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Abstract. Many applications of Formal Concept Analysis (FCA) and
its diverse extensions have been carried out in recent years. Among these
extensions, Relational Concept Analysis (RCA) is one approach for ad-
dressing knowledge discovery in multi-relational datasets. Applying RCA
requires stating a question of interest and encoding the dataset into the
input RCA data model, i.e. an Entity-Relationship model with only
Boolean attributes in the entity description and unidirectional binary
relationships. From the various concrete RCA applications, recurring en-
coding patterns can be observed, that we aim to capitalize taking soft-
ware engineering design patterns as a source of inspiration. This capital-
ization work intends to rationalize and facilitate encoding in future RCA
applications. In this paper, we describe an approach for defining such
design patterns, and we present two design patterns: “Separate/Gather
Views” and “Level Relations”.

Keywords: Formal Concept Analysis · Relational Concept Analysis ·
Design patterns.

1 Introduction

Formal Concept Analysis (FCA [15]) has gained importance in knowledge dis-
covery thanks to both theoretical advances and the multiplication of concrete
application projects in many domains [31]. Part of these advances are extensions
of FCA suitable to handle complex data, going far beyond basic formal contexts.
A few of these extensions are dedicated to deal with datasets comprising multi-
ple object categories and multiple relationships between these objects, namely
Graph-FCA [12], Relational Concept Analysis (RCA) [17], and the approach
described by [22]. Each of these approaches has its own practical application
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and implementation constraints, but has specific qualities for knowledge dis-
covery. E.g. Graph-FCA provides concepts highlighting graph patterns shared
by tuples, while RCA provides interconnected concept lattices, one per object
category. This paper focuses on RCA.

RCA is based on a simple input data model composed of objects described by
Boolean attributes and unidirectional binary relationships between these objects.
Practical application raised the issue of encoding a dataset into this formalism,
which was more or less easy according to the dataset model structure, such as
converting a ternary relation into binary relations [21]. Similar problems arise
for encoding object descriptions with particular attribute values (e.g. numerical)
into a formal context made of Boolean ones. The latter can be addressed, for
example, using scaling approaches [15] or Pattern Structures [14]. To facilitate
access of new users to RCA, capitalizing the experience gained in applying RCA
in various existing applications is a need.

This paper aims to describe a general approach, to pave the way for the defi-
nition of design patterns for RCA application. To this end, we present what such
design patterns might look like, and give a few illustrations. Section 2 presents
basics of RCA, some typical applications, and our motivation for capitalizing
the encoding practices as design patterns. Section 3 outlines the design pattern
notion, inspired by its definition in the field of software engineering, and illus-
trates it through two examples. Section 4 discusses opportunities for developing
the approach. We conclude and give a few perspectives of this work in Sect. 5.

2 Background and motivation

Formal Concept Analysis FCA is a mathematical framework focusing on the
analysis of binary relations using concept lattices. FCA considers as input a
formal context K = (O,A, I) where O is a set of objects, A is a set of attributes
and I ⊆ O×A is the incidence relation. We define the functions f : P(O) → P(A)
and g : P(A) → P(O) such that f(X) = {y ∈ A|X ×{y} ⊆ I} and g(Y ) = {x ∈
O|{x} × Y ⊆ I}. The concept lattice L computed from K is the set of concepts
{(X,Y )|X ⊆ O, Y ⊆ A, f(X) = Y and g(Y ) = X}, provided with a partial order
relation based on inclusion. X is the concept extent, Y is the concept intent.
A concept (Xsub, Ysub) is lower in the lattice, i.e. is a sub-concept of a concept
(Xsup, Ysup) when Xsub ⊆ Xsup.

Relational Concept Analysis RCA aims at extending FCA to take into account a
dataset where objects of several categories are described by attributes and by re-
lations to objects [17]. The dataset is called a Relational Context Family (RCF).
An RCF is a (K,R) pair where: K = {Ki}i=1,...,n is a set of Ki = (Oi, Ai, Ii)
contexts (i.e. Formal Contexts), and R = {rj}j=1,...,m is a set of rj relations
(i.e. Relational Contexts) where rj ⊆ Oi1 × Oi2 for some i1, i2 ∈ {1, . . . , n}.
An example of an RCF composed of two formal contexts introducing pests and
crops respectively and one relational context indicating which pest attacks which
crop is shown in Table 1. From the RCF, RCA iteratively builds concepts. In
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FC Pest diptera beetle hemiptera insect fungi
Contarinia tritici x x
Oulema melanopa x x
Lepidosaphes ulmi x x
Verticillium dalhiae x

FC Crop cereal fruit tree
wheat x
barley x

apple tree x
apricot tree x

RC attacks wheat barley apple tree apricot tree
Contarinia tritici x
Oulema melanopa x
Lepidosaphes ulmi x
Verticillium dalhiae x

Table 1. Example of a Relational Context Family made of the Formal Contexts Pest
and Crop, and the Relational Context attacks.

a first step, concepts are built for each formal context, e.g. concept C_Crop_15
that groups wheat and barley for the common attribute cereal (right-hand side
lattice of Fig. 1). At the next step, the relational context attacks is used to form
relational attributes that express a relation that a pest object may have with a
crop concept, such as ∃attacks(C_Crop_15) assigned to Contarinia triciti
and Oulema melanopa because they attack at least one crop of C_Crop_15. This
causes the creation of concept C_Pest_18, which would not be there without
∃attacks(C_Crop_15) (left-hand side lattice of Fig. 1). The relational attributes
can be formed with different quantifiers (e.g. ∃∀, ⊇, or with percentages). The
number of iterations depends on the data model. The same process can be ap-
plied to more complex datasets, eventually containing circuits.

C_Pest_7
∃attacks(C_Crop_14)

 

C_Pest_8
diptera

Contarinia tritici

C_Pest_18
∃attacks(C_Crop_15)

 

C_Pest_9
∃attacks(C_Crop_16)

 

C_Pest_10
beetle

Oulema melanopa

C_Pest_11
hemiptera

Lepidosaphes ulmi

C_Pest_13
fungi

Verticillium dalhiae

C_Pest_12
insect

 

C_Pest_19
∃attacks(C_Crop_17)

 

C_Crop_14
 
 

C_Crop_15
cereal
wheat
barley

C_Crop_16
 
 

C_Crop_17
fruit tree
apple tree
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Fig. 1. Lattices obtained from the Relational Context Family of Table 1.

Overview on RCA applications RCA was used for analyzing data in various do-
mains. Hydroecological datasets were studied in [11,28], e.g. to correlate physico-
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chemical parameters and characteristics of taxons living in sample sites. Agro-
ecology, and more precisely finding plant-based extracts that can serve as alter-
native to synthetic pesticides and antimicrobials, was considered in [24]. Using
RCA in Information Retrieval (IR) is discussed in [8], and was, for instance, used
for querying collections of legal documents connected through cross references
[25]. In the field of Semantic Web, it was for instance used to design ontolo-
gies [32,20] and extract consistent families of dependent link key candidates in
RDF data [4]. RCA was used in industrial information systems to make tools
inter-operate, e.g. in the domain of brain activity measurement [35]. It was also
applied to identify anomalies in aluminum die casting process description [34].
Finally, RCA was applied in Software Engineering in order to solve different
problems: normalize (by factorization) a UML class model [19,16] or a UML
use case model [10]; for refactoring [26]; learn model transformation patterns
[9]; build directories of Web services or components [5]; structure [7] or analyze
[2,18] the variability in software product lines.

Motivation Applying RCA to a dataset is easy when their data models are
compliant. But the model of the dataset is often more complex, and has to be
transformed. For instance, it may contain bidirectional or N-ary relations. The
relations may have specific semantics, e.g. is-a, instance-of, and contains. In
such case, converting an is-a relation connecting an entity Esub to another en-
tity Esuper into an RCA relation conducts to assign attributes of Esuper to both
entities. Identical problems arise when applying FCA to multi-valued attributes.
A solution is to use one of the scaling schemes [15] that convert non-Boolean
attributes into Boolean ones. Mastering these scaling schemes is a key for FCA
practitioners to select the most appropriate one to meet the modeling objective.
The aim of this work is therefore to capitalize on the recurrent data encoding
patterns for RCA and thus to increase the efficiency of RCA practitioners in
developing applications. In this work, the considered encoding includes values,
instances (objects), and data model transformations. The main source of inspi-
ration for this work originated from the domain of Software Engineering, namely
the design patterns [13].

3 Design Patterns

This section introduces our proposed description of design patterns (DPs) for
RCA (Section 3.1) and presents two DPs: Separate/Gather Views (Section 3.2)
and Level Relations (Section 3.3). The first DP aims to handle (i.e. separates or
groups) attributes to facilitate the analysis of a dataset through specific views,
and the second one to represent multivalued attributes from the same category
discretized into the same set of values using both relational and formal contexts.
Both DPs were used in different applications.
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3.1 Describing a Design Pattern

Data modeling is a recurrent and fundamental problem in various approaches
or domains, including databases, ontologies or software engineering. This last
domain is the one where capitalization and sharing of models have been the
most developed. The work by Gamma et al. [13] is a seminal reference for DP
in the domain of Software Engineering. It has been inspired by the work of the
architect Christophe Alexander [3]. Gamma et al. offers a catalog of DPs for
object-oriented designers to transfer knowledge, in particular from experts to
beginners, to help them achieve a good design by choosing among several proven
alternatives. In the catalog, four essential parts are highlighted to describe a DP:
the pattern name, the problem, the solution, and the consequences. The pattern
name is important as it becomes part of a shared vocabulary. Describing the
problem involves defining the context and the favorable conditions of the DP
application. The solution describes the different elements that take part to the
design in an abstract and configurable way. The consequences include predictable
effects of the pattern application and compromises that may have to be done
between different qualities of the results. In addition, each DP is described in the
catalog using more than ten sections. While some sections are specific to object-
oriented design (e.g. classes/objects participants, or sample code), others can be
adopted for other domains. In this paper, to remain synthetic, the following five
description sections are used:

– Problem. The problem is expressed in terms of dataset content and analysis
objective. As in [13], this is the most tricky part of the description.

– Solution. For RCA, the solution consists in expressing how to formally de-
sign and populate a Relational Context Family from the problem description.

– Example. This section presents a short example of the pattern application.
– Known uses. This section reports existing case studies of the literature

where the DP has been applied.
– Consequences. This section reviews alternatives and discusses the conse-

quences of the application of the DP relatively to the analysis objective, in
particular in terms of usability/readability of the result.

3.2 The Design Pattern Separate/Gather Views

Problem This design pattern applies when:

– The objects identified in the dataset are described either by attributes with
domain values of various cardinalities (Case 1), or by Boolean attributes
(Case 2). Case 1 can be reduced to Case 2 using a scaling operation [15].
Attributes can be gathered into groups and categories for Case 1 and 2
respectively;

– Each attribute or attribute group of Case 1 or each Boolean attribute cate-
gory of Case 2 is a coherent view on objects;

– It is relevant to analyze objects through the perspective of a single view or
considering several views, first separately and then together.
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FC2V1

FC

V1

V2

Vn
FC2Vn

FC2V2

........... ...........

Ingredient

  seaweed:boolean
  salad:boolean
  salmon:boolean
  tuna:boolean
  avocado:boolean
  rice:boolean
  tobiko:boolean
  cucumber:boolean
  cream-cheese:boolean

Weight

  20g:boolean
  30g:boolean

S2I

S2W

Sushis

Fig. 2. Schema of the Relational Context Family for the Design Pattern Sepa-
rate/Gather Views (left-hand side). Schema for the sushis example (right-hand side).
Both schemas are represented with the UML class diagram notation.

Solution The solution, outlined in Figure 2 (left-hand side), is defined as follows:

– Formal contexts
• One formal context denoted as FC for the initial objects

∗ FC objects (O) are the initial objects, FC attributes (A) are initial
object identifiers, or other description, or none: FC = (O,A,R),
R ⊆ O ×A

• One formal context denoted as Vi for each view i, 1 ≤ i ≤ n:
∗ Vi objects (Oi) are views on the initial objects, Vi attributes (Ai)

are Boolean attributes of one view: Vi = (Oi, Ai, Ri), Ri ⊆ Oi ×Ai.
For each view i, there is a one-to-one mapping between objects of O
and their projection in Oi denoted as proji : O −→ Oi.

– Relational contexts
• For each i, 1 ≤ i ≤ n, one relational context FC2Vi connects an object

of FC to its corresponding view object in a Vi: FC2Vi = (O,Oi, ri),
ri ⊆ O ×Oi, ri = {(o, proji(o))|o ∈ O}

Example Table 2 presents the dataset, i.e. sushis described by weight and in-
gredients, with domain values {20g, 30g} and {seaweed, ...cream_cheese} re-
spectively. Applying the DP Separate/Gather Views to this dataset consists in
identifying the objects and the views. As Sushis are the objects, weight and
ingredients are candidates for the views. Figure 2 (right-hand side) graphically
outlines the DP application with a UML class model. Class Sushis represents
the main formal context; classes Ingredient and Weight represent secondary
formal contexts (the views on sushis). UML associations S2I and S2W represent
the relational contexts connecting each object to its view object. The values
of the attributes Weight and Ingredient lead to Boolean attributes such as
seaweed (in Ingredients) or 20g (in Weight). Table 3 shows the resulting RCF:
FC is Table Sushis, where there are only objects and no additional description
by attributes. V1 is Table Weight, which associates weight views of sushis (e.g.
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california salmon Wght) with the corresponding weight (e.g. 20g). V2 is Ta-
ble Ingredient, which associates ingredient views of sushis (e.g. california
salmon Ing) with the corresponding ingredients (e.g. seaweed). RC1 = S2W
connects a sushi to its weight view; RC2 = S2I connects a sushi to its ingredient
view.

Sushis Weight Ingredients
california salmon 20g seaweed, salad, salmon, avocado, rice

california 30g seaweed, salad, tuna, avocado, rice
maki cheese 20g salad, avocado, rice, cream-cheese
maki tobiko 30g seaweed, avocado, rice, tobiko, cucumber

Table 2. A tiny sushi dataset. A sushi is described by its weight and its ingredients.

FC Sushis
california salmon
california tuna
maki cheese
maki tobiko

V1 Weight 20g 30g
california salmon Wght x
california tuna Wght x
maki cheese Wght x
maki tobiko Wght x

V2 Ingredient seaweed salad salmon tuna avocado rice tobiko cucumber cream-cheese
california salmon Ing x x x x x
california tuna Ing x x x x x
maki cheese Ing x x x x
maki tobiko Ing x x x x x
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california salmon x
california tuna x
maki cheese x
maki tobiko x
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california salmon x
california tuna x
maki cheese x
maki tobiko x

Table 3. A Relational Concept Family for sushis: FC Sushis, V1 weight view, V2

ingredient view, RC1 = S2W connects a sushi to its weight view, RC2 = S2I connects
a sushi to its ingredient view.

Using this encoding, RCA builds the concept lattices presented in Fig. 3
and 4. Figure 3 presents the views for weight and for ingredients. The weight
concept lattice helps analyzing groups of sushis sharing the same weight, i.e.
20g versus 30g. The ingredient concept lattice highlights other sushi groups, e.g.
Concept_Ingredient_11 groups the California sushis (separated in the weight
view) because of their four shared ingredients (avocado, rice, seaweed, sal-
ad). Figure 4 gathers both views and gives combined information, such as the
implication rule that a sushi weighed 20g contains salad:
∃S2W (Concept_Weight_19) −→ ∃S2I(Concept_Ingredient_12).

In this example, the resulting RCA lattice is similar to a FCA lattice. But
each view could be more complex, e.g. with hierarchical values or a combination
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of various types of attributes with consistent semantics. This approach justifies
to build a lattice for each view and one lattice gathering all views.

Concept_Weight_18
 
 

Concept_Weight_19
20g

california salmon Wght
maki cheese Wght

Concept_Weight_20
 
 

Concept_Weight_21
30g

california tuna Wght
maki tobiko Wght

Concept_Ingredient_9
avocado

rice
 

Concept_Ingredient_10
seaweed

 

Concept_Ingredient_11
 
 

Concept_Ingredient_12
salad

 

Concept_Ingredient_13
salmon

california salmon Ing

Concept_Ingredient_14
 
 

Concept_Ingredient_15
tuna

california tuna Ing

Concept_Ingredient_16
tobiko

cucumber
maki tobiko Ing

Concept_Ingredient_17
cream-cheese

maki cheese Ing

Fig. 3. Views on sushis: according to their weight (left-hand side) and their ingredients
(right-hand side).

Known Uses This DP has been implemented for the analysis of visual acces-
sibility options in operating systems (OS) in [23]. This analysis had different
purposes, including making recommendations to OS developers to design a new
version, to assist end-users finding an accessibility configuration close to the
current configuration when the OS upgrades, or when end-users have to change
OS. In this study, the objects are operating systems (OS) and the views cover
three visual accessibility options categories (contrast, text, zoom). Separating the
views allows to analyze the OS along a single problematic, e.g. to observe com-
monly shared contrast options, which OS provides more contrast options than
another, or which options are never provided together. Gathering the views clas-
sifies the OS in a global way, e.g. helping identifying which ones are equivalent
on all option categories, how they differ from each other, and how the options
of the different categories interact. Moreover, an application has been developed
by [18] using this DP to assist Feature location (FL) in Software Product Line
Engineering.

Consequences Part of the value of this pattern relies on the relevance of the de-
signed views. It may be more or less complex to determine which set of attributes
corresponds to a view, as a single semantics should be associated with this view,
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Concept_Sushis_1
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∃S2I(C_Ingredient_10)

 

Concept_Sushis_23
∃S2I(C_Ingredient_11)

 

Concept_Sushis_24
∃S2I(C_Ingredient_12)

 

Concept_Sushis_25
∃S2I(C_Ingredient_13)

california salmon

Concept_Sushis_30
∃S2W(C_Weight_19)

 

Concept_Sushis_26
∃S2I(C_Ingredient_14)
∃S2W(C_Weight_20)

 

Concept_Sushis_27
∃S2I(C_Ingredient_15)

california tuna

Concept_Sushis_28
∃S2I(C_Ingredient_16)

maki tobiko

Concept_Sushis_29
∃S2I(C_Ingredient_17)

maki cheese

Concept_Sushis_31
∃S2W(C_Weight_21)

 

Fig. 4. Sushis concept lattice (gathered views).

e.g. habitat versus food for animals. Note that partitioning attributes partici-
pating to different coherent sets is not relevant, e.g. for animals, the Boolean
attribute aquatic environment can be an attribute in views natural habitat and
growing conditions. An additional interest of using this RCA DP may occur when
considering the pattern variation in which an object can have several views, cor-
responding for instance to different versions. Different quantifiers can thus be
used in the diverse relations, e.g. in the Sushis example, ∃ on S2W and ∃∀
on S2I, to find sushis having versions containing only certain types of ingredi-
ents, such as vegan ingredients, considering that this ingredient description was
included in V2 Ingredient.

One might wonder whether using FCA on (1) each formal context Vi, and (2)
on a simple formal context gathering all the Boolean attributes would be more
relevant than applying this pattern, in particular to obtain more readable lattices
since relational attributes add some reading complexity. Using the single formal
context with all attributes would present these drawbacks: if some attributes of
a view are equivalent and correspond to an interesting abstraction (shared by
the same object set), then they would be mixed with other attributes of the
other views where it will be difficult to observe the equivalence, the implication,
or the mutual exclusion between different abstractions coming from different
views. In addition, if the description of the attributes is complex, FCA cannot
consider this complexity to classify the objects while, in the RCA framework, this
complexity can be converted into objects supporting this description. It consists
in extending the Relational Context Family in which the whole description is
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used for classifying the initial objects. To improve the readability of the relational
attributes, which is a drawback of RCA, the simplification proposed by [33,34]
can be applied: a concept identifier in a relational attribute can be replaced
by the intent of the concept at its creation time (possibly recursively). Other
authors proposed to deliver the extracted knowledge, not in terms of concepts
and relational attributes, but as sentences [29] or as logical formulas in source
code macros [18].

3.3 The Design Pattern Level Relations

Problem This design pattern applies when:

– The objects identified in the dataset are described by numerical attributes.
The attributes belong to the same semantic category;

– Numerical attributes are discretized into the same set of values;
– Value Levels give interesting information by themselves;
– It is relevant to factorize values to limit the size of the context. Different

quantifiers can be applied to the various levels.

Fig. 5. Schema of the Relational Context Family for the Design Pattern Level Relations
(left-hand-side). Schema for the sushi restaurant example (right-hand side).

Solution The solution is outlined in Fig. 5 (left-hand-side) and defined as follows:

– Formal contexts
• One formal context denoted as FC for the initial objects:

∗ FC objects (O) are the initial objects, FC attributes (A) are initial
object identifiers, or other description, or none: FC = (O,A, I), I ⊆
O ×A

• One formal context denoted as AL:
∗ AL objects (Ω) are the initial attributes, AL attributes (B) are at-

tribute identifiers or categories of attributes: AL = (Ω,B, J), J ⊆
Ω ×B.

– Relational contexts
• For i ∈ [1, n], n being the number of levels, the relational context

FC2AL_i connects an object of FC to an attribute in AL if i is the level
of this attribute for the object: FC2AL_i = (O,Ω, ri), ri = {(o, ω)|o ∈
O,ω ∈ Ω, i is the value of ω(o) in the initial dataset}



RCA in practice 11

Example Table 4 outlines the dataset of the tiny example: sushi restaurants are
described by their evaluation on price, food quality, food variety, and service,
being multi-valued attributes with the three same values. Figure 5 (right-hand
side) graphically outlines the DP application with an UML class model. Class
Sushi Restaurants represents the main formal context; Class Evaluation rep-
resents a secondary formal context (the attributes). UML associations R2E_Low,
R2E_Medium and R2E_High represent the relational contexts connecting each ob-
ject to each attribute according to its value level.

Applying the DP Level Relations to Table 4 conducted to obtain Table 5. Two
objects contexts are defined, i.e. one for the restaurants, the other for the eval-
uations. Three relational contexts are defined, i.e. one for each evaluation level
(low, medium, and high). The lattices obtained from this RCF are shown on Fig.

C_Resto_1

∃Medium(C_Eval_6)
∃High(C_Eval_6)

 

C_Resto_12

∃Low(C_Eval_6)

 

C_Resto_13

∃Low(C_Eval_7)
∃Low(C_Eval_10)
∃Medium(C_Eval_9)

sushi1

C_Resto_20

∃High(C_Eval_11)

 

C_Resto_14

∃Low(C_Eval_8)
∃Low(C_Eval_11)
∃Medium(C_Eval_8)
∃High(C_Eval_8)

 

C_Resto_15

∃Low(C_Eval_9)
∃High(C_Eval_10)

sushi2

C_Resto_17

 

sushi4

C_Resto_19

∃High(C_Eval_7)

sushi3

C_Resto_16

∃Medium(C_Eval_7)
∃Medium(C_Eval_11)

 

C_Resto_18

∃Medium(C_Eval_10)
∃High(C_Eval_9)

 

C_Eval_6

 

 

C_Eval_7

Price

Price

C_Eval_8

 

 

C_Eval_9

Quality

Quality

C_Eval_10

Variety

Variety

C_Eval_11

Service

Service

Fig. 6. Sushis restaurant concept lattices. For the sake of space: Restaurant has been
shorten in Resto, Evaluation has been shorten in Eval, R2E has been removed before
Low, Medium and High.

Restaurant Price Quality Variety Service
sushi1 low medium low high
sushi2 medium low high medium
sushi3 high high medium high
sushi4 medium high medium medium

Table 4. A tiny sushi restaurant evaluation.
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Restaurants
sushi1
sushi2
sushi3
sushi4

Evaluation
Price

Quality
Variety
Service

R2E-Low Price Quality Variety Service
sushi1 x x
sushi2 x
sushi3
sushi2

R2E-Medium Price Quality Variety Service
sushi1 x
sushi2 x x
sushi3 x
sushi2 x x x

R2E-High Price Quality Variety Service
sushi1 x
sushi2 x
sushi3 x x x
sushi2 x

Table 5. A Relational Concept Family for sushis restaurants: FC Restaurant, AL
Evaluation. Identifiers of objects are not shown for a sake of space. R1=R2E-Low
connects a sushi restaurant to its low evaluations, R2=R2E-Medium connects a sushi
restaurant to its medium evaluations, R3=R2E-High connects a sushi restaurant to its
high evaluations.

6. Concepts of the restaurant lattice (left on Fig. 6) have attributes pointing to
evaluation concepts (right on Fig. 6). For instance, concept C_Resto_16 gathers
restaurants that have a medium evaluation on Price and on Service. Concept
C_Resto_1 gathers all restaurants, showing that all have both a medium and a
high evaluation on some criteria.

Known Uses DP Level Relations has been applied for modeling a water dataset,
where stream sites are described by physico-chemical parameters (pH, nitrates,
phosphates, etc.) and fauna information [11]. Data are modeled with several re-
lations to represent the different value levels of physico-chemical parameters (five
level relations), macro-invertebrate populations (three level relations), and char-
acteristics (life traits) of the macro-invertebrates (six level relations). Finally the
RCF contains four formal contexts (stream sites, physico-chemical parameters,
life traits and macro-invertebrates) and 14 relational contexts.

Moreover, this DP was also used by [27] to analyze a dataset on hydrosys-
tem restoration projects. In this work, river sites are characterized by temporal
heterogeneous information, including measures of physico-chemical parameters,
biological indicators, and the composition of the surrounding land use. Biological
indicators are described with 5 quality values. Physico-chemical parameters are
discretized into 5 values. Land use is assessed within two increasing buffers. Part
of different types of land use is summarized into three values, low, medium and
high. The river sites belong to river segments where restoration operations have
been undertaken. Finally the RCF contains 6 formal contexts and 21 relational
contexts.

Consequences The lattice on sushi restaurants (left on Fig. 6, called lattice R in
the following) obtained with RCA based on the DP Level Relations applied on
the dataset described in Table 4 can be compared with a lattice obtained with
a simple scaling of the multi-valued attributes into Boolean ones. This second
lattice, called lattice B in the following, is shown in Fig. 7. Concepts introducing
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the objects (restaurant) are similar in both lattices. More general concepts
are different: lattice R has one more concept, i.e. C_Resto_12, which groups
restaurants having a low evaluation on some criteria. In such case, RCA produces
relational attributes in which only the level (∃ medium | high) is represented and
not the value (which attribute). Such attributes can be interesting for experts.
Furthermore the tops of the lattices are different: it is empty in lattice B while
it contains two relational attributes in lattice R. DP Level Relations is thus
relevant when values provide an interesting information.

C_Resto_9

 

 

C_Resto_10

Price-Low
Quality-Medium

Variety-Low

sushi1

C_Resto_17

Service-High

 

C_Resto_11

Service-Low

 

C_Resto_13

Price-High

sushi3

C_Resto_14

Quality-Low
Variety-High

sushi2

C_Resto_15

 

sushi4

C_Resto_12

Price-Medium
Service-Medium

 

C_Resto_16

Quality-High
Variety-Medium

 

Fig. 7. Lattice obtained from Table 4 with a scaling of multi-valued attributes.

4 Perspectives

Section 3 presented two DPs, that were used in concrete applications, focusing on
various aspects of relational data, as can be considered in the RCA framework.

Several perspectives are offered by this work. Two of them are discussed in
this section, i.e. identifying additional DPs that can be useful to help RCA users
and revisiting existing applications.

New opportunities for defining DPs Additional DPs were identified along the
existing applications. A few examples are introduced hereafter. Some data mod-
els included a specialization/generalization (is-a) relationship. Analyzing the
associated dataset required to flatten the hierarchical descriptions [19,10,16],
to discover abstractions previously hidden. This new DP could be named Col-
lapse Specialization. The DP Reify Relation may consist in introducing a
formal context in the RCF for describing the tuples of a relation. This approach
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was used by [21] to derive a binary representation of an N-ary relation, with-
out loosing information. The link reification, as realized in [9] and [4], could
be considered through the same perspective. The DP, dual to Separate/Gather
Views, is Separate/Gather Objects, in which objects of a same category can
be separated into several subsets to analyze each subset apart or all subsets as
a whole. This approach was considered by [16] to normalize a UML class model
to detect candidate attribute generalizations on diverse criteria, e.g. name, sub-
string in the name, synonyms, type, default value. The DP Instances2Model
may address objects with multi-valued attributes to extract a schema, as it has
been done from instance descriptions in [9]. It consists in simplifying the de-
scription considering that an object has a value for an attribute (but not the
value). Introducing virtual objects representing a Query has been proposed by
authors in the context of FCA. This can be extended to the context of RCA,
such as in [6], introducing several virtual objects in formal contexts and vir-
tual links in relational contexts. This approach has been adopted for solving the
problem of replacing a failing web service in a web service workflow [5]. Finally,
sequences can be modeled into RCA input with a transitive relation ’precedes’ or
’succeeds’, according to the DP Temporal [28]. Other transitive relations (e.g.
part-of/includes, or down/upstream-of [27]) may also correspond to this DP.

Revisiting applications with the DPs The DP Separate/Gather Views presented
in Section 3 could be applied to revisit and improve a previous work on com-
ponent catalog FCA-based building [1], in which software components were de-
scribed with provided/required interfaces, each interface containing a set of ser-
vices. In this catalog, the description was made using a single formal context.
The catalog then organized the software components with this description and
exposed possible substitution between components from the two viewpoints as
a whole (provided as well as required services). This hardly helps the lattice
exploration considering only one viewpoint, e.g. a user may want to search a
component with provided services, and consider in a second step the required
services, that other components could provide. Another potential use of the DP
Separate/Gather Views could be to consider positive versus negative description
of objects, a question that has been addressed in [30], to complete their approach
using an additional point of view.

5 Conclusion

This paper presented a general approach that aims to capitalize lessons learned in
encoding datasets in the RCA input format. Two DPs were described to illustrate
the approach. These DPs have been extracted from existing RCA applications,
and could be applied to improve or complete the analysis in other applications.
Additional DPs to formalize were also reported. Short-term future work includes
continuing the DPs formalization and defining a data modeling process involving
the DPs. In the longer term, a new area of research could be extending this
approach to other FCA extensions, such as Pattern Structures, Graph-FCA, and
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Polyadic FCA. Using DPs could be a gateway to use several FCA extensions in
synergy, as they could improve their implementation in case studies.
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