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Abstract Numerical packings of spheres with uniform grain size distribution
and maximum to minimum diameter ratio up to 15 are generated using the
Discrete Element Method (DEM). Two numerical methods are used to com-
pute their permeability by homogenization: the Lattice Boltzmann Method
(LBM) and a Fast Fourier Transform (FFT) based method. The results given
by both methods are shown to be consistent with semi-analytical and exper-
imental results. For an identical discretization grid, the FFT method has the
lowest memory and computational time requirements. The LBM is more ac-
curate for coarse to moderately fine discretizations, while the FFT method
converges linearly with the voxel size h with a relative discretization error
below 1.5 times h/D25, where D25 is the 25% passing by mass grain diame-
ter. The issue of the variability of the permeability computed on finite sized
samples is determined either directly by many realizations of similar random
samples or indirectly by a faster filtering method on a single sample. Both
methods yield similar results and indicate that a Representative Volume El-
ement (RVE) size greater than 7D40 guarantees a variability of permeability
below 5%.

Keywords Granular materials · Permeability · Discrete Element Method
(DEM) · Lattice Boltzmann method (LBM) · Fast Fourier Transform (FFT) ·
Homogenization

1 Introduction

Granular soils have been widely used to construct hydraulic earth-filled struc-
tures such as dams, dikes and levees. The permeability K is a key parameter
used in the Darcy law to describe the fluid flow in such media. An accurate
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estimation of this parameter is of paramount importance to assess the safety
of hydraulic earth-filled structures. In fact, these structures might suffer from
several instabilities caused by the seepage, among them internal erosion is one
of the main causes of failures of embankment dams and dikes [17]. Internal
erosion is a phenomenon during which fine particles migrate through the pore
space between coarse particles under the action of seepage forces. This mi-
gration of fine particles leads to a degradation of hydraulic and mechanical
properties of the soil, which might result in damages or failures of earth-filled
structures. Therefore, the risk assessment requires an accurate prediction of
the flow velocity and pore pressure inside the structure, and then accurate per-
meability values of the soils that constitute the structure. The permeability
can be determined by performing tests in-situ or in laboratory. However, these
tests are costly and time-consuming. Moreover, due to the soil’s heterogene-
ity in terms of grain size distribution (GSD) and compactness, an important
number of tests is needed to obtain a reliable assessment, leading to a high
cost. Empirical relations have been extensively used as an alternative to esti-
mate the permeability of granular soils from their GSD and porosity. Most of
empirical relations link the permeability to D10 (grain diameter corresponds
to 10 % finer by mass) considered as the characteristic grain diameter and
porosity (see [35] for different empirical formulas). Each relation has been de-
veloped for a specific class of materials with a specific range of GSDs. An
inappropriate use of these empirical rules might lead to an underestimation or
overestimation of the permeability by several orders of magnitude as stated
by Koltermann and Gorelick [27] and Odong [35]. Kenney et al. [25] found
that the permeability of a granular filter is closely related to its controlling
constriction size D∗

c which is the diameter of the largest particle that can be
transported through the void space of the filter. This is the starting point for
the semi-empirical method proposed by Indraratna et al. [23] who estimated
the controlling constriction size D∗

c by using a probabilistic method based on
the GSD.

As the geometry of the void space of the granular soil is determinant of
the permeability, a reliable method for estimating this parameter should take
the microstructure into account. Nowadays, the power of the computer and
advanced technologies allow us to extract the microstructure of real porous
materials by using micro-computed tomographic scans (micro-CT) or to simu-
late realistic virtual materials. The DEM (discrete element method) has been
widely used to model granular soils at the particle scale from their GSD and
density [36]. Other numerical soil models include the sequential deposition al-
gorithm [13]. The microstructure extracted from simulated samples serves as
input to compute the permeability by using a numerical fluid computation
method. Different methods can be used to solve fluid flow through the void
space, among them finite-difference method [15], lattice Boltzmann method
(LBM) [18,28,39] and FFT-based (Fast Fourier Transform) upscaling method
[7,9,32] are grid-based methods. These methods present a great interest as
the uniform grid used to discretize a porous medium is convenient not only for
virtual materials simulated using DEM but also for real materials whose mi-
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crostructure is digitized into a series of images with high resolution. For exam-
ple, the permeability and conductivity of random beds of particles constructed
by the sequential deposition algorithm has been thoroughly investigated by
[13,33] using the finite-difference method. Other methods such as Immersed
Boundary Method (IBM) used by Knight et al. [26] and Semi-Implicit Method
of Pressure Linked Equations (SIMPLE) method used by Sanvitale et al. [38]
can also be applied to uniform grids. Nevertheless, mesh refinements at the
particle surface are required to improve the accuracy of the numerical solution.

In this paper, we use the LBM and FFT-based upscaling method to com-
pute the permeability of granular materials simulated with the DEM. Our first
objective is to compare these two methods in terms of their accuracy and per-
formance. For this comparison, we use some benchmark problems for which
precise solutions can be obtained by semi-analytical approaches or by com-
putations with very high resolution. We also validate numerical results given
by these two methods against experimental data available in literature for
glass beads. Our second objective is to provide some guidelines when choosing
the resolution of the discretized microstructure and the size of the Repre-
sentative Volume Element (RVE). The RVE size must be chosen to obtain
a reliable permeability from random finite sized samples generated with the
DEM. For this purpose, the direct method proposed by Kanit et al. [24] is
first used to estimate the variance of the permeability for a given RVE size
from many realizations and compared against a faster filtering method from
a single realization presented in [1,7]. Both methods are compared on series
of numerical results obtained with the DEM combined with the FFT-based
upscaling method.

This paper is organized as follows. We first recall briefly the framework for
upscaling permeability from fluid flow simulations at the pore scale. We then
present the DEM used to simulate granular samples considered in this study
and the LBM and FFT-based upscaling method to compute the permeability.
Next, the accuracy and performance of the LBM and FFT-based upscaling
method are compared by using some benchmark problems. Finally, we present
a study on the discretization resolution and the RVE size to compute the
permeability from DEM generated samples.

2 Upscaling of Darcy’s law from Stokes equations

We consider the description of flow of an incompressible Newtonian fluid of dy-
namic viscosity µ through a porous medium1. The flow is assumed sufficiently
slow to neglect inertia effects.

1 µ = ρν where ρ is the fluid density and ν its kinematic viscosity.
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At the macroscopic scale, Darcy’s law linearly relates the filtration velocity
V to the macroscopic pressure gradient ∇P via the permeability tensor K:

∇ · V = 0

V = −K

µ
· ∇P

(1)

At the microscopic scale, the flow within the pore space is instead governed
by Stokes equations. Within the framework of periodic homogenization [2,3,
16], a homogenization problem PStokes is defined on a Representative Volume
Element (RVE) Ω comprising a fluid phase Ωf, a rigid solid phase Ωs and a
solid-fluid interface Γ . The size of the RVE must be much smaller than the
characteristic length of fluctuation of the fields at the macroscopic scale to
ensure the description by a continuum at the macroscopic scale, but it must
be much larger than the characteristic length of the pore space to ensure
the representativity of the RVE. As a result, the macroscopic velocity V and
pressure gradient F = ∇P from (1) appear as constants within the RVE. At
the pore scale, the fluid velocity v, the pressure and the Cauchy stress tensor
are fields of the microscopic space variable x. The pressure ptot (resp. Cauchy
stress σtot) in the fluid decomposes in a linear trend due to the macroscopic
pressure gradient F = ∇P and a periodic fluctuation p (resp. σ) as:

ptot = F · x+ p ; σtot = −(F · x)1+ σ (2)

where 1 is the identity second order tensor. For the periodic fluctuation vari-
ables, the flow appears driven by F :

∇ · σ − F = 0 in Ωf

σ = −p1+ 2µ∇sv in Ωf

∇ · v = 0 in Ωf

v = 0 on Γ

v and p periodic on ∂Ω

(3)

where ∇sv is the symmetric part of the microscopic velocity gradient.
By linearity of problem (3), the solution velocity field v linearly depends

on the macroscopic pressure gradient F via some velocity concentration tensor
field κ such that:

∀x ∈ Ω, v(x) = − 1

µ
κ(x) · F (4)

where, by extension, v is set to 0 in Ωs. The macroscopic velocity V is related
to its microscopic counterpart by the averaging rule:

V = vΩ with vΩ =
1

|Ω|

∫

Ω

v dV (5)

The combination of (4) and (5) shows that the macroscopic velocity V is
linearly related to the macroscopic pressure gradient F by the permeability
tensor K of the porous medium used in (1), defined as:

K = κΩ (6)
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In numerical homogenization, the homogenization problem (3) is solved for
prescribed values of the macroscopic pressure gradient F corresponding to
the base vectors ej , j ∈ {1, 2, 3}. The components vi of the computed velocity
fields then directly correspond to components κij of the velocity concentration
tensor; averaging over the RVE provides the upscaled permeability according
to (6).

3 DEM generated samples and LBM and FFT-based upscaling
methods

3.1 DEM generated granular samples and grid-based discretization

Granular samples having periodic boundary conditions are simulated by using
the DEM implemented in the open-source software YADE [44]. These samples
are composed of spherical particles whose diameters match a given GSD. The
interactions between particles at the contact are described by two linear force-
displacement laws in the normal and tangential interactions. The tangential
interaction must respect Coulomb friction law. The parameters needed for
numerical simulations are the same as those used in [40]: particle mass density
ρ = 2600 kg/m3, particle normal stiffness kn/D = 250 MPa (D is the particle
diameter), particle tangential stiffness kt/kn = 0.5, and the friction angle
φ = 35◦. The value of kn chosen here is high enough to obtain inter-particle
overlaps δ/D smaller than 0.5%. Particles are first generated into a cubic box
in such a way that the sample’s boundaries are periodic. The box sizes are
chosen such that the particles do not greatly overlap each other. The box sizes
are then progressively reduced until either the sample’s porosity or the stresses
reach target values.
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Fig. 1 Four grain size distributions (GSDs) considered in the current study: UG1, UG5,
UG10, UG15.

Four different types of granular samples, namely UG1, UG5, UG10 and
UG15, composed of spherical particles with linearly graded GSDs are simu-
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lated (Figure 1). The last number of each label designates the value of the
maximum to minimum particle diameter ratio Dmax/Dmin. For instance, the
samples UG15 have Dmax/Dmin = 15. The samples UG1 are actually almost
monosized where the particle diameter D varies narrowly between 0.95D and
1.05D with D being the average particle diameter. These samples are mod-
els of actual samples of monosized glass beads tested by Verneuil and Durian
[42]. The three other types of samples UG5, UG10 and UG15 are categorized
as uniformly graded materials. The porosity is controlled to be equal to 0.38
for all the samples. The hydraulic radius RH defined as the ratio of the total
pore volume Vp to the total pore surface Sp (RH = Vp/Sp) is computed for
each sample. According to Carman-Kozeny equation [12], the permeability of
granular materials is mainly controlled by the hydraulic radius RH and the
porosity. Table 1 shows the coefficient of uniformity Cu, the porosity and the
hydraulic radius RH of the simulated samples.

Sample UG1 UG5 UG10 UG15
Cu 1.05 2.4 3.4 3.9

porosity 0.38 0.38 0.38 0.38
RH/Dmin 0.1 0.25 0.39 0.52

Table 1 Coefficient of uniformity Cu, porosity and hydraulic radius RH of the four types
of samples.

A uniform grid is used to discretize a granular sample into nodes and
cells as illustrated in Figure 2. This discretization allows us to describe the
microstructure of the sample, and it serves as input to the LBM and FFT-
based upscaling method to compute the permeability. The former operates
on the nodes, while the latter operates on the cells, otherwise called pixels in
2D or voxels in 3D. The length of the sides of each cell is denoted by h. A
node is considered as a solid one if it is located inside a solid particle and as
a fluid one otherwise (Figure 2.b). Among the solid nodes, those having at
least one neighboring fluid node are considered as the nodes at the fluid-solid
interface. In a quite similar way, a cell is considered as a solid one if its center
is located inside a solid particle; furthermore, the solid cells having at least
one neighboring fluid cell are considered as those at the fluid-solid interface
(Figure 2.c).

3.2 LBM

A fluid can be viewed as either a collection of distinct molecules at the mi-
croscale or a continuum at the macroscale2. At the microscale, the dynamics
of each molecule can be modeled by the molecular dynamics (MD). However,

2 In this section, as opposed to Section 2, the microscale denotes the molecular scale, the
macroscale denotes the scale at which the fluid is homogeneous (which is the microscale of
Section 2) and the mesoscale denotes the scale of a collection of molecules.
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Node Cell

(a) (b) (c)

Fig. 2 2D illustration of the discretization using a uniform grid. (a) solid particles (gray)
and fluid (white). (b) solid nodes (■ for the bulk nodes and ■ for the nodes at the interface)
and fluid nodes (×), and (c) solid cells (gray cells and those with × depict the cells at the
interface) and fluid cells (white cells).

this method is extremely expensive as a huge number of particles is required
to represent the fluid. Most CFD (computation fluid dynamics) methods such
as FEM (finite element method) or FVM (finite volume method) use a macro-
scopic description of the fluid by means of the well-known Navier-Stokes equa-
tion. This equation describes the motion of the fluid in terms of macroscopic
variables such as flow velocity and pressure, similarly to (3) (in which inertia
effects are neglected). The LBM adopts a mesoscopic view of the fluid and
lies between the aforementioned methods. According to this method, the fluid
is viewed as a set of different populations of molecules; in each population,
all the molecules move in the same direction and at the same velocity. Each
population is described by a distribution function f(x, ξ, t) which represents
the proportion of the molecules having a microscopic velocity ξ at position
x and time t. The macroscopic variables such as the fluid density ρ(x, t) and
flow velocity v(x, t) are related to the distribution function f(x, ξ, t) and the
microscopic velocity ξ by integrals over the microscopic velocity space. The
evolution of the distribution function f(x, ξ, t) is described by the Boltzmann
equation associated with the BGK collision model [5]. This equation is numer-
ically solved by discretizing the whole fluid domain into a regular lattice with
a spacing h and the continuous velocity space ξ into a set of discrete velocities
ξi (i = 0, 1, ..., N). We use the model D2Q9 with 9 discrete velocities and
D3Q19 with 19 discrete velocities for 2D and 3D problems, respectively. The
discretized forms of the Boltzmann equation associated with the BGK collision
model are as follows:

ρ(x, t) = m

N∑

i=0

fi(x, t), ρ(x, t)v(x, t) = m

N∑

i=0

ξifi(x, t) (7)

fi(x+ ξi∆t, t+∆t) = fi(x, t)−
∆t

λ
[fi(x, t)− f eq

i (x, t)], (8)
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where fi depicts the distribution function at a given node along direction i; m
is the molecule mass which is usually taken as being a unit for simplicity; ∆t is
the time step; λ is a relaxation time; and f eq

i (x, t) is the so-called equilibrium
distribution function and is obtained by truncating the Hermite expansion of
the Maxwell-Boltzmann distribution to the 2nd order:

f eq
i = ωiρ

[
1 +

3(ξi.v)

c2s
+

9(ξi.v)
2

2c4s
− 3(v.v)

2c2s

]
, (9)

where cs is referred to as the sound speed, and coefficients ωi depend on the
discretization model [21]. For instance, for the D3Q19 model, cs = (h/∆t)/

√
3,

ω0 = 1/3, ω1,..,6 = 1/18 and ω7,..,18 = 1/36. For a flow with low Match number
M =| v | /cs (M ≪ 1), the Navier-Stokes equation can be recovered from
the discrete Boltzmann equation (8) combined with (7) and (9) by using the
multiscale Chapman-Enskog analysis [20]. Through this multiscale analysis,
the pressure p and fluid kinematic viscosity ν are related to the density ρ and
the relaxation time λ, respectively, as follows:

p = c2sρ (10)

ν = ∆tc2s

(
τ − 1

2

)
, (11)

where τ = λ/∆t is the dimensionless relaxation time. Equation (11) requires
that τ > 1/2.

The system of equations (7) and (8) is numerically solved by simply repeat-
ing a collision step followed by a streaming step. For the collision step, all the
populations at a given node x and at a given time t collide each other, and the
post-collision distribution function f c

i (x, t) for each population is computed
as:

f c
i (x, t) = fi(x, t)−

1

τ
[fi(x, t)− f eq

i (x, t)], (12)

where the equilibrium distribution function f eq
i is given by (9) with the macro-

scopic density ρ and velocity v given by (7). After that, each population is
streamed to the neighboring node in its direction after the time period ∆t:

fi(x+ ξi∆t, t+∆t) = f c
i (x, t). (13)

The above collision and streaming steps are only applied on the fluid nodes.
The no-slip boundary condition at the fluid-solid interface is accounted for by
the so-called full way bounce-back scheme. Due to the presence of the solid
phase, some pre-collision distribution functions at the fluid nodes near the
interface are unknown as no population is streamed from the solid nodes. These
unknown distributions at time t (those are represented by dotted arrows in
Figure 3.d) are determined by making the following assumption. For the post-
collision populations that are streamed from a fluid node into a solid node at
the interface at time t− 2∆t (f c

4 , f c
7 and f c

8 in Figure 3.a), they arrive at the
solid node at time t − ∆t (Figure 3.b), then reverse their direction (Figure
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Fig. 3 Illustration of the full way bounce-back scheme for the populations between fluid
nodes (×) and solid nodes ■.

3.c) and finally come back to its original fluid node at time t (Figure 3.d).
Therefore, the unknown pre-collision distribution functions at the fluid node
at time t (f2, f5 and f6) are the known post-collision distribution functions in
the respective opposite directions at the same node but at time t − 2∆t (f c

4 ,
f c
7 and f c

8 , respectively). It follows that

fi(x, t) = f c
−i(x, t− 2∆t), (14)

where fi is an unknown pre-collision distribution function and f c
−i is the post-

collision distribution function in the opposite direction. It should be noted
that only populations f c

4 , f c
7 and f c

8 in Figure 3.c reverse their direction, the
other populations are streamed from the neighboring fluid nodes. The above
full way bounce-back scheme is used to impose the no-slip velocity at the fluid-
solid interface; nevertheless, it has a low accuracy. Indeed, for the Poiseuille
flow for which the solid nodes are located on the walls, it was found that
the slip velocity is not zero at the walls and is of first order in space (O(h))
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[22]. The slip velocity is actually zero at halfway between the fluid and solid
nodes. Some other bounce-back schemes have been proposed to improve the
accuracy such as the scheme of Bouzidi et al. [10] for which some ghost nodes
are added on the fluid-solid interface where the bounce-back takes place. This
scheme can be used when the solid phase has simple geometries. For instance,
this scheme was used in [41] for 2D fluid flow between circular particles. For
complex geometries of the solid particles, it is difficult to use this scheme and
the computation is not efficient. In our study, we use the full way bounce-back
scheme owning to its computational efficiency and to the fact that the precise
location of the fluid-solid interface is not known in our discretization method
presented in Section 3.1.

For the outer boundaries, the periodic boundary conditions are used in
the three directions. In this case, all the populations that leave a given fluid
node will enter the corresponding fluid node on the opposite side. The pressure
gradient F = ∇P is imposed at each fluid node as a body force, similarly to (3).
In the LBM, taking into consideration the body force is not straightforward
and can be indirectly done by modifying the collision operator (12) and the
equilibrium distribution function (9). In this study, the model proposed by
Guo et al. [19] is used to impose the pressure gradient.

As shown above, the computation of the fluid flow through a porous medium
with the LBM is quite simple and very suited to parallel computing. Indeed,
the collision step (12) and the full way bounce back scheme (14) are indepen-
dently performed at each fluid node; and the streaming step (13) is performed
from each fluid node to its neighboring fluid nodes. However, it consumes an
important amount of memory as at least (N+1) distribution functions fi need
to be stored at each node in addition to the macroscopic variables such as ve-
locity v and density ρ. In this study, we use the open-source Palabos solver
[29] to perform simulations. It is worth mentioning that all LBM simulations
are performed in lattice units (hlb = 1, ∆tlb = 1). A conversion from LBM
quantities denoted with a superscript lb to those in the corresponding physical
problem is performed as follows:

v =
h

∆t
vlb, ν =

h2

∆t
νlb, ∇P =

ρ

ρlb
h

∆t2
∇P lb, K = h2Klb. (15)

3.3 FFT-based upscaling method

The FFT-based upscaling method presented in [7] relies on an extension of the
homogenization problem (3) to the solid phase to benefit from an elementary
solution, the Green function. In the extended problem, the whole domain Ω is
assumed to be filled with a Newtonian fluid of uniform dynamic viscosity µ,
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as in immersed boundary methods [26,31]:

∇ · σ′ + f = 0 in Ω

σ′ = −p′1+ 2µ∇sv′ in Ω

∇ · v′ = 0 in Ω

v′ and p′ periodic on ∂Ω

(16)

The actual solid phase and the no-slip condition are indirectly accounted for
by an appropriate choice of body force field f applied to the fluid3.

The restriction to the solid-fluid interface Γ of the body force field f which
allows us to retrieve the solution to the initial problem (3) from the extended
problem (16) is the Lagrange multiplier of the no-slip boundary condition.
Formally, this solution body force field is [8]:

f solution = −F If − σ|f · ∇If (17)

where σ|f is the stress fluctuation solution to (3) evaluated on the fluid side of
the interface Γ and If is the indicator function of the fluid phase, equal to 1
in Ωf and 0 in Ωs. The field (17) is understood in the sense of distributions: it
features a surface distribution on Γ since ∇If = δΓnsf where δΓ is the Dirac
surface distribution of Γ and nsf the unit normal to Γ oriented from the solid
to the fluid.

The extended problem (16) is of prime interest since the velocity field
solution to (16) is formally known as:

v′(x) = V ′ +

∫

Ω

G(x− y) · f(y) dVy = V ′ + (G ∗ f)(x) (18)

where G is by definition the Green function of the incompressible fluid of
viscosity µ on the domain Ω with periodic boundary conditions and V ′ is an
arbitrary constant which corresponds to the average velocity, that is v′Ω =
V ′. The Green function G with periodic boundary conditions is known at a
frequency q in the Fourier domain as [7]:

Ĝ(q) =





1

µ∥q∥2
(
1− q ⊗ q

∥q∥2
)

if q ̸= 0

0 if q = 0
(19)

The convolution product in (18) can be readily evaluated by Fourier transforms
and usual products in the Fourier space.

The velocity field solution to the homogenization problem (3) can then be
obtained from the combination of (16) with (17), and by selecting V ′ to ensure
v′ = 0 in Ωs. Of course, since the stress fluctuation σ in (17) is not known
unless the homogenization problem (3) is solved, this does not yet result in
a practical method to solve the homogenization problem. Alternatively, one

3 The bold letter f denotes a body force in this section, and must not be confused with
the letter f which denotes the distribution function in the LBM method.
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may construct upper bounds on the permeability from trial force fields which
belong to the following set F(F ) of admissible force fields:

F(F ) =
{
f
∣∣∣f(x) = −F if x ∈ Ωf , f

Ω
= 0

}
, (20)

The first condition in (20) comes from the forcing term F which appears in
problem (3) and the second one from the overall momentum balance of the
RVE. From a stress energy theorem, one may prove [6]:

F ·K · F = inf
f∈F(F )

µ f ·G ∗ fΩ
(21)

The inf in (21) is met for the solution force (17) with a surface distribution,
which hints that good trial force fields must be zero inside the solid and singular
across the solid-fluid interface.

The FFT-based numerical method of [7] discretizes the extended prob-
lem (16) on a uniform grid as in Figure 2(c). The idea is to build an admissible
discrete body force field f ∈ F(F ) and to minimize the energy in (21). On
the grid, the index n is used to number the cells. Two sets of cells are defined
(see Figure 2(c)):

– Cf the set of fluid cells, comprising Nf fluid cells ;
– Ci the set of interface cells, comprising Ni interface cells

Trial force fields f ∈ F(F ) are constructed as cell-wise constant fields,
whose values fn on a cell n are fn = fF

n + fλ
n with:

fF
n =





−F if n ∈ Cf
Nf

Ni
F if n ∈ Ci

0 otherwise

and fλ
n =





0 if n ∈ Cf

λn − λ
Ci if n ∈ Ci

0 otherwise
(22)

where λ
Ci denotes the average over interface cells of the discrete field of un-

knowns λ, computed as:

λ
Ci

:=
1

Ni

∑

n∈Ci

λn (23)

By construction, fF ∈ F(F ) and fλ ∈ F(0) for any choice of the values
(λn)n∈Ci , hence f ∈ F(F ). The Ni unknown vectors (λn)n∈Ci are determined
by minimizing (21), which leads to the linear system of equations:

∀n ∈ Ci ; (G ∗ f)n −G ∗ fCi
= 0 (24)

Physically, (18) indicates that (24) amounts to meet the no-slip boundary
condition v′ = 0 in a weak form over interface cells for the choice of the
constant V ′ = −G ∗ fCi . The system (24) can be split in a classical form with
unknowns (λn)n∈Ci on the l.h.s. and the loading parameter F on the r.h.s. as:

∀n ∈ Ci ; (G ∗ fλ)n −G ∗ fλ
Ci

= −(G ∗ fF )n +G ∗ fF
Ci

(25)
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The linear operator which computes the l.h.s. in (25) from the unknowns
(λn)n∈Ci corresponds to a symmetric, semi-definite positive quadratic form
from (21). The system can thus be solved using classical iterative solvers such
as conjugate gradient or MINRES. The efficiency of the method partly comes
from the fact that the matrix [A] underlying the linear operator is not explicitly
written nor stored: only the result of its action on a vector {X} = (λn)n∈Ci

of unknowns is required. This operation is sketched in Algorithm 1. Further,
unknowns are defined only on interface voxels, which drastically reduces the
memory footprint.

Algorithm 1 Operation of matrix [A] on a vector {X} in the l.h.s. of (25)
Input: {X} = (λn)n∈Ci
Output: {Y } = [A] · {X}
1: for all voxels n do // 1. map on grid
2: F [n]← X[map(n)] if n ∈ Ci else 0
3: end for
4: F̂ ←FFT(F ) // 2. discrete Fourier transform
5: for all frequencies k do // 3. apply Green function
6: Û [k]← Ĝ[k] · F̂ [k]
7: end for
8: U ←FFT−1(U) // 4. inverse discrete Fourier transform
9: for all voxels n ∈ Ci do // 5. reverse map from grid

10: Y [map(n)]← U [n]
11: end for
12: {Y } ← {Y } − average({Y }) // 6. remove average

In Algorithm 1, a discretized Green function Ĝk is applied at step 3. at
each discrete frequency associated to the index k used to number the discrete
frequencies in the Fourier space. Several types of discretization of the Green
function are possible, as detailed in [7]. In this study, we always use the energy
consistent discretization along with a force placement at the center of the
cells ("consistent@center" scheme presented in [7]), since it provides the best
accuracy for the microstructures under study. The right-hand side in (25) is
computed by first creating the field −fF

n on the discrete grid as detailed in
(22), and second applying steps 2. to 6. of Algorithm 1.

The discrete force field (22) solution to system (25) is finally used in a
discrete version of (18) to determine the solution velocity field. In practice,
the convolution products in (25) are evaluated in the Fourier space from the
Discrete Fourier Transform of the discrete fields (22), which is efficiently done
by the FFT algorithm by steps 2. to 4. of Algorithm 1. Additional details
regarding the FFT-based method can be found in [7].
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Fig. 4 Convergence of the permeability given by the LBM versus the number of iterations
for different values of the relation time τ , in comparison with the semi-analytical solution.

4 Benchmark problems

4.1 2D square and circle inclusions

Let us study first the convergence of the LBM and FFT methods for two 2D
benchmark cases where a solid square and a solid circle are centered at a square
fluid area of length L, respectively. The square inclusion has a length D = 0.5L
and the circle inclusion has a diameter D = 0.8L. For the circle inclusion case,
the semi-analytical solution of the permeability is K/L2 = 1.8280941789×10−3

[7,37]. It should be noted that the uniform grid used for the discretization
presented in Section 3.1 allows us to fully capture the geometry of the square
even at low resolutions, while the geometry of the circle can be only well
captured at sufficiently high resolution.

The LBM method presented in Section 3.2 is a dynamic method for which
the flow velocities at the nodes, which are initially set to zero, evolve with
time until reaching the final values at the quasi-static regime. This quasi-static
regime is obtained by performing iterations until the coefficient of variation of
the permeability K computed over 1000 iterations is smaller than 10−6. The
relaxation time τ used by the LBM must be carefully chosen as it controls the
numerical stability and accuracy. Equation (11) implies that τ > 0.5; never-
theless, there is no upper bound for τ . Figure 4 shows the convergence of the
permeability K computed for the circle inclusion case versus the number of
iterations for different values of τ . It can be seen that the higher the value of
τ is, the faster the convergence is. However, the error in comparison with the
semi-analytical value increases with an increase in τ . The value τ = 1 appears
to be a good compromise between the convergence rate and the error; fur-
thermore, this value has been widely chosen in the literature. In the following,
τ = 1 is used for all the simulations performed with the LBM.

Figure 5 shows the relative error of the computed permeability K versus
the resolution h/D for the square and circle inclusion cases, where h is the
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Fig. 5 Relative error of the computed permeability versus the resolution h/D for the square
and circle test cases

grid spacing. For the square case, there is no analytic or semi-analytic solution;
nevertheless, as the convergence of K computed with the FFT method is linear
with respect to the resolution h/D (see Figure 5.a), the exact solution when
h/D → 0 can be obtained by a linear extrapolation. It can be seen that, for the
same resolution, the LBM method gives a higher accuracy on the computed
permeability K than the FFT method for the square case but a lower accuracy
for the circle case (see also [7] for a comparison of the variants of the FFT
method on these examples). To analyze in further details the error made by the
two methods, we compute the error of the velocity vx given by each method
at the center of each pixel for the circle case with this respect to the value
given by the semi-analytical approach [37]. This error is normalized by the
macroscopic velocity Vx computed with (5). For the LBM method, the velocity
at the center of each pixel is computed as the average value of those at its four
nodes. Figure 6 shows the error maps of vx/Vx made by the two methods with
a discretization of 64 × 64 pixels. It can be seen that the no-slip condition is
not exactly imposed at the actual solid boundary by both methods. The LBM
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Fig. 6 Error maps of vx/Vx in the circle test case with a discretization of 64 × 64 pixels
for (a) FFT method and (b) LBM method.

makes significantly larger errors far away from the boundary than the FFT
method, which explains why the permeability K computed with the latter
method is more accurate than the value given by the LBM in that case.

4.2 3D face centered cubic configuration

Let us now consider a 3D case of a face centered cubic (FCC) array of spheres
of equal diameter D as shown in Figure 7 with the solid volume fraction
being varied from 0.343 to 0.7405 (the densest packing). For this case, a semi-
analytical solution for the permeability K has been established by Zick and
Homsy [45] for different solid fractions. Figure 8 shows the scaled permeability
K/D2 computed with the LBM and FFT methods versus the solid fraction for
a medium resolution h/D = 0.0625 (D/h = 16). The computed values of K/D2

for a given solid fraction are compared to the semi-analytical value. It can be
seen that both methods with the considered medium resolution give numerical
values quite close to semi-analytical values. As a comparison, another fluid flow
simulation method, called IBM (immersed boundary method) has been used
by Knight et al. [26] for the same FCC case. The IBM and FFT methods
share some common points: (i) they both extend the constitutive equations
for the fluid (Navier-Stokes equations for the IBM and Stokes equations for the
FFT) to the solid particles by introducing a source term representing the fluid-
particle interaction force, (ii) the no-slip boundary conditions are imposed by
choosing an appropriate source term, (iii) the constitutive equations are solved
on a uniform grid. Unlike the FFT method, the IBM constructs the source term
at some points inserted exactly at the boundary of the particles; therefore,
the precise geometry of the particles is required by this method. Despite this
additional computation effort, the permeability given by the IBM with the
same resolution was found to be very different from the semi-analytical value
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Fig. 7 A discretization of a face centered cubic periodic array of spheres with maximum
solid fraction 0.7405.
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Fig. 8 Permeability K/D2 given by the LBM and FFT methods versus the solid fraction
for the 3D face centered cubic example with a resolution h/D = 0.0625 in comparison with
the semi-analytical solution of Zick and Homsy.

given by Zick and Homsy (see Figure 3 in [26] for the drag coefficient which
is inversely proportional to the permeability K). This difference remains quite
large for a much better resolution D/h = 64. This allows us to conclude that
the FFT and LBM methods give more accurate numerical results in terms of
permeability than the IBM method used in [26].

Figure 9 shows the relative error of the numerical permeabilities K com-
puted with the LBM and FFT methods versus the resolution h/D for the
FCC case with the highest solid fraction 0.7405. The semi-analytical value
K/D2 = 3.45± 0.04× 10−4 obtained by Zick and Homsy [45] is chosen as the
reference value. It can be seen that both methods reach relative errors within
the accuracy of the reference solution, with more or less the same convergence
of the computed permeability with respect to the resolution for this FCC case.
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Fig. 9 Relative error on the computed permeability versus the resolution h/D for the face
centered cubic case with the highest solid fraction 0.7405 with respect to the reference value
K/D2 = 3.45± 0.04× 10−4.

4.3 3D random samples of spheres

One monosized sample (UG1) with 512 balls and three uniformly graded sam-
ples (UG5, UG10 and UG15) with 512, 1728 and 4096 balls, respectively, are
studied in this section. The porosity is controlled to be equal to around 0.38
for the four samples. We analyze here the effect of the discretization resolution
on the computed permeability; the effect of the sample size will be analyzed in
Section 5. For each sample, the grid spacing h and the computed permeability
K are scaled by D50 and D2

50, respectively (D50 is the particle diameter for
which 50% of the particles by mass is finer).

Figure 10 shows the scaled permeability K/D2
50 computed with the LBM

and FFT methods versus the resolution h/D50 for the four samples UG1, UG5,
UG10 and UG15. It can be seen that the permeabilities computed with the
two methods converge differently with respect to the resolution but they both
converge to almost the same value when h/D50 tends to 0. The FFT method
exhibits a linear convergence when the resolution is sufficiently fine, allowing us
to determine the limit of K/D2

50 when h/D50 → 0 by a linear extrapolation as
shown in Figure 10. These linear convergence and extrapolation procedure are
similar to those for numerical simulations using the finite-difference method
used in [33]. The LBM has a non-monotonous convergence w.r.t. h/D50, which
gives more accurate results than the FFT method for the coarsest discretiza-
tions.

For the UG1 sample, the values of K/D2
50 computed with the LBM and

FFT methods converge actually toward 7.4×10−4 and 7.5×10−4, respectively.
In fact, this sample is a simulation of the monosized samples of glass beads
which have been tested by Verneuil et al. [42]. The authors found a scaled
permeability K/D2

50 = (6.1±0.7)×10−4 for these samples of glass beads with
almost the same porosity, about 0.38, as that of the numerical sample UG1.
Beavers et al. [4] also found a scaled permeability K/D2

50 = 6.3 × 10−4 for
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Fig. 10 Scaled permeability K/D2
50 given by the LBM (◦) and FFT (■) methods versus

the resolution h/D50 for the UG1, UG5, UG10 and UG15 samples.

monosized samples of glass beads at a slightly lower porosity around 0.36. The
computed values of K/D2

50 computed with the LBM and FFT methods differ
from the experimental mean values obtained by Verneuil et al. and Beavers
et al. by about 21% and 17%, respectively. Moreover, when the porosity of
this numerical sample is reduced to 0.36 which is the porosity of the samples
tested by Beavers et al., the permeabilities K/D2

50 given by both methods are
about 6.2 × 10−4, which is very close to the value obtained by Beavers et al.
with a difference of only 2%. It is worth mentioning that the permeability
is a parameter difficult to be precisely measured by experimental tests and
the dispersion of obtained values is, in general, quite large. Indeed, in the
experimental tests performed by Verneuil et al., the dispersion of obtained
values of the permeability is about 12% with respect to the mean value. This
comparison shows that the permeabilities computed with the LBM and FFT
methods are in good agreement with the experimental values. One can also
notice that the four numerical samples are at almost the same porosity but
their scaled permeabilities K/D2

50 are significantly different. This means that
the permeability of granular soils depends strongly on the soil’s GSD, which
has been experimentally proved in the literature [23].

4.4 Computational efficiency of the LBM and FFT methods

Let us now discuss the efficiency of the LBM and FFT methods in terms
of computational efforts and resources. As mentioned previously, the LBM
is a dynamic method for which the numerical solution needs to be iterated
until reaching the steady state. For the disk and square cases, the numbers of
iterations for the LBM are quite large. For instance, with a resolution of 512
× 512 pixels, about 78 200 iterations are needed by the LBM for the circle
case (see Figure 4). However, the number of iterations decreases greatly for the
FCC case (about 10 800 iterations) and even more for the random samples
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Fig. 11 The permeability K computed with the LBM, normalized by the value K∞ at
the steady state, versus the dimensionless time t.ν/L2 for the disk, FCC with the highest
compacity and UG1 cases with a resolution L/h = 512.

(about 1 340 iterations for the UG1 sample) with the same resolution. It
should be noted that the LBM introduces a perturbation to the system by
applying a pressure gradient and the system will tend to the steady state after
a characteristic time t∗. As a result, the iterations must be performed over
this characteristic time t∗ to get the value at the steady state. Figure 11 shows
the evolution of the computed permeability K versus the dimensionless time
t̃ = t.ν/L2 (L is the size of the domain under consideration) for the disk, FCC
with the highest compacity and UG1 cases with a resolution L/h = 512. In this
figure, K is normalized by the value K∞ at the steady state for each case. We
can see that the dimensionless characteristic times t̃∗ = t∗.ν/L2 are of order
10−2, 10−3 and 10−4 for the disk, FCC and UG1 cases, respectively. It should
be noted that the dimensionless time step ∆t̃ = ∆t.ν/L2 used by the LBM
is the same for all the three cases if the resolution is the same (see Equation
(11)). As a result, the convergence is much faster for the UG1 case than for
the disk case. The same conclusion was found when the disk is replaced by a
sphere with the same size in 3D.

To explain why the dimensionless characteristic time t̃∗ for the UG1 case
is smaller than that for the FCC case, which is, in turn, smaller than that for
the disk case, we will compute the characteristic flow length L∗ for each case.
In fact, the characteristic time t∗ for the viscous diffusion in a given porous
medium is related to the characteristic flow length L∗ by t∗ ∝ (L∗)2/ν. For a
cylindrical channel, the characteristic length L∗ is its diameter D. For granular
media, the pore space is much more complex than a cylindrical channel. Such
a pore space can be viewed as a set of many tortuous channels, each of which
is composed of single pores and throats. Vincens et al. [43] define a single pore
as the three-dimensional body of the relatively wide part of a channel that
is constricted by two or more throats. The throats (or constrictions) are the
narrowest cross-sections along any possible pathway. The characteristic flow
length L∗ is related to the distribution of the sizes of the throats, namely
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Fig. 12 Constriction size distribution (CSD) for the UG1 sample with 512 balls.

Disk case FCC case UG1 sample
Characteristic flow length L∗/L (estimated) 0.2 0.109 0.029
Characteristic time t∗ν/L2 (estimated) ∝ 0.04 ∝ 0.012 ∝ 0.00085
Characteristic time t∗ν/L2 (LBM) ∝ 10−2 ∝ 10−3 ∝ 10−4

Number of iterations (LBM) 78 200 10 800 1 340
Number of iterations (FFT) 100 200 220

Table 2 Estimated characteristic flow length L∗ and time t∗, the value of the characteristic
time t∗ given by the LBM and the number of iterations used by the LBM and FFT methods
for the disk, FCC and UG1 cases.

the constriction size distribution (CSD), of the porous medium under consid-
eration. For the disk case, the sizes of the constrictions are D∗

c = 0.2L. For
the FCC case with the highest compacity, the constrictions are composed of
three spheres that touch each other. In this case, the sizes of the throats are
D∗

c = (
√
1/3 − 1/2)4R ≈ 0.109L (R ≈ 0.356L). For the UG1 sample, we use

the method developed by Nguyen et al. [34] to extract the sizes of the constric-
tions. Figure 12 shows the CSD of this sample, based on which the opening
size D∗

c of the pore space can be estimated as the constriction diameter Dc,50

which corresponds to 50% smaller by number; accordingly, D∗
c ≈ 0.029L is

found for the UG1 sample. This opening size D∗
c of the pore space is used for

estimation of the characteristic flow length L∗. Table 2 shows the estimated
characteristic flow length L∗ and time t∗, the value of the characteristic time
t∗ given by the LBM and the number of iterations used by the LBM for the
three considered cases. It can be seen that the characteristic flow length L∗ of
the UG1 sample is smaller than that of the FCC case which is, in turn, smaller
than that of the disk case. Moreover, the order of magnitude of the estimated
characteristic time t∗ is quite consistent with that obtained with the LBM.

Unlike the LBM, the FFT method is a static one, and it needs to solve
the linear system of equations (25) to obtain the force field f at the steady
state. As mentioned in Section 3.3, this linear system of equations is solved in
an iterative manner using the MINRES algorithm. Figure 13 shows the per-
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Fig. 13 Relative error between the permeability K computed at each iteration and the final
value K∞ versus the number of iterations for the LBM and FFT methods. The sample UG1
with 512 particles was used and the resolution 512× 512× 512 was used for both methods.

meability K given by the LBM and FFT methods for the sample UG1 with a
resolution 512×512×512 voxels with respect to the number of iterations. The
computed permeability K at each iteration is compared to the final value K∞
obtained with each method. It can be seen that K computed with the FFT
method converges much faster than that obtained with the LBM. Indeed, the
FFT method needs only 220 iterations in comparison with 1 340 iterations for
LBM to reach |K − K∞|/K∞ < 1%. For the disk inclusion and FCC cases,
the number of iterations for the FFT method are very small in comparison
with those for the LBM as can be seen in Table 2. It should be noted that the
computation time depends not only on the number of iterations but also on
the operations performed during each iteration. Therefore, to compare care-
fully the efficiency of these two methods, we run the code Palabos [29] for
the LBM and the code developed by Bignonnet [7] for the FFT method on
the same server Dell PowerEdge T640 for the UG1 case with the resolution
512 × 512 × 512 voxels. Table 3 shows the computation time spent by these
two methods for different numbers of threads used. For only one thread (the
sequential computation), the FFT method is 3.9 times faster than the LBM.
This ratio is 3.4 and 3.0 for the parallel computation with 10 and 20 threads,
respectively. One can also remark that the scalability of the Palabos which
is parallelized with Open MPI is slightly better than that of the FFT code
which is parallelized with Open MP. Another advantage of the FFT method is
that it requires much less memory to store information than the LBM which is
well-known to be very memory intensive. Indeed, for the considered case, the
memory consumed by the FFT method (about 5 GB) is 6 times smaller than
the amount consumed by the LBM (about 30 GB). It is worth mentioning that
a larger amount of memory requires a longer time for data transfer between
the main memory source and the CPU memory. To conclude, on identical dis-
cretization grids, the FFT method prevails over the LBM method in terms of
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Number of threads Computation time
LBM FFT

1 20 941 s 5 338 s
10 2 649 s 774 s
20 1 843 s 604 s

Table 3 Computation times for a UG1 sample with resolution 5123: parallelization effi-
ciency

efficiency to compute the permeability as it needs a much smaller number of
iterations and a smaller amount of memory.

5 Determination of the grid resolution and sample size

5.1 Determination of the grid resolution

It is important to choose the voxel size h to obtain a reliable permeability K
while keeping the computation time reasonable. Should the voxel size h be
defined with respect to the maximum particle diameter D100, the minimum
diameter D0, or another diameter DX (DX is the particle diameter at X %
finer by mass)? To answer to this question, we plot the relative discretization
error for the FFT and LBM methods versus the voxel size h normalized by
a value DX where X is varied from 0 to 100%. Figure 14 shows such a plot
when D25 is chosen. To compute the relative discretization error, the reference
value K0 for both methods is determined by a linear extrapolation to h =
0 from the results obtained with the FFT method. We search for a value
DX such that the relative discretization errors at a given resolution h/DX

are close for the four different samples UG1, UG5, UG10 and UG15. The
best candidate is D25 as shown in Figure 14, for which the error given by
the FFT method scales linearly with h/D25 with a slope comprised between
1.15 and 1.46. This means that the voxel size h should be defined w.r.t. D25

rather than w.r.t. the minimum or maximum particle diameter. This figure
shows clearly that the permeability K computed with the LBM converges
better w.r.t. the voxel size than that computed with the FFT method at
low and medium resolutions (h/D25 ≥ 0.04). Nevertheless, at high resolution
(h/D25 < 0.04), the convergence of the LBM becomes non-monotonous. To
obtain a discretization error smaller than 5% w.r.t. the reference value K0, the
LBM requires a resolution h/D25 ≤ 6× 10−2, while the FFT method requires
h/D25 ≤ 4 × 10−2. This means that the resolution used for the FFT method
should be about 1.5 times higher than that used by the LBM to achieve the
same 5% accuracy. As shown in Table 3, the FFT method is almost 4 times
faster than the LBM for the same resolution. Nevertheless, the computation
time spent by the FFT method is increased by a factor of about 4.5 when
the resolution is multiplied by a factor of 1.5. As a result, the computation
times for both methods are comparable to achieve the same accuracy of the
computed permeability. It is worth mentioning that these results are found for
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Fig. 14 Discretization error for the LBM (◦) and FFT (■) methods on uniformly graded
samples as a function of the voxel size h. The reference permeability K0 is computed by
linear extrapolation to h = 0 from the results obtained with the FFT method. The horizontal
thick line corresponds to 5% of discretization error.

the samples with linear gradation studied here, and they should be confirmed
for other types of GSDs.

5.2 Definition and determination of the RVE size

5.2.1 Statistical definition of the RVE size

As simulations are performed on randomly generated samples of finite size,
the issue of the representativity of the results must be addressed. By keeping
constant all microstructure parameters such as the porosity and the grain size
distribution, but randomizing the position of the grains, different realizations
of the microstructure can be generated. The permeability K computed from
a realization on a domain of finite volume V = |Ω| is thus a random variable
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with some theoretical mean value of expectation µK(V ) = E(K) and variance
σ2
K(V ) = E(K2)− E(K)2 where σK(V ) is the standard deviation.

A first issue is that the average permeability µK(V ) on realizations of fi-
nite volume V may contain a bias which depends on boundary conditions.
A systematic bias on the homogenized stiffness or permeability arises with
uniform Dirichlet or Neumann boundary conditions on finite samples [14,24],
i.e. µK(V ) decreases monotonously with V for Dirichlet boundary conditions,
while it increases for Neumann ones. An analogue finite size effect arises when
upscaling the stiffness in solid mechanics [24]. Unlike uniform Dirichlet or Neu-
mann boundary conditions, Kanit et al. [24] showed that periodic boundary
conditions as used here are unbiased even for finite sample size: the average
property µK is almost independent on the size V of the sample provided that
V is large enough to hold a few grains.

The second issue is the variability of the computed permeability, as quan-
tified by the variance σ2

K(V ). Intuitively, σ2
K(V ) decreases with an increase in

the domain size V for sufficiently large domains [11,24]. Two methods to esti-
mate the variance σ2

K(V ) w.r.t. V will be detailed in Sections 5.2.2 and 5.2.3.
The definition of the RVE then proceeds from the sampling theory of statis-

tics. In the latter, the population average µK(V ) and variance σ2
K(V ) of the

random variable K over all possible realizations are a priori unknown. They
can be estimated by drawing randomly n realizations K1, ..., Kn of the random
variable K. The empiric estimators of the average K(V ) and variance S2

K(V )
computed from such random sampling, defined as K(V ) = 1

n

∑n
i=1 Ki and

S2
K(V ) = n

n−1 (K
2 − K

2
) are also random variables, whose expectations are

E(K(V )) = µK(V ) and E(S2
K(V )) = σ2

K(V ), respectively. Provided that n is
large enough, the central limit theorem indicates that the random variable K
follows a normal distribution with mean µK(V ) and variance σ2

K(V )/n. From
the theory of estimation of statistics, a confidence interval I = [k− δk; k+ δk]
can then be constructed around an observation k of K(V ) from a given draw-
ing of n realizations such that the probability that µK(V ) ∈ I is equal to some
level of confidence 1− α (e.g. α = 5%).

For example, assuming K is normally distributed, two cases can be faced:

1. If σ2
K(V ) is known a priori (e.g. by a suitable model presented in Sec-

tion 5.2.3): δk = cσK(V )/
√
n where c is the (1 − α/2)th percentile of the

normal distribution, e.g. c = 1.96 for a level of confidence of 95% (α = 5%)
as considered in Section 5.3. The relative error due to representativity issue
is then defined as ϵrveK = δk/k, that is:

ϵrveK =
cσK(V )

k
√
n

(26)

2. If σ2
K(V ) is unknown and estimated by an observation sK(V ) of SK(V ):

δk = csK(V )/
√
n where c is the (1 − α/2)th percentile of Student’s t

distribution with n − 1 degrees of freedom. One has e.g. c = 2.09 for
n = 20 realizations and a level of confidence of 95% (α = 5%). The relative
representativity error is obtained by replacing σK(V ) by sK(V ) in (26).
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Conversely, from the knowledge of the law of SK(V ) w.r.t. V , one can define
the RVE size as the volume V required to reach a target value of ϵrveK by
inversion of (26).

5.2.2 Estimation of the variance evolution by a direct method

In the seminal article of [24], the evolution law of the variance S2
K(V ) w.r.t. V

is determined from a series of simulations on domains of varying sizes. For each
domain size V , a number n of realizations are drawn to compute an observation
s2K(V ). Next, the evolution of the variance is modeled for sufficiently large
domains by a power law as suggested by [11,24]:

σ2
K(V ) = Σ2

K(0)

(
AK

3

V

)λ

, V ≫ AK
3 (27)

where λ is an exponent usually close to 1. In (27), Σ2
K(0) is the point variance

of the velocity field in the direction of the applied pressure gradient F . For
example, if F = ex, one has

Σ2
K(0) = (vx)2

Ω − (vx
Ω)2. (28)

The quantity AK
3 is a characteristic volume of the fluctuation of the velocity

field which generalizes the notion of integral range [24]. In practice, a fitting
procedure directly provides λ and Σ2

K(0)(AK
3 )λ and one does not need to

compute separately Σ2
K(0) and AK

3 . We refer to this method as the direct
method in what follows.

5.2.3 Estimation of the variance evolution by a filtering method

Instead of carrying out a great number of simulations required for the direct
method, Abdallah et al. [1] suggested post-processing a single simulation on a
large domain of size V . Estimates of the apparent permeability are computed
by volume averaging of the velocity field on several disjoint subdomains of
size W < V , for various sizes W . For each subdomain size W , an observa-
tion s2K(W ) of the variance of the apparent permeability is computed. One
drawback is that as W increases, the number of disjoint subdomains that can
be drawn from the large domain decreases. As a result, computed values of
s2K(W ) are noisy for larger W ; therefore, subdomains larger than V/23 cannot
be investigated.

To overcome these limitations, Bignonnet [7] adapted this method by con-
sidering the subdomain as a sliding window. The idea is to compute the average
of the velocity field in the neighborhood of each point x of the domain, the
neighborhood being defined as a sliding window of size W centered at point
x. Then, for each domain size W , the variance of these averages are computed
over all points. With this method, the subdomains used to compute the av-
erages overlap. The main interest is that, for any size W ≤ V , the number
of subdomains is equal to the number of cells of the discretization, which is
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large and then removes the noise. In practice, to compute the averages around
each point, the method amounts to a filtering procedure. Let w be indicator
function of a cube CW of volume W centered at the origin, scaled such that
wΩ = 1. A filtered velocity field is computed by convolution as:

vw(x) =

∫

y∈Ω

w(y)v(x−y) dVy = w∗v where w(x) =

{
1/W if x ∈ CW

0 else
(29)

By construction, vw(x) is the average of v over the cube of volume W cen-
tered at point x. The convolution product in (29) is efficiently computed by
FFT thanks to periodicity and use of a regular grid. As the filter volume W
increases, the filtered field vw becomes smoother. Ultimately as W → V , vw

tends to a uniform velocity field equal to the macroscopic velocity V . For a
unit pressure gradient F = ex and each filter size W , the point variance of
the filtered field is defined as:

Σ2
K(W ) = (vx)2w

Ω −
(
(vx)w

Ω
)2

(30)

Volume averages in (30) can be readily computed from voxel-wise values of vw.
The point variance Σ2

K(W ) quantifies the fluctuations of the filtered velocity
field. It should be noted that, as W → 0, Σ2

K(W ) tends to the point variance of
the non-filtered velocity field Σ2

K(0) defined in (28). Asymptotically as AK
3 ≪

W ≪ V , the dependence of Σ2
K(W ) on W can be modeled as:

Σ2
K(W ) = Σ2

K(0)

[
AK

3

(
1

W
− 1

V

)]λ
, AK

3 ≪ W ≪ V. (31)

Expression (31) with λ = 1 has been derived for additive properties such
as porosity [30] and has been used for the apparent permeability in [1] for a
boolean model of monosized spheres or in [7] for a Voronoi mosaic model. We
suggest here to adjust the value of the exponent λ like in (27), to obtain a
better agreement to the data for polydisperse granular samples. In practice,
the values of AK

3 and λ in (31) are fitted for filter volumes in the range 10AK
3 ≤

W ≤ 0.1V , with a recursive evaluation of AK
3 . Once AK

3 and λ are determined
by fitting (31), the variance σ2

K(V ) of the permeability on a domain of size V ,
where V is the size of the simulation domain, is estimated by using (27) with
the fitted values of AK

3 and λ.

5.3 Application to uniformly graded granular materials

A series of simulations is carried out using the FFT-based method for uni-
formly graded materials (see Figure 1) of the types UG1, UG5 and UG10.
Samples are generated using the DEM with a porosity of (37.8 ± 0.2)%. The
representativity issue is analyzed by carrying out n = 20 realizations of sam-
ples for each sample size. A coarse and a fine grid are used to compute the
permeability of each sample. The voxel size hcoarse of the coarse grid (resp.
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hfine) is selected to reach a target discretization error of around 20% (resp.
6%) according to Figure 14. Table 4 shows the number of spheres and the grid
sizes for each type of gradation.

UG1 UG5 UG10
Dmax/Dmin 1.1 5 10
Nspheres 64, 216, 512, 216, 512, 1728, 1728, 4096,

1728, 4096, 13824 4096, 8000 8000, 13824

hcoarse/D25 0.121 0.121 0.096
hfine/D25 0.046 0.046 0.037

Table 4 Numbers of spheres Nspheres and grid sizes hcoarse and hfine used for each type of
gradation.

The representativity error is studied by using the two methods introduced
in Sections 5.2.2 and 5.2.3. For the direct method, the empiric estimations of
the average permeability K(V ) and the variance σ2

K(V ) are computed from
n = 20 realizations for each sample size and each type of gradation. Fig-
ure 15 shows the average permeability K(V ) with respect to the sample size
LRV E/D25 for the three types of gradation. The relative error of K(V ) is esti-
mated using Student’s t distribution with a confidence interval of 95% (case 2
presented in Section 5.2.1) and is represented by error bars in Figure 15. It can
be seen that the average values K(V ) of the permeability show no increasing
nor decreasing trend as the sample size increases. Small fluctuations are visible
since average values are computed over only n = 20 realizations, but these are
of the same order of magnitude than the confidence intervals. This confirms
that periodic boundary conditions are unbiased for the investigated sample
sizes. A second observation is that the representativity errors decrease. Since
the random variable S2

K(V ) is an unbiased estimator of the variance σ2
K(V ), a

confidence interval on σ2
K(V ) can be built around the observation s2K(V ) us-

ing a chi-square distribution. Estimated values of the variance σ2
K(V ) with a

confidence interval of 95% with respect to the number of spheres are displayed
in Figure 17. Both fine and coarse grid resolutions are used to compute the
permeability K and lead to similar values of the variance σ2

K(V ).
For the filtering method, we first compute the point variance Σ2

K(W ) of
the filtered velocity with respect to the filter volume W for each independent
realization. Figure 16 shows the results obtained for the samples UG5 with
different sample sizes (20 independent realizations for each size). It can be
seen that the curves of Σ2

K(W ) for each sample size exhibit a large variabil-
ity represented by lightly shaded areas. Next, the curve of Σ2

K(W ) for each
independent realization is fitted by the model (31) as illustrated in Figure 16.
Finally, the fitted parameters AK

3 and λ are injected in (27) to estimate the
variance σ2

K(V ) where V is the volume of the sample obtained from the real-
ization under consideration.

Figure 17 shows a comparison between values of the variance σ2
K(V ) es-

timated by the direct method and by the filtering method for samples UG5
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Fig. 15 Average permeability K(V ) of uniformly graded materials with porosity 37.8±0.2%
given by the direct method as a function of the RVE size. The error bars are estimated with
95% confidence intervals from Student’s t distribution. Results are computed on the fine
grid, with around 6% discretization error.
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Fig. 16 Point variance Σ2
K(W ) of the filtered velocity field versus the filter size W for

the realizations of samples UG5 with different sizes. Lightly shaded areas: the range of
variation among 20 realizations, full line: median curves, dotted line: fit of median curves
by Equation (31).

with different sizes. It should be noted that, owing to the variability of the
curves Σ2

K(W ) shown in Figure 16, the estimated values of σ2
K(V ) from the

filtering method have themselves a quite large variability which is represented
using distribution boxes in Figure 17. The estimated variances σ2

K(V ) using
both methods follow a quite similar trend, with differences being within the
confidence intervals. That trend is fitted by using (27) from the median values
given by the filtering method to obtain the variance σ2

K(V ) w.r.t V . It is worth
noting that the exponent λ in (31) fitted from a single realization in Figure 16
differs from the one in (27) fitted in Figure 17 on series of simulations of vari-
ous sizes. Results similar to those shown in Figure 17 are obtained for the two
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Fig. 17 Scaled variance of the permeability K versus the number of spheres, as required
in Equation (26) to estimate representativity errors, for the simulations on samples UG5.
Dotted lines: power-law fits of median values obtained with the filtering method. Error bars
for the direct method are drawn from the 95% confidence interval on the variance from a
chi-square estimator.

other types of gradation UG1 and UG10. The exponent λ in (27) is found to
decrease with increasing ratio Dmax/Dmin with values 0.99, 0.74 and 0.69 for
samples UG1, UG5 and UG10, respectively.

The values of the variance σ2
K obtained from the direct method, the fil-

tering method and the relation (27) with the parameters obtained from the
aforementioned fitting method are injected in (26) to estimate the representa-
tivity error ϵrveK for a given sample size. Figure 18 shows the representativity
error ϵrveK as a function of the sample size LRVE normalized by the particle
diameter D40 for the three types of gradation UG1, UG5 and UG10. The di-
ameter D40 was chosen as it allows us to obtain close values of ϵrveK for the
three types of gradation at the same value of LRVE/D40. For the three types
of gradation investigated here, the representativity error is found to be below
5% provided that the length of the domain is at least 7 times the diameter
D40.

6 Conclusions

In this paper, we present a comparison between the LBM and FFT based
method used to compute the permeability K of granular assemblies. Different
benchmark cases have been considered: 2D square and disk inclusions, 3D face
centered cubic array (FCC) and 3D random uniformly graded samples. The
DEM was used to simulate the latter granular samples which have periodic
boundary conditions. We studied four linear gradations, UG1, UG5, UG10 and
UG15 with Dmax/Dmin = 1.1, 5, 10 and 15, respectively.
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and filtering methods for the three types of gradation, as a function of the sample size LRVE

scaled by the particle diameter D40. Dotted lines: power-law fits of median values given by
the filtering method.

For the square inclusion case, the permeability computed with the LBM is
more accurate than that computed with the FFT method, while the inverse
was found for the disk case. For the FCC case, both methods give almost
the same accuracy in comparison with the semi-analytical values obtained by
Zick and Homsy [45] for different solid fractions. For the sample UG1 which
corresponds to glass beads, the values of K given by both methods are quite
close to the experimental values obtained by Verneuil et al. [42] and Beavers
et al. [4].

For the 3D random samples, the permeability K computed with the LBM
converges better with respect to the discretization resolution (grid spacing
h) than that computed with the FFT method for coarse to moderately fine
discretization. In addition, the FFT method shows a linear convergence with
respect to h when the latter is sufficiently fine, allowing us to extrapolate the
value of K for h = 0. For all the four linear gradations mentioned above, the
discretization error appears to be controlled by D25, the 25% passing by mass
grain diameter. To obtain relative discretization errors smaller than 5%, the
FFT method and LBM requires h/D25 ≤ 4× 10−2 and 6× 10−2, respectively.
In particular, for the FFT method, the relative discretization error is linear
with h and lower than 1.5h/D25.

From a computational point of view, the FFT method is much more effi-
cient than the LBM for the same discretization resolution as the former needs
less iterations and consumes less memory than the latter. Nevertheless, as the
convergence of the LBM with respect to the discretization resolution is better
than that of the FFT method, the computational efficiencies of both methods
are comparable to reach the same accuracy for the computed values of the
permeability.
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The RVE size is determined for a target variability of the permeability
computed on finite sized samples of uniformly graded samples. The direct
method involves many realizations of similar random samples, while the filter-
ing method relies on a single sample, which is faster. Both methods have been
shown to yield comparable estimates of the variability, within error bounds.
They both exhibit very little sensitivity to the discretization grid, implying
that rather coarse grids can be used to estimate the RVE size. Finally, it is
shown that a Representative Volume Element (RVE) size larger than 7D40

guarantees a variability of the computed permeability below 5% for the uni-
formly graded samples UG1, UG5 and UG10 investigated here.

This work provides useful guidelines regarding the choice of a numerical
method to compute the permeability of granular samples simulated with the
DEM, its discretization errors and the representativity issues. It will serve
as a basis to optimize future numerical works which aim at investigating the
relationship between the porosity, the grain size distribution, the pore charac-
teristics and the permeability for more realistic gradations.
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