ € R,
170,61l o (L2 /(n) (Rn-1), L2004 1)/ (0= (1)) S C8]7 (n=0/ D), (5.7)

Indeed, 1f the estimate ) holds, then Hardy Littlewood Sobolev theorem (recalled in Appendix in
Theorem [A.1)) implies that, for f € Ll(R") L2/ (n43)(R7),

/5 R ||%7wn75nf('75”)||Li(/n+1)/("_l)(Rn—l) d%n

Tawn—anf (- Tn) din

TnER

[ Tafll L2nsn /=) gny <

2(n+1)/(n=1) (pn—1
Lz, (R ) Li(:'*'l)/("_l)(R)

g ‘

Li(,zl+1)/(n71) (R)

<C

[ |Z,, — .%'n|_("_1)/("+1) £, ffn)||L2~(/,L+1)/(7L+3)(Rn,1) dz,
TnER £ Li(""’l)/(n*l)(R)

<O |17 g sy o F{[Snyy

2("+1)/(W+3)( )

since

n—1 n+3 n—1
n+l <2(n+1) 2(n+1)> '
We thus focus on the proof of estimate , which, as explained above, would conclude the proof of
Theorem This is done in three steps.
In the first step, we check that 7, s maps L?(R"~1) into itself with uniform bounds. Indeed, taking the
Fourier transform 2’ — & of R"™!, we easily get:

TaoF(€) = X(Gal€ hu(a, €)M @) /T T [Vhy (0, €)EF(E),

so that by Parseval’s identity,

170l gaqan 1y < X(Gal€ i, €)@ T5 [V (a, )P

L (R"=1)

We then immediately get that there exists a constant C' > 0 depending only on ¢g in ([5.3]) such that for all
a < [Xo,Xl} and 6 € R,

EA <C. (5.8)

-
In a second step, we check that 7, s maps continuously L!(R"~1) to L>°(R"~!) and get an estimate on its
norm. In fact, we clearly have that

17,

/ 196 (0.8 (G (€, b (a, €)))V/T + [V hn(a, €2 d€') .
Rnfl
(5.9)

_ 1y < sup
Rn 1 Loo Rn 1 X
( ), Lo ( ) 5 cRn-1
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Our goal is then to prove that there exists a constant C' > 0 such that for all a € [X(, X1] and ¢ € R,

s , ¢
i67-6' +i6hn (a,8") B ( 1+1|Vh, N2d 5.10
s [ X(Gul € (o €D)VIF V@ P b | < oy (.10
For 6’ € R"~! and § € R, we define A > 0 and w € S"~! by
1
A=]0'2+62 andw= X(é’,d).
Accordingly,
[ (Go¢ 0, VT Vi@, €0P e = [ PR, de
Rn—1 Rn—1
where
O(w,0,€) =w' € +wnhn(a, &),  and  X(a,&) = X(Gal€' hn(a,€))V1 + [Vhn(a, &)
Note that we immediately have that
/ M@ T (0, ) dg' | < sup [IX(a, )L ge-, (5.11)
Rn—1 a€[Xo,X1]

so that we are only interested in large values of §. It is then clear that we have to use the stationary phase
lemma to get a suitable estimate on that quantity. Since we need to quantify properly in terms of the
parameters a € [Xg, X1] and § € R, we will use the refined version of [I, theorem 1], recalled in the appendix
in Theorem [A2]

Let ©,, € (0,1/2) be such that

1
Qn  sup [Vehn(a,&lliz v, < 5V1- %
a€[Xo0,X1]

Then

Vw e St with |w,| < Qp, inf Ve®(w,a,¢ |o.) |
| | aE[Xle]»f'EVam | E ( 5 )| 2

Therefore, if w € S*~1 with |w,| < Q,, applying integration by parts based on the formula

1 : /
1)\<I>(w af) _ AV N iAP(w,a,&’)
BV b ag)p ¢ T Ve

we get that, for all £ € N, there exists C > 0 and a decreasing function Fj : R — R such that

i w,a,&’ Ck .
/}R ,16m( €% (a, €') IAlk Fre(1®(w, s Mwrtrioe (1x0,x11x V) X WE+ 100 (1x0, X1 % Vi ) -
Therefore, for all k € N, there exists a constant Cj, > 0 such that for w € S"~1 with |w,| < Q, and a € [Xq, X1],
/ @) T(q ¢ de'| < Ch (5.12)
Rn-1 S ok

It remains to analyze what happens when w € S"~1 satisfies |w,| = ,,. There, we use that

(Hess ¢ @) (w, a,&") = wy (Hess ¢/ hy,) (a, &').
Since there exists ag > 0 such that

inf inf |det(Hess ¢ hy)(a, )| >
et B, et ehle. )1 > 0

a direct application of Theorem yields the existence of a constant C' > 0 such that for all a € [Xg, X;], for
all w € S" 1 with |w,| > Q,,

C C
1)\<I>(wa§
/Rn 1 X )€ < 6 < e (5.13)
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Combining (5.11)—(5.12)—(5.13)), we get (5.10)), and thus from (5.9)), the existence of a constant C' such that
for all a € [Xo, X;] and § € R,

C

H%76||$(L1(Rn—1)7Loo(Rn—l)) < W (5.14)

In a third and last step, we conclude the estimate (5.7) by M. Riesz interpolation theorem ([27, Theorem
0.1.13]) combining (5.8) and (5.14). This concludes the proof of Theorem O

5.2 Fourier multiplier operators

The goal of this section is to show how Theorem [5.2| can be applied to get estimates on some families of Fourier
multipliers operators.

To be more precise, for Xo < X; and coefficients (A}) je(1,... ,n} satisfying (5.3), we define 1 as in and
3, the ellipsoid defined for a € [Xy, X1] by .

For a € [Xo, X1] and k € L>(R,, L*>®(X,)), we consider operators given as follows:

Kux: 2(R™) = L(R"), givenbyKZM(@k<w<a,s>,w(§§)>ﬂs>, ceR™.  (5.15)

We prove the following result:

Proposition 5.3. Letn € N, n > 2. Let Xo < X1, and the coefficients (\j)jeq1,....ny Satisfy (5.3). For
a € [Xo, X1], let ¥ and X, be as in (5.1)—(5.2). Then there exists a constant C' > 0 such that

o for all a € [Xo,X1], for all k € L*°(R4, L™(%,)), the Fourier multiplier operator K, i in (5.15) maps
L2(R™) to itself and
HKa,k”g(Lz(]Rn)) <kl poe @ 2o (240))- (5.16)

o foralla € [Xo,X1], for all k € L>® (R4, L™ (X,)) satisfying
IOl A0 a7 < o,
the Fourier multiplier operator K, j in belongs to £ (L2(+1)/(n43)(Rn 241/ (n=1)(R™)) and
HKa,k||g(L2(n+1>/(n+3)(Rn),Lz(wl)/W*l)(R")) < C/Ooo e o) A=/t g, (5.17)
o for all a € [Xo,X4], for all k € L>® (R4, L>®(X,)) satisfying
| IR A4 02 < o,

the Fourier multiplier operator Kq  in (5.15)) belongs to
(LA (), L2(R) 0.2 (L2 (R, L2000 (),

and

||K(1,k||f(L2(n+1)/(n+3) (Rn),[ﬂ(]}{n)) g O\//(; ||k(A7 ')H2°°(Ea) A(n_l)/(n-‘rl) d)\7 (518)

||Ka,k'||$(L2(Rn)7L2(n+1)/(n71)(Rn)) < C\//O ”k()‘a ')H200(§]a) )\(nfl)/(nJrl) d)‘ (519)

Remark 5.4. The estimates of Proposition [5.3 will play a similar role as Sogge’s spectral projection bounds
[24] for the spherical Laplacian to prove LP Carleman estimates in the elliptic case as in [15, (26, [1§].
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Proof. The proof of (5.16]) follows immediately from Parseval’s identity.
The proof of (5.17)) is more subtle and is done in several steps. First, based on Theorem [5.2] we analyze,

for A > 0, the map T, » : f € L}(R") — ﬂE . Where X4\ = {¢€ € R, ¢(a,&) = A}. We then explain how

this yields estimate ([5.17)).
The first step is based on the fact that for a € [Xo, X1] and XA > 0, for f € L'(R"),

oL@ = [ [ dePeas, (1@ v R
TeRn Jees, a
Since the function £ — 1 (a, £) is homogeneous of degree 1, by using a scaling argument, we get

TH \Tuaf(z) = A" / / DY g5 () f(7) di
WEXa1

ZeR™
=t / / AT 45, 3 (w) f <5) dz, z eR".
FeRn JweTa, A
We thus obtain
(TiaTand) (@) = X7 (T T (£ (5) ) Q) z €R™.

From this identity, a simple scaling argument shows that for all a € [Xy, X;] and all A > 0,

HTL;)\TU. g )\(nfl)/(n+1) HT;:I

v>‘H_§€ L2(n+1)/(n+3) (Rn), [2(n+1)/(n—1) (Rn Tai”g L2(n+1)/(n+3) (Rn), [2(n+1)/(n—1) (Rn)) *
( (R™), (R™)) ( (R™), (R™))

Since T 1To,1 = T; T, is the operator defined in (5.5)), and since 7,, belongs to L(L2 D/ (13 (R L2(R™))
from Theorem we deduce that there exists C' > 0 such that for all a € [ X, X;], for all A > 0,

* (n—1)/(n+1)
HTa,ATavAHg(L2<n+1>/<n+3)(Rn)7L2<n+1>/(n—1)(Rn)) <CA )

_ n—1)/(2(n+1
||Ta,/\||_‘Z(L2(n+l)/(n+3)(Rn)7L2(Ea’>\)) = ||T;’)‘||$(L2(Ea,x)7L2("+1>/("—1)(R")) < C)\( )/ (2( ))

The second step then consists on rewriting the operator K, ; as follows:
Kop = / Ty xMa g(n,Tax d,
A>0

where M, j(x,.) is the operator defined from L?(3,,3) to itself as follows: for g € L?(Xq,»),

My pir9(6) = k (x M’io) 9(0), €€ Tun

Accordingly, we have
||Ka,k|‘g(L2(n+1)/<n+3> (R™),L2(n+1)/(n=1)(Rn))
*
< /}\>0 HTa,/\Ma,k(/\,-)Ta«\||,<5)(L2<n+1>/<n+3>(Rn),Lz(nH)/(nfn(]Rn)) dX

< />\>O HTG):AHC_%(LQ(Ea»\)7L2(n+1)/(n71)(]Rn)) HMaﬁk(/\")H.,?(L%EQA)) HTa’/\||$(L2("+1>/<"+3)(R"),LZ(EQA)) d\

< [ RO A
A>0
where we used the straightforward estimates:
HMa,k(/\,')Hx(m(xm)) < Hk()‘f)HL""(Ea)'

This concludes the proof of the estimate (5.17)).
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Estimates (5.18)—(5.19)) are based on the estimate (5.17) and the facts that the map K, x satisfies K, ; =
K,z when computing the adjoint with respect to the L?(R") scalar product, and K; K, 5= Kq k3. There-

a
fore,

’ 2

1K a ko 2001005 2 =K. %
Rl (L2 m3)(R™), L2 (R™)) ak L(L2(RM),L2(n+1)/ (n—1) (Rn))

[eS)
2 -1 1
= HKa,\kP ’|$(L2(n+l)/(n+3)(Rn)7L2(n+l)/(n71)(Rn)) = /(; Hk()‘u ')HLoo(Za) )\(n )/ (n+1) d)\>

which concludes the proof of Proposition up to exchanging k and k in the above formulae. O

6 [’-Estimates on the parametrix, and proofs of Theorem [2.1] and
Theorem 2.4

This section is devoted to give estimates on the norms of the various operators appearing in Proposition [3.1

especially in the spaces Z(LP (), L9(f2)) for suitable values of p and ¢. This will be done in particular by

using the results in Proposition with n = d—1 and the Hardy-Littlewood-Sobolev theorem (Theorem [A.1)).
We will also repeatedly use the straightforward lemma below, whose proof is left to the reader.

Lemma 6.1. 1. For all @ € R, and a € [1/2,2], there exists C > 0 such that for all p > 1,

m
/ ePNY dN < Ce™ (1 + p)®.
1

1% a+1
2. For all a > —1, there exists C' > 0 such that for all p > 0, / MY d\ < Cet f+ .
0 K
3. For all o > —1, there exists C > 0 such that for all v > 0, / e MY\ < Ce V(1 + 7).
A>y

,Yoz+1

4. For all a < —1, there exists C' > 0 such that for all v > 0, / e M\ < Ce™” .
A>y 1+ Y

5. For all a € (—3,0) and a € [1/2,2], there exists C > 0 such that for all v > 0,

L
A=) PN AN < O —r.
LA>7< ) e

In the whole section, we assume the setting of Theorem Within this setting, with ¢ defined as in (3.2)),
there exists ¢; > 0 depending only on ¢y in (2.4) such that
1
V(xlvyl) € [X()a X1]27 vé./ € Rd717 ai/’(ylvf,) < 1/)(I1»§/) < 0177[1(91,5/)- (61)

We also recall that in this section, all the constants C' depend only on ¢ in (2.4) and m., M, in (2.5)).

6.1 Estimates on the operator K, in (3.4])—(3.6)

The goal of this section is to estimate the norm of the operator K, ¢ in (3.4)—(3.6), more precisely:
Proposition 6.2. Let  be as in (2.1) with Xo < 0 < X7 and max{|Xo|,|X1|} < 1, and assume that the
coefficients (A\j)jeq1,... .y € R? satisfy A\ = 0, (2.4) and [2.5)). Then there exist C > 0 and 179 > 1 independent
of Xo,X1 (and depending only on co, m. and M, in (2.4) and (2.5)), such that for all T > 79, for all
f e L2l (q),

| K70l p2a/a-2) ) + TIARVCD K o fll 2oy + 101K 0 fll 220, ) + 7 /4 CD |V Ko f |l 120)

< Ol fllp2arcara )y (6.2)

and, for all f € L?(Q),

T3/4+1/(2d) ||K7—70f||L2d/(d72)(Q) + T3/2||KT,Of||L2(Q) + THalKT,Of”LQ(QLT) + Tl/QHVIKT,Of”L?(Q)
< O|fllzz), (6.3)
with Q1+ as in (4.6]).
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Remark 6.3. In the above estimates, we point out that the £(L*(Q), L*¥(4=2)(Q)) and L (L*¥(@+2)(Q), L?(Q))
bounds of the operator K,y are estimated by a power of the Carleman parameter that depends on d. This fact,

which does not occur for the Hilbertian estimates, has been already observed in several cases, and we refer for

instance to [3, (25, [18, [20)].

Proof. In view of the results in Proposition we first estimate weighted norms of k; o(z1,¥1,-) for 21 and
y1 in [Xo, X1] (recall the definition of k, o in (3.6)). We also identify ¢ € R4~! with pairs (\,w’) € Ry x 3,
where ¥, = {w' € R ¢(z;,w’) = 1}, through the formula ¢ = A\’, or equivalently A = (xy,¢’) and
w' = ¢ /iY(x1,&"). With a slight abuse of notations, we denote k; o similarly whether it is written in terms of
¢ € R or in terms of (\,w’) € Ry x ¥, that is

kro(@1,y1, A\, w') = kro(@1,y1, Aw').

We begin with the following lemma:

Lemma 6.4. There exist constants C > 0 and C1 > 0 independent of Xo, X1 (and depending only on co, m.
and M, in (2.4) and (2.5)), such that for all x1 and yy in [Xo, X1], for all 7 > 1, and X > 0,

o If X <, then the kernel k; o defined in (3.6 satisfies

Clyr — x1fe~ Tl =l if Alys — 2] <1,

kT,O T1,Y1, )‘7 Lo (2, < C 64
H ( )” ( ,1) Xe_(T_)\)lyl_wl‘_A(yl_x1)2/cl’ @f)\|y1 . ;[;]_l 2 1 ( )

o If A\ =7, then k, o satisfies

—_ — J— _— — 2 .
e~ A=Dei—y1|=A(z1-y1) /C'l7 if y1 < z1,

||k-,—70(1‘1, Y1, A, ')HL‘”(E”) <

> Q> Q
—~
D
=

A/ CHm)ly1—z1|
9

—e ifyl > T,

Setting, for x1 and yy in [Xo, X4], & € RI™L

]{17,0731 ([Eh Y1, §/> = —1;81 <y1 B_T(yl_wl)_f@?ll $(H1,€") di

- 1¢($1,£’)>T(7— - w(xlagl)) /

Xo

P ) 5 @) i [ ) i g

Hlutorgrr o (7= (o, €) [ ¢TI OO B G0 00 g
1 S Z1 1 ) 9’

z1
kr0,8, satisfies the following bounds:

o IfAL T,

k70,0, (®1,91, A, )L (x,,) < Ce~NOHnlvi=a1l (1 — \)||kro(21,y1, A, Mre,,) (6.6)
o If A>T,

C —(A=T)[T1— —A(r1— .
kr.0.0, (1,91, % )|z ) < X(/\fr;—)e A=m)lz1—y1|-A(21 y1)2/C1’ ify < 71,
T,U,01 ) Pl 3 oo @1 X
Cei()‘/c+7)(y1*$l), if gy > o1

(6.7)

Remark 6.5. The kernel k; o9, corresponds to the kernel of 01K, in the following sense: for all f €
L*((Xo, X1); LA(RI7Y)), and all (z1,€") € Q1 -,

~

511?7-,07[(95175/) Z/ kT,O,Gl(xlaylagl) (yl,f’)dyl. (6.8)
y1€(Xo0,X1)
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Proof of Lemma[6.. Let us first prove (6.4)) corresponding to A < 7. Let ¢’ € R4~ and x1 € [Xo, X1] be such
that A = ¢ (z1,£’) < 7. We then have to estimate, for y; > x4,

/ ) 5 @€ A= VG € A g
x1

For y; € [x1,X1], we introduce the map

P($1751ay17 / dj y17 dyl ~ w(ylag)dﬂly
1

which Clearly satisfies P($1»y1791»§ ) = _p(x:l?xl?yl? ) |y1 - IE1|)\/01, and aﬂmp(ml?xlaylvf ) - 21#@1;8)
and 8%1p(a:1,%1,y1,§') =201¢(71,£') < 0 by . Therefore, by concavity in Z1, for x; < y; and 1 € [x1,41],

_ _ at N » 2 N
p($1,m1,y1,§') < p(xlayhylag/) - Qw(yl,glﬂyl - l'1| < ¢(yl,§/) dyl - a)‘|y1 - 1'1|,

x

where the last estimate follows from (6.1]). Hence we obtain

/ eI € A [ 68 A g
1

Y1 ; ~ ~ ~
-(u—e1) / JE T =2l e g
Z1

< e*T(ylfﬂﬁl)ﬂszyll P(Y1,€") dy min {lyl N £L'1|, %} )
We then use that the function g7 — ¥ (71,£’) is concave, so that for z7 < 71, we have ¥(71,&') < ¥(x1,&) +
M(x1,£)(y1—x1). From and , there exists a constant co > 0 depending only on ¢y, m, and M, such
that 019 (x1, &) < —cotp(z1,&") = —co\. Therefore, for y; > x4, le V(@1, &) dyr < (y1 — 1)\ — ca My — 21)?,
and follows immediately.

We then prove corresponding to A > 7. Let ¢ € R%~! and 1 € [X(, X1] be such that A\ = ¢ (z1,¢’) >
7. We then have to estimate, for y; € [Xy, X1], the quantity

/mm{m,yl} ef‘r(y1*11)*f§11 G(F1,E") dis— ;11 (0.6 din e
Xo

As before, one easily checks that the map z1 — — f;ll ¥(y1,&) dyr — fyl (11,&') dyy has derivative 24 (1, &)
and is thus strictly increasing and concave. Therefore, for all Z; € [Xo, min{z1, y1}],

max{z1,y1}

Z1 Y1
—/~ Y, &) di — | (@, ¢ ) din < —/ Y, €) din + 2¢(min{z1, y1},€)(Z1 — min{ay, y1})

min{zi,y1}
max{z1,y1 } _ _ 2 _
</ (@, €) di — —Amin{zy,y1} ~ ).
min{zi,y1} C1

Accordingly,

/ MY e @) a2 @) T g
Xo
max{z1,¥1} i~ eI\ g~ c
<e” TW1=21) = [ingey 0y YE1E) din min{ﬁ,|min{x1,y1} . X0|}
If y1 > x1, we simply use

max{zi,y1} _ B 1

_/ Y, &) dn < —— (1 — z1)\
min{zy,y1} C1

If y3 < x1, we use that ¢ is concave decreasing and thus for all 31 € [y1, 1], ¥(11,€) = ¥(21,&) + (11 —

x1)01¥(y1,E&'). But there exists a constant c¢; > 0 depending on ¢y, m, and M, such that d1¢(y1,&') <

—(x1,E")/es, so that we easily get

max{zi,y1} _ _ 1 )
-/ V@ €) dii < (1~ 1A~ (3 — 21

min{z1,y1} 3
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in this case. Combining the last three estimates immediately yields (6.5)).
The proof of estimates 1) follows from the fact that, for y; > x1,

”e—T(yl—Il)—f;/ll Y(G1,€") di ||L°°(Zm1) < e*(‘erA/Cl)(ylle)7

and from the estimates already proved above. Details are left to the reader. O
Using the bounds in Lemma we prove the following lemma:

Lemma 6.6. There exists a constant C > 0 independent of Xo, X1 (and depending only on co, ms and M,
in (2.4) and (2.5)), such that for all x1 and yy in [Xo, X1], for all T > 1,

C
k" L1, 7>‘7 : S )\172/d dA < ) 6.9
fua oo and i PET o9
1/2 _
(/ o A ) o s, ) A7 dA) < Ckrolr1 = 1), (6.10)
A>0
with kr,9 € LY D(R) and ||krol| pasa-1 gy < Cr—3/471/ @D,
1/2
1
2 —2/d
</A>o|kT’°’al(x1’y1’A")”Lw(zzl) N dA) SO (6.11)
1/2
1 .
([ Pbeatormn s, ¥ 200) <0 (s et = w) ) (612

with kro € LY@ (R) and ||krol Lasa-v gy < CrH/471/CD,

Proof of Lemma[6.6. We start by simply noticing that we can always impose that C; in Lemma [6.4] is large
enough to get for all (z1,y1) € [Xo, X1]?, that |21 — y1|?/C1 < |r1 — y1|/4. This can be done by assuming for
instance C; > 8 since | X[, | X1| < 1. This will make some of the estimates below easier to prove properly. For
convenience, this constant C; will next be denoted by C, similarly as generic constants which depend only on
the dimension and the parameters co, m, and M, in , and .

Proof of . We decompose the integral in the left-hand side of in three terms more suitable to
use the results in Lemmal[6.4] The first is easily estimated as follows:

min{7,1/|y1—z1|} 9/ min{7,1/|y1—z1|} L 2/d
/ o (@151, A ) oo, ) AT 4AA < C/ ly1 — @y|e T T NI/ gy
0 0

1 2-2/d
< Clyr — wﬂe‘TIyl_wl‘ min {7’7 }
ly1 — 21

< Clyr — |4/ e =m b min {ryy — 2], 11772 < Clyy — 2|72/,
Next if 1/]y1 — x1| < 7, that is 7|y; — 21| > 1, we get
T T
/ ke o(@, 91, A ) e s, ) A 4dA < C e~ (T M=z =My —a1*/Cr \=2/d g
1/lyr—z1] o 1/lyr—1|

.
< Ce—Tlvi—=1] / Myl \~2/d gy
1/lyr =1

7|y —x1|
< C|y1 _ 1‘1‘_1+2/d€_7|y1_r1|/ e)\)\—Q/d d\
1

1
1+ 7y — 21

where, from the fourth to the fifth lines, we have used Lemma [6.1] item [T}
Finally, we also have, for y; > 1,

< Clyy —ay |71/ Clyr — x| 14,

|)2/d S

/ HkT)O(x17y17)\7 ')HLOO(ZQE ) /\1—2/!1 d\ < C e—(R/C+T)(y1—m1))\—2/d d\
A>T 1 A>T

< 06—7(91—901)/ e—k(%—xl)/c)\_g/d)\
A>0

< 0677(y17I1)|y1 _ I1|71+2/d < C’|y1 _ I1|71+2/d.

24



Accordingly, estimate holds for y; > x;. Then for y; < z1, it only remains to prove the following
estimate, in which we use Lemma [6.1] item [3}

/ |kr.o(z1,y1, A, ')”Loo(z, ))\1—2/d d\ < C e—(A—T)(rl—yl)—A(zl—y1)2/01)\—2/d d\
A>T 1 A>T

< Ceq—(m—yl)/ e—A(xl—yl))\—Q/d d\
A>T

< C|(E1 _ y1|71+2/d eT(ﬂCl—yl)/)\ ( )€_>\)\_2/d d\ < C|I‘1 _ y1|71+2/d.
>T(r1—Y1

This concludes the proof of for y1 < z1 as well.
Proof of (6.10). Of course, the proof of (6.10) is very similar to the one of (6.9). We first have

min{7,1/|y1—z1|} 9 min{7,1/|y1—z1|}
/ ||k'7_70(x17y1’ )\7 )”LOC(E ) Al—?/d dA < C/ |y1 _ x1|26—27\y1—11\ A1—2/d dA
0 1 0

1 2-2/d
< Clyr — a1|2e 2719171l min {7'7 }
|y1 *931|

<or ((T|y1 - xl\)Q/defzr‘ylle‘ min {7|y1 — x1], 1}2_2/d) .
Next if 1/|y1 — 21| < 7, that is 7|y — 21| > 1, using Lemma [6.1] item [I} we have

/ lr (21,510 ) e,y A AN < C e—2(r=Nly1—z1|—2A(1—1)2/C1 \~1-2/d g\
1

/ly1—w1] 1/ly1—=1|

< Ce27lyi—=| /T 62)\(\7417:61\7(y1711)2/cl)/\7172/d X
1/ly1—=1|

Tly1—w1|
g C|y1 _ x1|2/d6727|y17$1|\/ 62/\(17\y17w1\/01)>\7172/d d)\
1

E_T(yl—xl)z/c o —2/d e—T(yl—ﬂcl)z/C

< -
(14 7lyp — ay|)1+2/d (1+7lyr — z1])

< Clyr — a4
Finally, we also have, for y; > x1,

/ ||/€r,0(ff1,y17)\7 ')”iw(z ) AL—2/d gy <C e~ 2(N/CHT)(y1—z1) \—1-2/d gy
A>T 1 A>T

< C672‘r(y17z1)/ 672)\(y17931)/C>\7172/d d\
A>T

< Ce2rly1—21) / AN 12d g\ < Qe 2rni—w1) =2/,
A>T

On the other hand, for z1 > y;, we have that

/ kro(21, 91, A, .)||'iw(E ) A2dgy <o e~ 2(A =) (1—y1) —2X (w1 —v1)?/C1 \ —1-2/d g
A>T 1 A>T

< Ce2‘r(a:17y1)/ e~ 2 (@1 —y1)+(z1-y1)?/C1) \ ~1-2/d gy
A>T

< 062T(z17y1)|1,1 o yl‘Q/d/ 672)\(1+(x17y1)2/01)>\7172/d d)\,

A>T|z1—y1|
so that using Lemma [6.1] item [, for z; > y1, we obtain
—27(z1-31)%/Ch

k. A )2 AN=2dgycop2as T
/,\>T Veroes, 2 Mzea,, ’ 1+ 7(x1 — 1)
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Therefore, combining the above estimates, we have

1/2 "
</}\ Hkr,o($17y1, /\7 )||ioo(2’"1) >\172/d d)\) < OkT,O(JIl — y1>,
>0

~ —7|z1]%/C
—1/d —1/d 1/d _—1 €
where kro(21) = 1z, <1/ Ty <(lel|) e (7'Zl|)1/2> -0

Easy computations then yield ||F];;7-70HLd/(d—1)(R) < Cr73/471/2d) a5 announced.

Proof of (6.11). We have
/ =2/ CH)lyr—za| \1-2/d g\ < 6—2T|yl—ac1||y1 _ x1|_2+2/d <y — x1|—2+2/d_
A>0

We also have, as before,
min{7,1/|y1—z1} min{7,1/|y1—=1[}
/ (T _ )\)Zlyl _ x1|26—27'|y1—921| )\1—2/d d\ < 7_2/ |y1 _ :L,1|26—27"y1—;81‘ )\1—2/6[ d\
0 0

] 2-2/d
< C7'2|y1 - m1|2e—2T|y1—w1‘ min {7‘7 }
ly1 — o1
< Clyy — a1 [P/ dr2e 2= min 7]y, — 2], 1}77>/4
< Olyr — o1 | 72247 |yy — m1])2e 2" =" min {7|y; — 24, 1}272/d < Clyy — x| 722/,

If 1/jyrn — 21| < 7, that is 7|y; — z1]| > 1, we distinguish the cases 1/|y1 — 21| < 7/2 and 1/|y; — z1| > 7/2.
If 1/|y1 — 21| € [7/2, 7], we have

/T (7‘ — )\)26_2(7_>‘)|y1_x1|_2>\(y1_x1)2/01)\—1—2/d d)\
/ly1—z1|

< Ce*2T|y1*I1| /T (7_ B )\)262)\(\y17z1\*(y1711)2/01)>\7172/d A\
T/2

< Ce—QT|y1—m1|T—1—2/d/ (r — )\)282>\(|yl—11\—(yl—ml)Q/Cl) d\
T/2

—1-2/d 27 (Jy1 —z1|—(y1—21)?/C1)
< 06*27'|y1*901| T ¢

ly1 — 21]?
T—1—2/de—27(y1—11)2/01

2
ST P < Oy = |22y, — ) 7172 e 2 E < Clyy — a7

If 1/|y1 — 21| < 7/2, we split the integral into two parts, flr//\zlle\ and f:/Q. The second integral has been
estimated above, and, using Lemma [6.1] item [T} the first one is estimated as follows:

/ (7- _ )\)Qe—Q(T—AHyl —z1]|=2X(y1 —?61)2/0)\—1—2/51 d\
Ae(1/|yr—z1],7/2)
/2
< efzrlyrmTz/ My 1| (1 —21)*/C) \ ~1-2/d g
1/ly1—z1|

Tly1—z1|/2
< Ce2rln—ml 2y, fmz/d/ S2M(1=(y1—21)/C) \~1-2/d gy
1

< C’|y1 - x1|2/d7_26—r\ylle|(7_|y1 - ml‘)7172/d
<

Clyr — x1| 21y, — xy ) =Y de =1l L Olyy — 21| 7212/,
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It remains to estimate, for y; < x1,

/ (/\ _ 7—)2672(>‘77)(931*91)72)‘(x1791)2/0)\7172/d d\
A>T

< 0627'(561—?41) / ()\ _ 7—)26—”\((11—yl)“"(fﬁl—yl)z/c)/\—l—?/d d\
A>T

< CeZT(acl—yl)'xl _ y1|—2+2/d/ ()\ _ T|$1 _ yl|)2e—2)\(1+(ac1—y1)/0)/\—1—2/d d\.
A>Tz —y1|

We now use Lemma [6.1]| item [5| and obtain for z1 > v,

|72+2/d672'r(9317y1)2/c

2 Clx, —
//\>T(/\ o 7_)2672()\77')(I1*y1)*2)\(xl ¥1)?/C \—=1=2/d gy < |21 : i1(T|m1 . yl‘)1+2/d < Clat — yi 2+2/d_
Proof of . We have
min{7,1/|y1—z1|} . 2 1—2/a min{7,1/|y1—=z1|} 2 —2r(y1—z1) \3—2/d
/0 | Aw kT,O(xl’yl’)"w)HLy(zwl) A dAgC/() ly1 — z1]%€e A dA
1 4-2/d
< Clyl — x1|26—27(y1—x1) min {T, }
ly1 — 21|
< Clyr — J;1|_2+2/de_27(y1_‘"”1) min {7|y1 — x1], 1}4_2/d < Clyr — x1|_2+2/d.
If 1/|y1 — z1] < 7, that is 7|y; — z1] > 1, using Lemma item [1| we obtain
/T | A k7 0(21, 91, )"WI)HQL"?(EII) A2d gy <O ’ e~ 2(r=N)y1—w1|=2X(y1—21)?/C y1-2/d
1/ly1—=1| v 1/ly1—=1|

< 0672T‘y1*11| /T 62)‘(|y17I1|7(91*$1)2/C’)/\172/d I
1/|lyr1—=z1]

T|yr—z1|
< C|y1 _ x1|72+2/d672‘r\y1*11| / 2A(=ly1—x1|/C) N\1=2/d gy
1

< Olyy — |2/ demmnma0)/C (rly, — gy |)1=2/4
< CTlfQ/defT(ylle)Q/qyl - CE1|71.
Finally, using Lemma [6.1] item [3| we also have, for y; > z1,
/ A" kr 0 (21, 41, A,W')Hio«;(gzl) AN < C/ o2/ CHr) (1 —21) \1-2/d g\
A>T w A>T
< Cef2r(y171’1)/ 672)\(y17m1)/C>\172/d d\
A>T

< Co 2=y, _ x1|72+2/d/ o2M/C\1-2/d g
A>T(y1—w1)

< Cef2r(y1f:r1)|y1 . x1|72+2/d(1 + (|1 — m1|))172/d < Clys — $1|72+2/d.
Similarly, for =1 > y1,
/ Az, 0 (21, Y1, A,WI)”?Loo(Z ) ANl < e e AT @1 =) =2 —u) "/ O\ 1=2/d 1\
A>T W A>T

< Ce2E—m) / =22\ (@1 =)+ @1 —31)?/C) \1-2/d gy
A>T

< OeQT(xlfyl)‘xl . y1|72+2/d/ 672/\(1+(117y1)/C))\172/d d)\,

A>Tz —y1]
so that using Lemma [6.1] item [3] we get, for z1 > yi,

/ X ko0 (@1, 91, A, W e,y A2/ AA < Clyy — | 72H2/ 2 mm) /O (1 g gy — ]2
A>T

N

_ _ _ 2
¢ (1\y1—m<1/7|y1 — |y sy T g — TP /C> '
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Therefore, by combining the above estimates, we have

1/2
1 .
</)\>O H)\UJ/]{:T,O((Elayl; /\a ')”ioo(zml) )\172/d d)\) <C <y1|1_1/d + k'T,O(l'l - y1)> 5

lz1 —

where I%T,o(zl) = 1|Zl|>1/771/2*1/de*”f/c|21|71/2.

Easy computations then give ||kT’O<Z1)||Ld/(d—1)(R) < Cr1/4=1/(2d) " a5 announced. This concludes the proof of
Lemma 6.6l O

Now we are in position to conclude the proof of Proposition [6.2] First, from Proposition withn =d—1,
estimate (6.9) and the one-dimensional Hardy-Littlewood-Sobolev inequality (recall Theorem |A.1]), we have,
for f € L24/(4+2)(Q),

ot nir € W M,

X1
< / (/ ||k‘r,0($17y17>\a ')||L°°(Ezl))‘1_2/d d)‘) Hf(yh -)HLZ,d/(dJrz)(]Rd*l) dyl
Xo A y Li‘i/(d_z)(Xo,Xl)
X1 1
<) [ e Il e
X for =yl B araen

=C ||f||L2d/(d+2) Q) *
Li‘f/(d+2)(xo,X1) ()

S [

Using the estimate (6.10)) in Proposition and Young’s inequality, we have, for f € L?%/(4+2)(Q),

1Kol < [|1Krof @ Vs, gasy

L2 (Xo0,X1)

X, 1/2
< ([ Mroteon s A A2 aN) sy i
Xo A v L2, (Xo,X1)
X;
<C / kro(@r —ya) (1 (Y1, )l p2ar@r2) ga-ry Ay
Xo L2, (Xo,X1)
S C‘ Fr.0 La/a-1)(R) "f(yl’ ')”Lz?/(d“)(Rd’l) L2/ (x) ) SO YCD £l p2ascara (g -

Similarly, for f € L?(Q), we get
1K r 0 f [l 2asa2 (@) < 77347V £ Lo (6.14)

Using the relation , the estimate (6.11) in Proposition and Hardy-Littlewood-Sobolev theorem
(Theorem [A.1)), we get, for all f € L2¥/(@+2)(Q),

”alKT,Of”L?(QLT) <C Hf||L2d/(d+2)(Q) .

Using the estimate (6.12) in Proposition Hardy-Littlewood-Sobolev theorem (Theorem [A.1)) and
Young’s inequality, we get, for all f € L2¥/(4+2)(Q),

IV'Erofllz2 () < Cr/47 1G9 [ fl p2arcav2) @) -

The above estimates allow to conclude the estimate (6.2)).
Estimate (6.3)) simply consists in the combination of ([6.14]), Theorem and estimate (4.7). O
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6.2 Estimates on the operator K,

The goal of this section is to estimate the norm of the operator K, ; in 7, more precisely:

Proposition 6.7. Let Q be as in (2.1) with Xo < 0 < Xy and max{|Xo|,|X1|} < 1, and assume that the
coefficients (A\;)jeq1,... .} € R? satisfy A1 = 0, (2.4) and [2.5). Then there exist C > 0 and 19 > 1 independent
of Xo,X1 (and depending only on co, my and M, in (2.4) and (2.5))), such that for all 7 = 19 and for all
fe (),

T VAVCD K flleasa-n gy + T2 B fllze ) + 100K -1 Fllzo, ) + 7721V K i fllzege) < Cllf e

Proof. We use the same notations as in the proof of the previous proposition. From the definition of k;; in
(3.7), adapting the proof of Lemma to k.1, we can easily deduce the following result, whose proof is left
to the reader:

Lemma 6.8. There exists a constant C > 0 independent of Xo, X1 (and depending only on co, ms and M,
in (2.4) and (2.5)), such that for all 1 and y1 in [Xo, X1], for allT > 1, and A > 0,
lr 1 (@151, A e (s, ) < CeT T A=l 2=/ C 4 O 4 N)|lky (21,91, A )| po(s,,). (615)
We shall then prove the following lemma:

Lemma 6.9. There exists a constant C > 0 independent of Xo, X1 (and depending only on co, ms and M,
in (2.4) and (2.5)), such that for all x1 and yy in [Xo, X1], for all T > 1,

1/2
_ 1
</}\>O Hk7-,1($17y1,)\7 )”iw(zzl) )\1 2/d d)\) < CW + ]{7-,1(551 — y1)7 (616)
with kr,y € LY@D(R) and ke || pasa— @ < CrH/47HED,
Proof. Using Lemma [6.1] item [2| we get

/T 6—2(7'—)\)|y1—w1|—2)\(y1—w1)2/C>\1—2/d d\ < Ce—2'r\y1—w1\ /T e2>\(|y1—z1|—(y1—w1)2/C)>\1—2/d d\
0 0

Tly1—z1|
< Clyp — x1|72+2/d6727|y17m|/ 2N 1—ly1—=21]/C) \1-2/d g\
0

< C|y1 _ x1|—2+2/d€—27(y1—x1)2/0 (lel - x1|)2—2/d
~X

L+ 7lys — 21|

< 07172/d‘y1 _ x1|716727(y17m1)2/c‘.
Similarly, using Lemma [6.1] item [3] we get

/°°6,2(A,7>|y1,m|,2A(y1,x1)2/cA1,2/d d\ < Cerln—al /°° =2\ (31— [+ (1 —21)2/C) \1=2/d. g

T T

[e ]
< Clyy — $1\_2+2/de_27‘y1_“‘ / e—2A(1+ly1—211/C) \1-2/d gy
T|y1—x1|

< Cly — 171\72””67%(7’17“)2/0(1 +7lys — aq )14

—242/d 1-2/d —1_-2 —z1)%/C
—m| 2 I I )

<C (1\y17w1\<1/7"y1 + 1y —ay>1/7T

Now, from (6.10)), (6.12), (6.15) and the explicit formula of ’k:vﬂo in (6.13), we get

1/2
1 ~ .
(/ (1 + M) [[kr0(21, 91, V)12 Al_z/ddA) S —7a T TRno(@ = vn) + Ero(en — ).
A>0 |21 — w1
We then easily obtain (6.16]). O

We now conclude the proof of Proposition As in the proof of Proposition the estimate (6.16|) easily
implies that there exists C' > 0 such that for all 7 > 1 and for all f € L%(Q),

T VA CDY K fl 220y < Cllfllp2)-

The estimates on K, and V'K, as operators from L2(€) to L2(2), and on 8y K, from L2(Q) to L*(€ ;)
can then be deduced immediately from Theorem and (4.7)). O
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6.3 Estimates on the operator K, ; for j > 2
The goal of this section is to estimate the norm of the operator K ; in . ) for j > 2, more precisely:

Proposition 6.10. Let Q be as in with Xo < 0 < X1 and max{|Xo|, |X1|} < 1, and assume that the
coefficients (A\;)jeq1,... .a} € R? satisfy A1 = 0, and (2.5). Then there exist C > 0 and 19 > 1 independent
of Xo, X1 (and depending only on co, m. and M, in (2.4) and ), such that for all j € {2,--- ,d}, for all
T > 70 and for all f € L*(Q),

T VAT CD K Fll o) + TV PIK - fll e + 100K ,Jf”L? o) F T PIVK i Flla) < Cllf 2

Proof. We start by noticing that there exists a constant C' > 0 such that for all j € {2,--- ,d}, for all 21 and
y1 in [Xo, Xq], for all 7 > 1, and A > 0,

[krj (@1, 1, A )l e (s,,) < CAMkro(1, 91, A )|l Lo s, )-

From , there exists a constant C' > 0 such that for all z; and y; in [Xo, X;], for all 7 > 1, and X\ > 0, for
all j € {2 -, d},

1 -
W + kro(z1 —y1),

1/4-1/(2d)

1/2
(/A>0 ||k‘l',j(x1uy17>\a )Hioo(zzl) )\I_Q/d d)\) < C

with kr o € LY@"D(R) and ||k,

Accordingly, there exists C' > 0, such that for all j € {2,---,d}, for all 7 > 1 and for all f € L*(Q),

T VARVCD| K Fll p2asa-2 () < CllfllL2(0)-

We then conclude Proposition by combining this estimate with the ones in Theorem and 4.7). O

6.4 Estimates on the operator G, in (3.9)—(3.10)

Proposition 6.11. Let Q be as in (2.1 with XO < 0 < X7 and max{|Xol|,|X1|} <1, and assume that the
coefficients (A\;)jeq1,... ,a} € R? satisfy A\ = 0 and (| . Then there exists C > 0 independent of Xo, X1
(and depending only on cy, ms and M, in and ([235)), such that for all T > 1, for all g € H/?(RI~1),

T3/4||GT(9)HL2(Q) + 101G (92, + 7_1/4HVIGT(9)HL2(Q) + 1G9l p2asa-2) () < Cllgllgr/2a-1y- (6.17)

Proof. Note that all the terms in involving Hilbertians norms have already been estimated in Theorem
so only the estimate on G, in the .Z(H'/?(R?~1), L2%/(4=2)(Q)))-norm remains to prove.

For g € H'/?(R%1), we introduce gy € L*(R*~1) so that Go(¢') = |€'|*/2G(¢"), and we notice that G, (g) =
G+.0(90), where G is given as follows:

Gr090(x1,€") = gr0(x1,6)G0 (), (1,€') € [Xo, X1] x R,

with g,.0(z1,&") = g-(21,¢)/|¢'|*/?, and g, as in . It is then clear that the Z(HY/2(R4~1), L24/(4=2)(Q))-
norm of G, coincides with the £ (L?(R4~1), L24/{4=2)(Q))-norm of G, p.

To estimate the .Z(L?(R*~1), L24/(?=2)(Q))-norm of G-, we compute G, where the adjoint is given
with respect to the L?(Q) scalar product: For f € L?(Q),

~

Gof(e) = / groy, €) Flar, &) dary, ¢ e R,
z1€[X0,X1]

Accordingly, for f € L?(2),

~

GT,TG\;of(l”l,fl) =/ gr0(x1,8)gr0(y1, &) f(y1, &) dyr, (x1,€) € Q.

ylG[Xle]

Our next goal is to check that the operator G- oG%  actually belongs to .2 (L>¥/(4+2) (), L24/(4=2)(()).
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In order to do that, as previously, we first check that there exists a constant C' such that for all x; € [Xo, X1],
for all A > 0,
C —(A=7)(z1—X0)=A(z1—X0)%/C
lgro(@1, A M poe s,y < Lisr1375¢ (A=7) (1= Xo0) = A(z1—-X0)*/C (6.18)

Consequently, for z1 € [Xo, X1] and y; € [Xo, X1],

1G 0G0 f (w1, ) paarcasgry

</ / 970 (21, A Moo,y 1970 (1 A )| oo s, ) AT IS (W, ) 22 a1,
y1€[Xo,X1] /7 ! !

< / /°° e~ (= X0)+ 1= Xo) =M1 =X0)* + 01 =X0)) /€ A2/ | £y, )| oo gas) dys
y1€[Xo0,X1] /7

e~ T((z1=X0)*+(y1-X0)*)/C
1+ (r(z1 — Xo 4+ y1 — X0))?/? 1 @ Mgz aen -y dyn,

< / (w1 — Xo) + (31 — Xo)) " 72/¢
y1€[Xo0,X1]
where we have used Lemma item [3] With straightforward bounds, we thus get

G 70GE o f (21, )| L2asca—2) a1y < / (g1 — 1) "N f s | pearass oy dys,
y1€[X0,X1]

and then Hardy Littlewood Sobolev theorem (Theorem implies that
1Gr0G7 0 flp2asa-2(q) < CllfllL2ari2) (-

It follows that the .Z(L2(R9~1), L24/(=2)(Q))-norm of G, is bounded by a constant independent of 7 as
announced, and thus this is also the case for the .#(H'/2(R*~1), L?¥/(4=2)(Q))-norm of G.. O

Remark 6.12. One may wonder why the above proof does not rely on the estimate (5.19) directly. This is
due to the fact that it would correspond to a limit case. Indeed, from the estimate (6.18]) and Proposition

for x1 € [Xo, X1],

HGT,OQO(Il, )’ L2d/(d—2) (Ra-1) < C||g()|L2(]Rd1)\//T ||gT70(gg17 A, .)Him(zzl) AL—=2/d g\

< Cllgoll L2 ra-1) \// e=2(A=7)(z1-X0)=2A(21-X0)?/C \~2/d g )\

—7(x1-X0)?/C

o e
_ X[ (42 2d)

< Cllgollp2ra-1)l21 1+ (7(xy — Xo)) /@

where we used item[3 in Lemma[6.1 But the function

e—T(wl—Xo)z/C

ol — X |~(d-2)/(2d)
1 oy = Xol 1+ (r(a1 — Xo))1/4

does not belong to L2d/(d_2)(X0,X1), and so we cannot conclude directly that G, ogo belongs to L2d/(d_2)(Q).

6.5 Estimates on the operator R, in (3.5

For f € H'(Q), using that R, (f) = K, o(g) with g(z1,&') = d1p(x1, &) f(21,£), and thus with ||g|r2q) <
CIIV'fll2(q), we immediately deduce the following result from (6.3)):

Proposition 6.13. Let Q be as in with Xo < 0 < X7 and max{|Xo|,|X1|} < 1, and assume that
the coefficients (X\;)jeq1,....a} € R? satisfy A\1 = 0, and (2.5)). Then there exist C > 0 and 79 > 1
independent of Xo, X1 (and depending only on co, m. and M, in (2.4) and ), such that for all T = 19,
for all f € HY(Q),

PV DR F|l p2asan () + 72| R fllz2(0) + 7101 R Fll 200y + 72V Reo fllz20) < CIIV fllz20-
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6.6 Proofs of Theorem [2.4] and Theorem [2.1]

Within the setting of Theorem [2.4] we use Proposition to write the solution w of (2.8)) satisfying (Ojw —
F1)(X1,-) = 0 in R4"! under the form (3.3)). Since w € H'((2), using the various estimates in Propositions
6.10} [6.11] and [6.13] we obtain, on one hand,

2wl ey + 7 Ol 2@y + 7V w2y < O (Iallza + 747D fou | 2wrssare)
+7IFl gz + 7 gl 1oy o) + [V 0]y ), (6:19)

and, on the other hand,

AR D) ]| sy a1 ) < C (1 fallagey + 744 D o] ariarn o
+T||FHL2(Q) + 73/4+1/(2d)HgHH1/2({XO}XRd—1) + Hvlw||L2(Q)) . (6.20)

We then simply take 7 > 79 with 79 > 1 large enough in order to absorb the last term in the right hand side
of (6.19) by 71/2\\V’w||L2(Q)7 and we get

3/4|

2wl g2y + 701wl L2 0y + T2 V'W]| 12 (0)

<C (||f2||L2(Q) + A CDY o || p2as s ) + TIF | 2(0) +73/4\|9\|H1/2({X0}de—1)) , (6.21)

that is estimate ([2.9)).
Therefore, using (6.21)), the last term in ((6.20) can be removed, thus yielding (2.10]).

In order to prove Theorem we simply use the correspondence w(z) = e™tv(z) for x € . This proves

(2.6) and (2.7)) for 7 > 7. We then deduce (2.6) and (2.7)) for any 7 > 1 by changing the constant if necessary
through straightforward bounds on 1 — exp(7zy) for 7 € [1, 79].

7 General geometrical setting: Proof of Theorem [1.1

Here, we provide a proof of Theorem [1.1] using Fourier techniques as we did earlier, following the approach
developed in [5], and adapted to the case of source terms in H~*() and in L2%/(@+2)(Q). This approach is based
on a localization argument and a gluing argument, as it is usually done for Carleman estimates. The originality
here is that we will localize the functions in balls of size 7-1/3, that is depending on the Carleman parameter
7. Doing that choice allows to somehow approximate the weight function ¢ by its quadratic approximation,
and to reduce the problem through a suitable change of variables to the case of a strip with linear coefficients
as in Theorem [2.4] (see Lemma and its proof).
For 7 > 1, we introduce
w = e %u, fs =e"?(fo—7Vep- - F), Fowr = €7 four, F =¢™¥F, J=g,

so that the function u solves if and only if w solves

{ Aw — 27V - Vw + 72| Vo|*w — TApw = fo + for +div (F), inQ,

w=4g on 9. (7.1)

7.1 Local estimates

Our first step is to introduce a local version of (7.1)). Namely, for 29 € Q\ w, we introduce n,,(x) a cut-off
function, which will be made more precise in ([7.5)), and set

Wao (T) = 1 (T)w(2), T e,
which solves

Awl‘g - 2TV§0 : vwmo + 72‘v§0|2wr0 == f2,m0 + f2*/,fc0 + div (F’I:())7 in Qv
Way = G on 012,
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where

fozo = nzofg — Vg, - F+ TAPWg, +2Vng, - Vw + Anyow — 27V - Vg w,
fowrmg =Nwof2srs  Fug =NaeFs Gy = o3
We claim that, provided the localization is strong enough, we can get a local Carleman estimate:
Lemma 7.1. There exist constants C > 0 and 1o > 1 (depending only on o, B, ||¢|lcs@)) such that for all
T > 710, for all zg € Q\ w, and for all
fowg € L), fowuo € L2V D(Q),  F,, € LX(CY),  and g, € H/?(89),
and Wy, satisfying and supported in B(xo, 7~ /%) NQ, we have

T2 lwa, || 2@y + T2V Way |l L2() + 7347 CD wgy || 202 (q)

<C (||f2,:co||L2(Q) + A CD| o ao | p2arasa ) + T FeollL2(0) + 7|2y HHl/Z(aQ)) , (7.3)
and

-3/4+1/ 12|

C|wgy || p2asa-2 0y + 722 [ wa, | L2(0) + 72 Viag | 22(0)

<C (||f2,a:0 Iz2() + 74T CD| forr oo |l p2arasa ) + Tl Fao ll L2y + 7247 D) g HH1/2(89)> - (74)

The proof of Lemma/[7.1]is postponed to the next section, and will be based on a suitable change of variables
and the Carleman estimate in Theorem 2.4
In the following, we will thus choose the localization as follows:

ey (@) = (7% (@ — 20)), z €RY, (7.5)

where 7 is a non-negative smooth radial function (in €>°(R%)) such that n(p) = 1 for |p| < 1/2 and vanishing
outside the unit ball, so that Lemma applies to wy,, and the estimates and hold uniformly with
respect to zp € Q \ w.

It thus remains to prove Lemma which is done in Section and to show how to glue the estimates
in Lemma [7.1] to conclude Theorem which is explained in Section [7.3}

7.2 Proof of Lemma A suitable change of coordinates

The proof of Lemma mainly reduces to a suitable change of variables allowing to link the Carleman
estimates and in small balls around zy with the Carleman estimates — in the strip proved
in Theorem 2.4

We let 79 € Q\ w, and we introduce L; € R? and A; € R4¥? a5 follows:

Ly =Vy(xy) € R?, A, = Hess p(zg) € RI*4,

The bilinear form
¢ € R — (Hess p(0))¢ - €

is symmetric on R? and on Span {L;}*. Accordingly, there exists a family of orthogonal vectors (Lj)jet, dy
of Span {L;}* which diagonalizes this form, that we normalize so that for all j € {2,---,d}, |Lx| = |L1|.
Since the family (L;)jeq2,... ay of Span{Li}* diagonalizes the form ¢ — (Hess ¢(z¢))¢ - € in Span {L;}+, for
all j € {2,---,d}, there exist ; and p; in R such that

(Hess (o)) L;j = p;iLj + oL, jeA{2,---,d}.

Note that by symmetry of Hess ¢(zg), we then necessarily have

(Hess (o)) L1 = p1 L1 + Z agLg,
k>2
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where

(Hess ¢(20)) L1 - L1 = E (Hess ¢(20))V(zo) - Vip(o).

1
[Ve(xo)
For j € {2,--+,d}, we then introduce the self-adjoint matrix A; € R¥*¢ defined by

_ 1
SETAE

Ale = —O[le — /J,ij,
A;Ly = oLy — oLy, ifke{2,---,d}\{j},
AjLj=—piLi+ ) L.

E>2

(7.6)

(It is easy to check that the matrix A; defined that way is indeed symmetric.)
We shall then introduce the following change of coordinates for x in a neighborhood of zg:

yi(z) = o(x) — ¢(x0),
forj e {2,---,d}, yj(z) =L; - (x —x0) + %Aj(x —xq) - (x — xp).

By construction, there exists a neighborhood, whose size depends on the C? norm of ¢ only, such that z + y(x)
is a local diffeomorphism between a neighborhood V of 2 in © \ w and a neighborhood of 0, that we call Q,,
and which may thus contain the image of a part of 0Q. If it exists, we will denote it by T'y = (02N V).
For 7 large enough, we can ensure that the ball of center 2y and radius 7=/2, when intersected with €, is
included in a set on which x — y(z) is a diffeomorphism, and its image is included in a ball B(0,C7~1/3).
Therefore, for w,, solving , we set

W(y) = wa, () for y=y(z),

Explicit computations then give that w satisfies

d
> bjk(@)0y, 0,0 (y(2) + Vyib(y(x)) - A - QTZCJ )8y, w(y(x)) + 72 Vep() P (y(x))
jk=1
= (Awwo — 27V wao +7 |Vg0\2wwo) (x), forzeQn B(m0,7_1/3),
where

bjk(x) =Vyyi(x)  Veyr(z), and ¢ Z@,g@ iy (z

We then remark that ¢;(x) = bj1(z) and that b; 1, (z) = bi () for all z. We now briefly analyze the coefficients
bj k- By construction of the coordinates (y;);eq1,... 4y, we easily check that for (j,%,¢) € {1,--- ,d}?,

bjk(w0) = | L1185k,

d
Obj k(w0) = > _(0eDiy;(w0)dsyk(0) + 93y (20)eDry (o))
=1
d
= Z(Ajei eo)(Lg - ei) + (Lj - e;)(Axe; - ee) = (A Ly + ApLj) - eq,
=1

so that we have in particular that
Ly- Vbj,k(xo) = (Aij + Aij) - Ly,

For convenience, we also write separately

IVe(wo)* = |L1*,  and  0(|Vel*)(wo) = 2Y  0edip(w0)dip(wo) = 2A1 Ly - g
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We can thus analyze b; 1 /|V|? close to z = zq:

In particular, since A;Ly + AxL; =0 for all j, k € {1,---

Vi ke {l,-,d} with j £k Ve {1,

When j = k£ =1, it is obvious that

Vee {1, d}, Lg«V<

When j = k > 2, the choices (7.6)) yield

b s
Lg~V<|VJ(pJ|2) (xo) =0 when £ € {2,---

and

b _
v (IWP) (z0) =

2

TR

,d} with j # k,

g — 2(5j’kA1L1 . Lz) .

bik
L J, —0.
ih L V(IVSDIQ)(%) ’

b
vlg’olP) (z0) =0.

ydy,

AyL; - L+ ALy - Ly).

Consequently, as a consequence of Taylor expansion of b; / |Vel|? close to o = xo,

Dixla) S k(1 —

Ve(x)[?
where
A =0, A= 2
1=Y J |L |2
Accordingly, setting
: bjk(z
bi(y) = =2
) = Do

we have

(A1L; - L + Ay Ly - Ly)

)
)2

for y = y(x),

Ay (z)) + O(|z — mo?),

for j € {2,---,d}.

bin(y) = 05k(L = Ajyn) + O(y*)  and  Vy(bjn(y) — 8i.(1 = Ajy1)) = O(ly)).
Thus, using that w is supported in B(0,C7~/3), writing

d_ d
Z by (Y) 0y, Z Ajy1)0

j,k=1 j=1
d d
Z — 8k(1 = Ajy1)) By b) — Z 0y; (bjk(y) — 056(1 — Ajy1))0,
Jik=1 G k=1
we get that
d d
ij,k(y Zl— ]yla w—fza+d1v( )
7,k=1 j=1
where
d

fo.aly) = — Z By, (b k(y) = 85,6 (1 = Xjy1)) 0y, 10,

j,k=1

satisfy §
I F2allza,) < CT73)9yi ] 12(q, ),

and
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8.k (1 = Njyr)) By, b

07’72/3||Vy11)||L2(Qy).



Similarly,

_272% (y) + 270y, 0(y) = fou(y),
with )
I 2l L20,) < CTY3|V 0| L2(,)-
Finally,
< 1
fo.c¥) = — = Ve (y) - Asy(z(y)),
where z(y) denotes the inverse of the change of variables x — y(z), also satisfies
I f2.ell2@,) < ClVyllL2(o,)
We then set 5 (=)
] yj Yy
P e\Y) = : y
5#0) = [9p(a(y)P
and introduce
0 S =30 (@) + foa) + Fao(®) + Focy)
2\y) = |V<p(a:(y))|2 2370 y]pk,] z0,k\T\Y 2,a\Y 2,0\Y 2,c\Y),
< 1
fowr (V) = oz Jox 2o (),
) VAP )

Zpkd 750, ( ))+Fj7ﬂ(y)a JE€ {17 ad}’

and we get that w satisfies in Q,,

d
Z (1= Xy1) 8 w—27'8y1w—|—7' W= fo+ fourr + div,, F

Jj=1

If Iy is not empty, then we simply recall that the weight function ¢ has been chosen such that ¢ = 0 on the
boundary of 9. In particular, the set I', is simply parametrized by y;(z) = Yy for some Yy = —p(xg) < 0,
and ) can be locally defined by y; > Y. Thus, in this case, the equation of w should be completed with

0(Yo,y') = g(y'), fory eRI,

where
3(Y) = gz (2(Yo,y')), for y’ € R¥! such that (Yp,y') € Ty.

Due to the form of ), and the fact that we are considering functions which are supported in sets included
in balls of the form B(0,C7~'/3), we can then simply extend all the source terms in a strip of the form
[Yo, Y1] x R4™1) where the functions are extended by 0 outside €2, and w then satisfies

Ayt — y1 S0 NjO2 b — 270y, + 720 = fo + fou +divy F in (Y5,¥7) x REY,

J y]
W (Yo,y') = g(y ), for y' € R4,
w (Y1,y') =0, for 3/ € R4,
Oy, w (Y1,9) =0, for y/ € R4-1.

In the following, for convenience, we also write €, for the strip (Yo, Y1) X R%1. Now, we come back to the
definition of A; in (7.7) and remark that the condition (1.3), when taken at x = ¢, is equivalent to the
condition (2.5). Accordingly, the Carleman estimates in Theorem [2.4] apply: for 7 > 7, we have

2| 2,y + T2 IVE L2,y + TV CD ]| o2 )

<C (||f2HL2(Qy) + 73/471/(2‘”||f2*/||L2d/(d+2)(Qy) + T||F||L2(Qy) + TS/4H§HH1/2({Y0}XR‘1_1)) ,
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and

£3/4+1/ 1/2)

(24) [0 L2a/@—2)(q,) + 20| L2 (q,) + T2 VD] 120,

< C (If2llzz@,) + 74 @] fyull rasasna,y + TN Ellz2a,) + 7 D gl g gy xmon ) -
We then simply remark that, from the expression of fa, fo.r, F and g,

3/4—1/(2d) ||,]Z'2*

I f2llz2,) + 7 N pzarasa o,y + TIF |L2c,) + 713 m/2(vo) xra-1)

<C (||f2,zo L2y + 724V CD| forr ol poascarar ) + Tl Fa lz2(2) + 72 g0 ||H1/2(ag))+CT1/3||Vy@||L2(Qy)7
and

3/4+1/(2d)‘|f2* ) + 7_3/4+1/

1f2llz20,) + 7 N p2ascara a,) + TIF L2 @ CD| Gl 12 £y xcra-1)
< C (Ifaallze) + 74 @D | ariasar oy + 71 el 260y + 7 @D gy 1120 )
+ CTYV3| V@] p2(a,)-

Accordingly, taking 79 > 1 larger if necessary, we get for all 7 > 7,

2| 2,y + T2 IVE L2,y + TV CD ]| poas a2 ()
<C (||f2\|L2(Qy) + ATV CD| o || p2as@en ) + TIF | 22(0,) + 73/4||§HH1/2({Y0}de—l)) ;
and

73/4+1/(2d) [0 L2a/@-2)(q,) + 73/2\|717||L2(s2y) + TI/ZvaHLQ(Qy)

< C (IR2llzz@,) + 74 @) fyull aasasna,y + TN Ellzaga,) + 74 D gl g gy xmon ) -

Undoing the change of variables on the left hand side, we easily deduce the estimates and .

The fact that the constants above do not depend on xg € 2\ w can be tracked in the above proof: it comes
from uniformity properties of the diffeomorphism x — vy, and relies heavily on the uniform bounds 7 ,
on the fact that ¢ € C3(£2), and that the constants in Theorem depend only on ¢y, m, and M, in ,
and for Xo < 0 < X; with |Xol,|X1] < 1. This ends the proof of Lemma [7.1}

7.3 A gluing argument: End of the proof of Theorem

We then perform a gluing argument, which essentially consists in integrating the local Carleman estimates

(7.3) and (7.4), or rather the square of these estimates, with respect to 2o € Q\w, in order to deduce estimates
and , respectively. We will only explain how to deduce estimate from the estimate 7 since
the other argument is completely similar.

We thus start from : There exist constants C' > 0 and 7 > 1 such that for all zg € Q\ w and 7 > 79,

7 [[wag 2 () + 2wy, H%zd/m—m(g) + 7 Vws, 172
<C (Hf2,ﬂco||2L2(Q) + 73/271/d||f2*',x0||2L2d/<d+z)(g) + 72N Py 720y + 7'3/2||9xo||?11/2(09)> -
Using the explicit expressions of the source terms, we obtain:
72 wao 720y + 2wy, H%u/(d—m(g) + 7 Vw1720
<C (||77z0f2\|%2(9) + TS/Q_UdH%OJ?Q*'||2L2d/<d+2>(9) + 7'2||77x0ﬁ||i2(9) + 7—3/2||77zo§||?{1/2(89))

+ C (19900 - Fll3a(q) + 7 g3y + V020 - Veola oy + 18700002 0 + 721V [l 3y ) -
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By taking 79 > 1 larger if necessary (which can be done uniformly in 29 € Q\ w), we can absorb the term
72wz |72 (- and we get for all 2 € @\ w, for all 7 > 7o,

[ ||2L2(Q) + 732, HQde/<d—2>(Q) + 7| Vws, ||2L2(Q)
C (||77a:of2\|%2(9) + 72V Four |13 2ascaran iy + T2 I0wo FlI 720y + T3/2||775E0§||§{1/2(6Q))
+C (HV%O Fl20) + 1V - Vol| 720y + [ Anm w720y + T2H|V77zo\w|\%2(ﬂ)) :

Now, integrating in zo on Q \ w and using Fubini’s identity for the Hilbertian norms, we get

Ts/ﬂpo(;vﬂw(x)\gdx—&—T/on(as)|Vw(as)|2dx+T3/2_1/d/ Hnlow”i?d/(d—m(g) dzo

QN\w

<C<Am@@wWM+Awmm+mwm@wﬁm)
+C (TS/Ql/d /Q\ ||77w0.]?2*/||%,2d/(d+2)(9) dro + 73/2 /Q\ ||773?0§||?{1/2(89) de)

0 ([ (prale) + Poa@u@P s+ [ pa@IVulPac).

where the weights pg, pr,; are defined as follows:

mmz/ ao ()2 dzo, PMW=/ Voo ()] o, Pw@Z/ | Aty () diro.
QN\w QN\w Q\w

Taking an open subset w, such that @ C w, and W, C ws, it is easy to check from the choice (7.5)) that

Vo € Q\wq, |po(z)] > T ||7i||1:2 ,
Vo€, |polx) < Crd/3, (7.8)
Vo eQ, |pei(a)] < Cr¥/E-d3, (7.9)
Vo e Q, |pralz)] < O3,

Thus, for 7 large enough,

3 / lw(z)[? da + 7'/ IVew(z)[? dz + 73/2+d/371/d/ 72013 20/ a2 3 A0
Nwa N\wa RN\
S C/ |f2(x)|2 dx +C (7'2 / ‘ﬁ(x)‘Q dxr + T3/2+d/3_1/d/ ”77:50]?2*’ ||i2d/(d+2)(ﬂ) dxo)
@ Q QN\w

+C <T3/2+d/3/ 1720911 711/2 00 d:no+7'8/3/ |w(:c)|2d33+7'2/3/ |Vw(x)|2dx>.
Q\w w w
We then add

7'3/ |w(9c)|2dm+7'/ |Vw(9c)|2dx+7'3/2+d/3_1/d/ ||n$0w‘|%2d/(d—2)(g)dx0
w, w,

a Wa a

to both sides of the previous estimate and get

/‘w |2dl‘—|-7'/ \Vw ‘2d1}+T3/2+d/5 l/d/ ||77x0w||L2d/(d 2)(Q) dxrg < /|f2 |2d$

+C (7'2 /Q |F(17)|2 da + 73/2+4/3=1/d /Q\ 1720 f21/ ||2L2d/(d+2>(9) dao + T3/2H43 / ||n330§||2H1/2(BQ) de)

\w

+C<T3/ |w(x)\2dx+7/ \Vw(x)ﬁdxw?’/?*d/?’*l/d/ IInsz||iQd/<“>(Q)d:vo). (7.10)

a a

We claim the following lemma, proven in Appendix [B}
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Lemma 7.2. With n,, as in , there exists a constant C > 0 such that for all T > 19 and g € H'/?(9Q),
T /Q\w 1720 911371/2 502y @0 < 72219l 317206y + T Cllal 72 00)- (7.11)
We thus have the bound
P [ oy 0 < PG oy + TN oy
Now, g is the trace of the function w € H*(). Taking X € W1 (Q;R?) such that X -n =1 on 99,
13150 = | div (X[ul?)do = [ div (D) do+2 [ X Fwwds < Clulfag) + [l e Vol o

It follows that the term 711/6H§H%2(6m can in fact be absorbed by the left hand side of (7.10) by taking 7
larger if necessary, and we obtain:

TS/Q\w(x)ﬁdﬁf/ﬂ\Vw(x)\zdxw?*/?*d/*l/d/gIInwaH?LQd/(dﬂ)(Q) dxg

\w

<C (/ \f;(z)|2da§+72/ |ﬁ(x)|2dx+T3/2||§||§{1,2(m)+¢3/2+d/3*1/d/
Q Q

+C<T3/w

We then go back to the variable u and get the following estimate:

HnZo f2*’ ||i2d/(d+2) Q) dl’o)

|w(z)|? da + T/

Wa

\Vw(x)\g d$+T3/2+d/3_1/d/

Wa

Hnil?ow”izd/(d—z)(g) deO) .

a

e ul| 72 ) + Tl V|7 ) + 7'3/2+d/?’_1/6l/Q 1720 u€™ || £ 20/ a2 () o
<C (||€wf2|%2(9) + Tg/ﬂd/gfl/d/ﬂ anofz*/ew||2de/(d+2)(9) dzo + TzHewFH%%Q) + 7'3/2||€w9||§{1/2(ag)

+r0 e ullZs

) Tl VUl Fa g, + T EHYE /

Wa

67 -y o ) - (712

We finally explain how to remove the term T||eT‘/’Vu||%2(%) from the right hand side of (|7.12)). In order to do
that, we choose an open subset w;, of  such that We C wp and Wy C wy, and a smooth compactly supported
function 7, taking value 1 in w, and vanishing in Q \ w,. We then multiply (1.4)) by n,ue?™?, which yields:

/nw|Vu\262wdx=/nwfzue%“"dx—k/nwfg*/ueQWdas—/ F-V(n,e*™)udx
Q Q Q Q

1
—/F~Vu77w62'“pdx—|—f/ A(1,e*7?)|ul? da.
Q 2 Ja

Using the bound

/ F - Vun,e* ™ dx
Q

1, 1 i
< §HF€ wll%Q(Q) + 5‘/an|Vu|262 Sadx,

we easily get
€7V ull T2,y < Cllf2e™ 120 lue™ | 12w,y + ClIFe™|[72(q)

+ CTHF@T‘P”LQ(Q) ||UeT99||L2(wb) + CTgHueT‘P”%z(wb) +C ’/Q 77wf2*/ue2799 dzr

Only the last term is unusual. In order to estimate it, we remark that, for all = € wy, (recall that w, hence wy,
is at a positive distance from 99), taking 79 > 1 larger if necessary, for all 7 > 79,

/ ey ()2 0 = 17][2 gy /2.
ToEN
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Accordingly,

/nw.fQ*’uezﬂpdx / / 7]wf2*’ue e 0( ) dx dxg
Q ||77||L2(]Rd zoeQ JzeQ

<t / M0 four €% || L2as a2 () 1Mzo €™ || 2/ (a-2) (1) Ao
zo€EQN

< OTY3||ngy fowre™ ||Li0 (@120 (g o ue™ ”Lio (L2 (@)

One then easily gets that
T||eT<PVu||%2(wa) <C <||ewf2|%2(m + T3/2+d/371/d”77900f2*/6ﬂpHLz a2 +r2e @F”L?(Q)
3/21| T 3 3/24+d/3—1/d T
+7%2 e S09||Hl/2 o) T7°ll€7 Pulle(,) + T [ERAB iy, ue ¢||L2 @2 @D, ))) ;

which concludes the proof of (1.5)) since we obviously have

T<p||2

||77zoue Lio(Q;Lid/(d*%(u}b)) < ||n$0ue‘r ||L2 ( 2d/(d 2)( D)

for 7y sufficiently large so that 701/3 > 1/d(wp, 2\ wy).

8 Proof of Theorem [1.3; Quantitative unique continuation

First, by restricting w if necessary, we assume that w is a non empty open subset of 2 with @ C Q. Then, for
wo a non-empty open subset such that @y C w, there exists a function ¢ satisfying conditions (1.2)—(L.3) in
wp, so that the Carleman estimates 7 in Theorem with w; = w hold.

For V € L% (Q), Wy € L% (Q; C?), and W, € L92(Q; C?), we consider decompositions of the form

V =V + Vi+ Va, with Vyje € LY2(Q), Vi € LUQ), Vo € L=(Q),
Wi =Wiq+ Wi, with Wi 4 € L4(Q;C%), Wy o € L®(;CY),
W = Wa g + Wa o, with Wa g € LYQ; CY), Wa o € L(Q;CY),

which will be made precise later.
In partlcular applying ([1.5)) for u solution of (1.4 ., with fo.r = Vyout+Vau+Wi ¢-Vu, fo = Veeu+Wi o-Vu,
and using and ( -, we get the existence of C; > 0 such that for 7 > 7¢:

3/2 1/2

le™ull L2y + 7/ le™?Vul| L2(q)

< O™ (Voo + Wi oo - V)| £2(0) + Crr®/ 4V D |e7 (Vg gu + Viu + Wi g - V) I 2072 g
+ C17][e™ (Wa gu + Wa sou) || L2() + C1 (7'3/2||ewuHLz(w) + 7—3/4||6T¢U|‘Li{,i‘,{(d—2)(w))

<Gy <||Voo||L°°(Q) + A CD V|| Lagay + T||W2,OO||L°°(Q)) le™ull 12 (8.1)
+C <||W1,oo||L°°(Q) + 73/4_1/(2d)”WI,dHLd(Q)) le™VullL2(q)
+C1 <T3/471/(2d) Va2l Larz ) + THWQ,dHLd(Q)) ||€T¢U||Lg7fg<d—2>(9) + 0173/2||6wu||L2d/<d—z>(w).

Similarly, applying (1.6) with fo. = Vgou+ Wi 4 Vu, fo = Vau + Veeu + Wi - Vu, we obtain the existence
of a constant Cs > 0 such that for 7 > 9,

73/4+1/(2d) ||6W“||L%‘,?T/<d*2’ ()
<Oy (HVooHL”(Q) + T||W27oo||L00(Q)) lle™ ulL2(q) (8.2)
+Cy (||W1,oo||L°°(Q) + 73/4+1/(2d)||W1,d||L‘i(Q)) lem*Vullzz)

+ Ca (IVallagay + 74 OVl aragay + TIWaal gy ) le™ull 2oy gy + Cor®/2llem#ul aasca-n .
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Thus, if we have

20y (HVooHLoo(Q) + P4 CDN Y| Loy + T||W2,oo||Loo(Q)) < 2, (8.3)

20, (HWLOOHLoo(Q) n 7'3/4_1/(2d)HWLdHLd(Q)) <712 (8.4)

20, (HVdHLd(Q) n 7'3/4+1/(2d)||Vd/2||Ld/2(Q) +THW2,dIILd(Q)) < P31/ (2d) (8.5)
estimates 7 yield:

+3/2 1/2

le™ull 2oy + 77 le™ Vull L2 (o)
<20y (73/4_1/(2d)||Vd/2||Ld/2(Q) + THWz,dHLd(Q)) le™ull p2a/ -2 ) + 20172 [€7Pul| poasca-2 (),
and

T CDYeTu) a2 ) < 20 ([|Vaclloe () + TIWa,o0 2= (@) lle™ul L2 ()

+ 20 (HWLOO”L‘X’(Q) + r3/AT1/(2d) ||W1,d||m(9)) €7Vl 2() + 2C27/2(|€™ul| f2aa-2) (o)
Following, under conditions (8.3)—(8.4))—(8.5)), we also have

3/2 1/2

le™ullz2q) + 777 [l€7 Vul L2

< 40, Cor—3/471/ () (73/4_1/(2d)||Vd/2||Ld/2(Q) + THW2,d||Ld(Q)> (Voo ll e (@) + TIIWa2,00 [l Lo (@)) l€™ull L2 (a)
440, Cyr—3/4-1/(24) (7'3/4_1/(2d)||Vd/2||Ld/2(Q) + TIIWz,dHLd(Q))

X <||W1,oo||Loo(Q) + 73/4+1/(2d)HWl,dHLd(Q)) €™ Vul 220

+20, (02 (73/4—1/@61)||Vd/2||Ld/2(Q) + 7| Wag

ILd(Q)) T+ 73/2) Hewu||L2d/(d,2)(w),

Note that this estimate yields an observation estimate if the additional following conditions are also satisfied:
8C, Clyr—3/4-1/(2d) (73/4_1/(2(1)|\Vd/2||Ld/2(Q) + T||W2,d||Ld(Q)) (Voo | oo () + Tl Wayoo | oo () < /2 (8.6)
80, Cyr—3/4-1/(2d) (T3/4—1/(2d)HVd/QHLd/z(Q) + T||W2,d||Ld(Q)) (8.7)

x (HWLO@HL“(Q) JrTBMH/(%)||W1,d||Ld(Q)) < T2

Indeed, in this case, one would obtain

3/2 1/2

lle™ ull L2y + 7

< 201 (Cg (7'3/4_1/(2d) ||Vd/2||Ld/2(Q) + THWQ’dHLoo(Q)) 7'3/4 + T3/2) ||€T¢UHL2d/(d—2)(w). (8.8)

€™ Vul|L2(q)

Therefore, our next step is to understand how, given V € L% (Q), W, € L% (Q;C?%), and W, € L% (;CY),
one can minimize the value of 7 for which we can find decompositions such that conditions f*f
7 are satisfied.

Before going further, let us remark that (8.3)(8.4)—(8.5)—(8.6)(8.7) are satisfied provided, for ¢y > 0 small

enough,

IVeollz (o) < o2, IVallpagy < cor® D Vo pasa o) < co,
Wi callzee @) + IWasslloo(@) < cor'/2, 74V ED (1W gll Lagy + [WaallLag)) < co, (8.9)
T2 W all Loy Wa,all Lage) < co-

The case V € L () with ¢y € (d/2,d]. For V € L®(Q) with gy € (d/2,d] and Ay > 0 to be chosen
later, we set Vo = = V1jy|sxg, Va = V1jvi<ae Voo = 0, for which we have the following estimates:

—d/2 d/2 d—
/\go / HVd/2HL/d/2(Q) < ||V| %oq0(9)7 HVdH%d(Q) < /\0 qOHVH%JqO(Q)'
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Similarly, for Wy, € L% (Q) and Wy € L%(Q) and A1, A2 positive numbers to be chosen later, we set
Wl,d = Wll‘W1|>,\1, Wl,oo = W11|W1‘§)\1, and Wg,d = W21\W2|>/\27 W2,oo = W21|W2|<)\2, for which we have
the estimates:

—d
{ AT <UMilZa@y Wieollpe() < Ax, (8.10)
Ag el Worcllimq@) < Ao
Conditions are thus satisfied provided
o VIR gy S cor® B ATER VG < o,
M4 dg Seorlf2, A RO gl AT R W) < co, (8.11)

e 11 ||qué‘§m Ay Wl o) < o

We then choose Ao = 7%°(|V|| a0 (), A1 = 7% [|[Wi|Lar (@) and Ap = 7%%||[Wa||Laz () for some real parameters
ap, a1, Q, so that conditions (8.11) yield:

Tao(l—qo/d)—3/4—1/(2d)HV”L%(Q) < co, Ta0(1—2qo/d)||VHLq0(Q) < co,

T2 W | L () + 72 Wa | Laa ) < co,

(8.12)
T1/4—1/(2d)+a1(1—q1/d ||W1 1/4—1/(2d)+a2(1—q2/d) ||W2

a1y +7 | a2 () < co,

7.1/2+a1(1fq1/d)+a2(1fqz/d)||W1||Lq1(ﬂ)||W2HW(Q) < ¢

For go € (d/2,d], @ > (3d —2)/2, q2 > (3d — 2)/2 with 1/¢1 + 1/q2 < 4(1 — 1/d)/(3d — 2), we choose
ag = (3/4+1/(2d))d/q0, a1 = (3/4 —1/(2d))d/q1, az = (3/4 — 1/(2d))d/q2, so that system ({8.12) is satisfied
provided, for some C' large enough,

+(2=d/q0)(3/4+1/(2d)) > C||V||qu(ﬂ),

F/2-6/41/CaNdla 5 oW, F1/2=(3/41/a)d/e 5 o),

||L‘71 (£2)» ||L42(Q)a
7_171/d7(3/471/(2d))(d/q1+d/q2) > CHW1||L‘11 (Q)”WQ”L‘D(Q)a
that is, with the notations of Theorem [I.3]
4 15
> C (IVI7500) + W50 + Wl 3520, + (Wil @) IWallgar )™ )) . (8.13)

For qo € (d/2,d], ¢1 > 3d/2, and g2 > 3d/2, one can alternatively choose oy = (3/4 + 1/(2d))d/qo, a1 =
3d/(4q1), aa = 3d/(4q2), so that system (8.12)) is satisfied provided, for some C' large enough,

FC= )G QD) S OV ||y, TV23UD) S O\ Wl (), Y234 S O Wl o),
that is, with the notations of Theorem

o )
> O (IVI} 50y + IS oy + 2550, ) - (8.14)

Taking 7 large enough that saturates condition , respectively condition '@, bounding the weight
function e”% from below and from above in , we easily deduce Theorem |1__3' item 1, respectively item 2
for qo € (d/2,d).

The case V € L% (Q) with ¢ € [d,o0]. For V € L% (Q) with gy € [d,00] and Ao > 0 to be chosen later,
we set Vo =0, Vg = V1ysag, Voo = V1jv i<, for which we have the following estimates:

d
AVl Laiy < IV IIEu0 (@) Vsl 2o () < Ao-

The potentials Wy € L7 (Q) and Wy € L92(Q) are decomposed as before Wy = Wi g+ Wi o, Wo = Wa g+ Wa o
with the estimates (8.10|) for positive parameters A\; and Ay to be chosen later. Similarly as before, conditions
(8.9) are thus satisfied provided

1 d d 3/4+41/(2d 3/2
W/ V|t < cor ATV N < eor®?,

A+ A2 < qort/?, VAT D (N Q1/d||W1H%1q/1d )Jf)‘1 QQ/dHWzHZ%dQ)) €0, (8.15)

AW o e W2l g < co-
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Similarly as before, for qo € [d, 0], g1 > (3d—2)/2, g2 > (3d—2)/2 with 1/q1 +1/g2 < 4(1—1/d)/(3d —2), we
choose ag = (3/4 —1/(2d))d/qo, a1 = (3/4 —1/(2d))d/qr, az = (3/4 —1/(2d))d/qz, and Ao = 7 |[V|| ao (q2),
A1 = T Wi|La @) and Ay = 792[|[Wa||Le2 (). We then deduce that system (8.15) is satisfied provided, for
some C' large enough,

72 4/20) /471 CD) 5 OV ao 0y

F1/2=(3/4=1/(2d))d/q > C||W F1/2=(3/4-1/(2d))d/q: > C|Ws

||L’11(Q)a ||L‘12(Q)a

1-1/d=(3/4-1/2d))(d/q1+d/q2) > C|Wil| Lar (o) | W2 a2 ()

that is (8.13]) with the notations of Theorem
Here again, for ¢y € [d, 0], ¢1 > 3d/2, and g2 > 3d/2, one can alternatively choose oy = (3/4—1/(2d))d/qo,
a1 = 3d/(4q1), as = 3d/(4q2), so that conditions (8.15]) are implied by

7(3/2=d/q0)(3/4+1/(2d)) > C||VHL‘10(Q)7 71/2=3d/(4q1) > CHWIHL‘H(Q)a 71/2-3d/(4q2) > C||W2|\qu(sz)7

that is (8.14]) with the notations of Theorem
We then deduce Theorem in the case ¢ > d immediately from (8.8) as in the case ¢ < d.

Remark 8.1. In fact, if we focus on the conditions

>\1+)\2 007'1/2 1/4 1/(2d)( 1 Q1/d||W1||%1q/ICéQ +>\1 qz/d”WQ”%Zq/;éQ ) <CO,

A1/2)1- /d /d  \1—q2/d /d (8.16)
o AR P ||W2Hqﬁq2(g) co,
which appear in the second and third lines of system (8.11) and (8.15), and choose A1 = 7V [|W1|| a1 () and
Ay = 72[|[W3| pa2 (), one can find T large enough so that system 1 is satisfied provided
oy < L ag <
1 ) 2 57
q12 1 21 0 1 1 a %@ 1 (8.17)
i w0 ik w (e (B
(g1 @(G-Y>3-20 a(g-)+a(F-1)>3
Indeed, in this case, it suffices to take, for a sufficiently large constant C,
a1 (01) q ) b(ar,a)
C (Imallgie) + IWalzaies + (W o @ Wallpes @) ") (8.18)
with
1 1 1
Aaler) = max Efo/a(ffl) o P02 = o (qf171> +a <q7271> _ L
2 d 2d "\d *\d 2

Although it is rather easy to check that the system admits solutions (a1, as) if 1 and qo satisfy q1 >
3d/2—1, g2 > 3d/2—1 and q1 +q2 > 3d, it is not clear how to choose a; and s satisfying to minimize
T in . We have thus decided in the above proof of Theorem to restrict ourselves to the case in which
both terms in a4(c) are equal (this choice corresponds to item 1 in Theorem , or to consider, instead of

(8.16)), the sufficient conditions
d d d d
M de <ot/ A AT WA 800G + AW (0 < co,

this choice yielding to item 2 in Theorem[1.3

A Reminder of some classical results in harmonic analysis

We start by recalling the classical Hardy-Littlewood-Sobolev theorem.
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Theorem A.1 ([13| Theorem 4.5.3.] Hardy-Littlewood-Sobolev theorem). For (p,q,r) € (1,00)® such that
1 (1 1)
—=1-(===),
r p g

there exists a constant Cp 4 such that for all f € LP(R™),

< Cp7q
La(Rn)

Fllze@®n).-

re / & — |~ F(y) dy

In the article, we have also used the stationary phase lemma. Although it is a very classical lemma of
harmonic analysis, we used the following version proved in [I], which presents the advantage of quantifying
precisely the constants in the stationary phase lemma:

Theorem A.2 ([I, Theorem 1] Stationary phase lemma). Let ® € C* (R%4R), b € C5° (R4 R). For A € R,
we introduce

Inoh) = [ Mgy
R4
Set K = suppb and let V' be an open neighborhood of K, and use the following notations:

)

o Myyo:= Zz<|a\<d+2 SUDeev ‘D?@(f)

o Nyy1:= Z|a\<d+1 SUDge i ‘D?b({)’,

and assume that there exists ag > 0 such that for all £ € V', | det(Hess ®(&))| > ag, where Hess ®(§) denotes
the Hessian matriz of ® at &.
There ezists a constant C independent of (®,b) satisfying the above assumptions, such that for all X > 1,

C 2
|I<I>,b(/\)| < W (1 +M3122+d )Nd+l)‘_d/2-
0

B Proof of Lemma [7.2l

The proof of Lemma [7.2] relies on a suitable interpolation estimate.
First, for 7 > 79, we define the operator

A, L2(09) — L*(Q\ w; L2(09)),  defined by Arg(20) = 1z~ ()g(*), o € 0\ w, (B.1)

where we recall that 7,, ., is the function given by 1., ,(z) = n(7*/3(z — x¢)) for + € R?, for a smooth
compactly supported function 7.
Using (7.8)—(7.9)), it is easy to check that there exists a constant C' > 0 such that

Vg € L*(09),  [1A+gll72(0\wr200) < Cr‘d“HgHiz(am,

Vg€ H'(0Q), [ArglZz(owm oay < O Y? (HgH%ﬂ(BQ) + 72/3||9||2L2(aﬂ)> :

We can then deduce easily the estimate . More precisely, by interpolation, A, maps H'/ 2(00)
to L?(Q \ w; H'/2(0Q)). To estimate the operator in this norm with appropriate powers of 7, we proceed
as follows. We let (®;) en be the basis of eigenfunctions of the Laplace Beltrami operator —A on 9f, with
corresponding eigenvalues (/\f) jen, which are non-negative and going to infinity. Accordingly, for g = > ;a5
the L2(9Q), H'(09) and H'/2(0) norms of g can be read as, respectively, [|(a;)llezv, [[(a;(A; + 1)|lez ),
and [|(a;(A; + 1)) |2 .-

Writing g € H'/2(99) under the form g = >~ _ a;®;, we then introduce the function

jEN

F(2) =D a;(\ +1+ 7N D, » € C with R(z) € [0, 1.

JEN
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The function f is holomorphic in {z € C with R(z) € (0,1)} with values in L?(Q \ w; L?(99)), f(1/2) = A, g,

and

VB €R, Hf(iﬁ)H%?(Q\w;w(aQ)) <ori3 Z la; PNy + 14+ 717%),
J

VB ER, |IF(L+iB)Ta@nwir ony < OV Y lag POy + 1471,
J

Since L?(Q\ w; HY/2(09Q)) = [L?(Q\ w; L*(09)), L*(Q \ w; H'(0))]1 /2, we deduce from the above estimates
that there exists C' > 0 such that for all g € H'/2(9Q) and 7 > 7,

IA-912 2 s 2oy < CT~ Y2 (193 2(00) + 77 N9132c0m) ) -

This concludes the proof of Lemma
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