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1. Introduction 1.1. The general multi-range model. We consider an oriented graph whose vertex set is that of a d-regular, rooted tree, and, for some k ∈ N, all the edges of range between 1 and k. We fix a sequence (p 1 , . . . , p k ) of k reals in [0,[START_REF] Athreya | Branching processes[END_REF]. The percolation process we study is such that for each i between 1 and k, edges of range i are open with probability p i , independently of each others.

We shall describe a multi-type Galton-Watson process having exactly the same threshold. Such a Galton-Watson process is supercritical if and only if the largest eigenvalue of the transition matrix is strictly larger than one. If the p i 's are such that the percolation process associated to (p 1 , . . . , p k-1 , 0) is subcritical, the study of the transition matrix provides us the critical point for p k .

We shall get a polynomial that, with respect to p k , is of degree 2 k-1 , independently of the value of d. This gives a polynomial of degree 2 when k = 2, and of degree 4 when k = 3. There are exact expressions for their roots, but we only give the value of the critical point for k = 2:

Theorem 1. For k = 2 and 0 ≤ p 1 < 1/d, p 2,c = 1 2d + 1 2d 2 - (d -1)(3dp 1 + d + p 1 -1) 2d 2 √ 1 -p 1
We apply this formula on some values:

• When d = 2 and p 1 = 0.25, this gives p 2,c ≈ 0.135643, in accordance with the inequality p 2,c > 0.125 obtained in [START_REF] Bernardo | Multi-range percolation on oriented trees: critical curve and limit behavior[END_REF]. • When p 1 = 0, we get p 2,c = 1/d 2 , as for the classical percolation on a d 2 -regular tree. • When p 1 = 1/d, the formula reduces to p 2,c = 0, as expected.

Remark 2. When d becomes large, with p 1 < 1/d, the value we obtain is equivalent to the lower bound (1dp 1 )/d 2 of [START_REF] Bernardo | Multi-range percolation on oriented trees: critical curve and limit behavior[END_REF].

Remark 3 (The case of only one long range). The model considered in [START_REF] Bernardo | Monotonicity and phase diagram for multi-range percolation on oriented trees[END_REF] and [START_REF] Bernardo | Multi-range percolation on oriented trees: critical curve and limit behavior[END_REF] corresponds to the case where p 2 = . . . = p k-1 = 0. Of course, for k = 2, the two models are identical.

1.2. Organization of the paper. We describe the model of multi-range percolation in section 2. Then we introduce a multi-type Galton-Watson process in section 3, which will be equivalent to the percolation process. We use this process in section 4 to solve the model for k = 2, and indicate how to do it for k = 3. Finally, in section 5, we place a discussion on how to obtain the percolation threshold in more general cases.

The multi-range Percolation

This section draws upon the description found in [START_REF] Bernardo | Multi-range percolation on oriented trees: critical curve and limit behavior[END_REF]. For an integer d ≥ 2, define

[d] = {1, . . . , d} V = [d] * = 0≤n<∞ [d] n .
The difference between V and [d] * is that the set V is the set of the vertices of the graph, whereas [d] * is seen as the set of finite sequences with elements in [d].

The set [d] 0 is a single point o, which, when an element of V , we will refer to as the root of the graph.

For u = (u 1 , . . . , u m ) ∈ V and v = (v 1 , . . . , v n ) ∈ [d] * ,
the concatenation of these two elements, as an element of V , is defined by

u • v = (u 1 , . . . , u m , v 1 , . . . , v n ); o • v = v; u • o = u.

Now the set of oriented edges is

E = 1≤l≤k E l with E l = { r, r • i : r ∈ V, i ∈ [d] l }.
The oriented graph is finally T = (V, E). In T, every vertex has out-degree

d + d 2 + . . . + d k .
The percolation model we consider on T is as follows. We fix a sequence (p 1 , . . . , p k ) of k reals in [0, 1]. All the edges are independent of each other, and for l, 1 ≤ l ≤ k, every edges in E l is open with probability p l . The law obtained is denoted by P. The cluster C of the root is the set of vertices that can be reach by an oriented path from o. We focus on p k , and define

p k,c = p k,c (p 1 , . . . , p k-1 ) := inf{p k : P(|C| = ∞) > 0}.
The percolation model is stochastically dominated by a branching process with offspring distribution that is the sum of k independent binomial random variables, that is Bin(d, p 1 ), Bin(d 2 , p 2 ), ..., Bin(d k , p k ). This branching process is critical for parameters satisfying 1≤l≤k d l p l = 1, and so

p k,c ≥   1 - 1≤l<k d l p l   /d k .
In the context of only one long range (that is, only p 1 and p k can be non-null), the authors of [START_REF] Bernardo | Multi-range percolation on oriented trees: critical curve and limit behavior[END_REF] proved the much more difficult strict inequality. The present paper focuses on giving a method to obtain the numerical value of p k,c , but apart for k = 2 and perhaps, but not done here, for k = 3, our method does not seem to provide the strict inequality for general k and d, even in the context of [START_REF] Bernardo | Multi-range percolation on oriented trees: critical curve and limit behavior[END_REF].

The multi-type Galton-Watson process

The graph T is a regular d-tree. We have fixed k ∈ N * , and suppose p k > 0 (if that is not the case, simply decrease the value of k). A branch is a path (x 1 , . . . , x k ) of length k on the tree such that for each i, 1 ≤ i < k, x i is the parent of x i+1 .

For a configuration of the percolation process, we associate to each vertex 1 if it is in C, that is there exists a path of open edges from the origin to the vertex, 0 otherwise. We denote it by Y (x) for a vertex x of the tree.

We now focus on our multi-type Galton-Watson process, and we refer to [START_REF] Athreya | Branching processes[END_REF] for a detailed introduction to this topic. The space of types is {0, 1} k \ 0, the sequences of 0 and 1 of length k, whose elements are not all null. Such a type indicates if a vertex is occupied (for 1) or vacant (for 0) in a branch.

Let a be the type of a branch (x 1 , . . . , x k ). The vertex x k has, on the tree, d children, each one of them having the same probability of being occupied, a probability entirely determined by the type a. Take for x k+1 arbitrarily one of the d children of x k . The branch (x 2 , x 3 , . . . , x k , x k+1 ) will then be, if not entirely null, a child of (x 1 , . . . , x k ), and the first k -1 elements of the type of the new branch are entirely determined.

Hence, a type a = (a 1 , . . . , a k ) can have children of at most two different types:

• a ′ 0 = (a 2 , a 3 , . . . , a k , 0) • a ′ 1 = (a 2 , a 3 , . . . , a k , 1) We get a ′
1 , that is to say Y (x k+1 ) = 1, when at least one edge connecting an occupied x i with x k+1 is open. Otherwise we get a ′ 0 . The probability that the new branch (x 2 , x 3 , . . . , x k , x k+1 ) is of type a ′ 1 is entirely determined by the type a of the previous branch, and the same goes for the probability that the new branch is of type a ′ 0 . We multiply by d each of these probabilities to get the expected numbers of children of type a ′ 1 and of type a ′ 0 , and this determines entirely the multi-type Galton-Watson process. We denote by M the corresponding matrix.

The initial individual of the Galton-Watson process is (0, . . . , 0, 1). From any type (and we recall that they contain at least one 1), one can attain the type (1, 0, . . . , 0) by closing the right number of edges. From the type (1, 0, . . . , 0), we can obtain the type (0, . . . , 0, 1) as p k > 0. Since the type (0, . . . , 0, 1) is considered as the type of the origin, all the types of the successive children are all in the same irreducible component of the matrix M . This little aside allows us to consider cases such as (p 1 , . . . , p 6 ) = (0, 0.1, 0, 0.1, 0, 0.1), but of course one can always impose that the set of i's associated to non-null p i has only 1 for a common divisor. From now on, we consider only the states in this irreducible component, and change M accordingly if needed.

The Galton-Watson process we obtain is just another description of the multirange percolation process, so the thresholds are exactly the same.

Entirely solvable cases

Here we consider either k = 2, or k = 3 with p 2 = 0.

4.1.

A formula when k = 2. The set of types is constituted of (1, 1), (1, 0) and (0, 1). The transition matrix M of the Galton-Watson tree is:

(1, 1) (1, 0) (0, 1) (1, 1) d(p 1 + p 2 -p 1 p 2 ) d(1 -p 1 )(1 -p 2 ) 0 (1, 0) 0 0 dp 2 (0, 1) dp 1 d(1 -p 1 ) 0 
When d and p 1 are considered fixed, with dp 1 < 1, the critical value p 2,c of p 2 has to be such that the largest eigenvalue of M is 1, and this implies that det(M -I 3 ) = 0. This determinant is a polynomial of degree two in p 2 , whose roots are

1 2d + 1 2d 2 ± (d -1)(3dp 1 + d + p 1 -1) 2d 2 √ 1 -p 1 .
When p 2 = 0, the largest eigenvalue of M is dp 1 < 1. This eigenvalue is increasing by arguments of coupling for example, so p 2,c is the first positive root of the polynomial. Using p 1 < 1/d, one can obtain that the third term is strictly less than 1 2d , and so the first positive root is the one with the minus sign. This is exactly Theorem 1.

4.2.

The case k = 3 with p 2 = 0. As the transition matrix is relatively sparse, with at most two non-null elements for each line, we express M line-by-line as follows:

• (1, 1, 0): (1, 0, 0) with expectation d(1p 3 ), (1, 0, 1) with expectation dp 3 • (1, 0, 0): (0, 0, 1) with expectation dp 3 • (1, 1, 1): (1, 1, 0) with expectation d(1-p 1 )(1-p 3 ), (1, 1, 1) with expectation d(p 1 + p 3p 1 p 3 ) • (1, 0, 1): (0, 1, 1) with expectation d(p 1 +p 3 -p 1 p 3 ), (0, 1, 0) with expectation d(1p 1 )(1p 3 ) • (0, 1, 1): (1, 1, 0) with expectation d(1p 1 ), (1, 1, 1) with expectation dp 1 • (0, 0, 1): (0, 1, 1) with expectation dp 1 , (0, 1, 0) with expectation d(1p 1 ) • (0, 1, 0): (1, 0, 0) with expectation d.

For the last three lines, the expectations do not use p 3 . The polynomial det(M -I 7 ) is of degree 4, which makes it solvable, albeit not easily. For d = 2 and p 1 = 0.25, we obtain p 3,c ≈ 0.073780, to compare with p 3,c > 0.0625 of [START_REF] Bernardo | Multi-range percolation on oriented trees: critical curve and limit behavior[END_REF].

Remark 4. In the case k = 3 and p 2 > 0, the matrix has almost the same sparsity (just the last line has a second term), and the determinant is a polynomial of degree 4, thus exactly solvable. We refrain nevertheless to write the matrix in this case.

Characterization of the threshold

We can develop an algorithm that, once we have fixed k and (p 1 , . . . , p k-1 ), expresses the coefficients of the matrix M as polynomials of degree zero or one in p k . More precisely, for each type beginning by 0, the probabilities do not depend on p k , and the corresponding lines in M have only constants (with respect to p k ). For the types begining by 1, the probabilities are polynomials of degree one. Then we have two methods:

• Develop det(I -M ) and get a polynomial of degree 2 k-1 in p k . As M has at most two non-null elements in each line, we should get this polynomial in at most an order of 2 k operations. Then, for k not too large, mathematical solvers allow us to find the smallest positive root. • Iteratively multiply a vector X, initiated with only 1's, by M , and divide at each step by the largest component obtained. This largest component converges to the largest eigenvalue of M . On one hand, we then try to get the largest p k that the largest eigenvalue is smaller than 1, and this provides a lower bound for p k,c . On the other hand, we seek the smallest p k such that the largest eigenvalue is strictly larger than 1, and this provides an upper bound for p k,c .
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