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Abstract—The field of agriculture research has been trans-
formed by deep learning, which has demonstrated impressive
capabilities in detecting and classifying plant disease from leaf
images. Although several deep learning-based models are pro-
posed, they are considered as blackbox, lack transparency and are
notoriously difficult to interpret. Recently, eXplainable Artificial
Intelligence (XAI) methods has demonstrated the potential to
interpret the model decision-making process through saliency
explanations that highlight the most relevant parts of the input
image deemed important for predictions. In this work, we
proposed a new XAI saliency method for explanation of potato
disease detector based on particular perturbations driven by
intermediate object detection results. In order to compare our
proposed method with the state of the art, qualitative and
quantitative experiments are performed for potato leaf disease
detector models on PlantDoc dataset.

Index Terms—Potato leaf disease detection, Deep Learning,
Explainable AI, Perturbation-based methods

I. INTRODUCTION

Potato leaf diseases are the primary cause of crop losses,
jeopardizing food security with broad impacts on society and
economy. Traditional visual detection of potato plant diseases
is often tedious requiring human expertise to check if plants
are affected or suitable for human consumption. Furthermore,
the traditional process takes a lot of time, and is expensive
especially when the farm is wide with a lot of plants. So
automatic early detection is crucial to reduce (if possible
prevent) the disease transmission from unhealthy to healthy
plants.

With recent advances in deep Convolutional Neural Net-
works (CNN), the early detection of potato leaf diseases has
been made much easier, very quickly and cheaper in com-
parison to the traditional process. The trained models could
even be suitable for consumer applications on smartphones. In
recent years, a lot of research has been carried out in potato
leaf diseases detection (i.e. localization and classification of
disease) based deep learning models [1]–[3].

Despite the remarkable performance, deep models are still
considered as blackbox and explanation of its decisions re-
mains difficult and not intuitive for human users. There is an
ever-growing demand for eXplainable Artificial Intelligence

(XAI) to ensure trust on predictions performed by the deep
models. With the explainability methods, it became possible
to aid scientists, or end users, in analyzing the reasons for
high performances of detection and possible failures in certain
cases. A particular class of XAI methods, named saliency or
attributions methods, provide saliency maps (or heatmap) that
highlight which parts of the input image deemed relevant for
the prediction (i.e. classification or object detection result)
performed by the learned model. There are two main cate-
gories of attribution methods, backpropagation-based methods
which compute attributions by back-propagating the output of
the network back to the input image space, and perturbation-
based methods which perturb (or mask) the input image and
measure the effect this perturbation has on the model’s output.
The major advantage of perturbation-based methods is that
are applicable to any trained model (even the more complex
ones) regardless of its architecture unlike the backpropagation-
based category which requires access to the internal working
(i.e. architecture, gradients, etc.) of the model to generate
explanations.

Although several works have investigated explainability
methods in the agricultural field, it should be emphasized that
existing studies are made for explainability of leaf disease
classification. But, there is a difference between outputs of
classifiers and object detectors. So, for classification we are
asked to explain a class probability unlike the object detection
problem which requires explanation of classified bounding
box enclosing potato leave disease and identified by the
coordinates of its corners with class probability. This motivate
us to propose a perturbation-based method for explaining both
localization and classification aspects of potato leaf diseases.

Our method is inspired by the Detector Randomized Input
Sampling for Explanation method (D-RISE) [4], the first
perturbation-based method proposed to explain the predictions
of object detectors, which extended the randomized input
masking idea originally proposed for the explainability of
classifier [5] to explain object detectors. According to recent
previous works [6], [7], random perturbations for saliency
map generation seems to produce coarse grained results and
requires an excessive computing time when attempting to get
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Fig. 1. Examples of available visual explanation results (right images for each block) produced for classifier models on plant leaves images (left images in
each block) with different attribution methods.(a) Occlusion method, (b,c,d) GradCAM method, (e,f) LIME method, (g) GradCam++ and (h) ScoreCAM. The
saliency maps are taken from papers cited in section II.

generalized results. To address such limitations, we propose
to iteratively perform particular perturbations spatially driven
by intermediate predictions results in order to produce refined
results with minimal number of perturbations.

Our main contributions are as follows: (1) we propose
a novel XAI method for object detectors, which analyzes
changes in intermediate prediction results obtained with
masked version of input image to generate new particular
perturbation for the next iteration while stable state is not yet
reached. (2) The proposed method could be applied to any
object detector model without access to internal information
of the architecture. (3) Qualitative and quantitative evaluations
on potato leaves images and disease detection models are
performed.

The rest of the paper is organized as follow: first, an
overview of previous related works is presented in section II.
Then, the proposed method is put forward in section III. In
section IV, experimental results are presented and discussed.
Finally, the conclusion of this research paper is shown in
section V.

II. RELATED WORK

In agriculture field, many related works focused in pro-
viding explainability to the predictions made by the trained
deep models using attribution methods (perturbation-based or
backpropagation-based).

As a backpropagation-based method, Gradient-weighted
Class Activation Mapping (Grad-CAM) [8] has been applied in
recent works, such as in [9] to highlight regions responsible for
the classification of the image into Flower or Non Flower Class
(Fig. 1-(b)), and in [10] to show the disease portions focused
by the classifier model on leaf images (Fig. 1-(c)). It should be
noted that the GradCAM method in [11] has shown the need
of the classifier model to learn more discriminative features
since relevant pixels in the saliency map do not represent the
disease areas (see Fig. 1-(d)). More CAM variants have been
recently used to explain how classifier models operate in order

to trust them. In [12], a comparison between GradCAM++
[13] and ScoreCAM [14] has been performed to exhibit the
differences in the identification of regions responsible for
classifying coffee leaf image as abnormal (Fig. 1-(g,h)).

On the other side, other works have explored perturbation-
based methods for visual explanation of plant disease classifi-
cations. In [15], authors investigate the use of occlusion map
method [16] to understand how the used deep model perform
disease classification of tomato plant. The heatmaps obtained
in [15] roughly showed the symptoms considered in the classi-
fication decision, as illustrated in Fig. 1-(a). Additionally, the
popular perturbation-based method Local Interpretable Model-
Agnostic Explanations (LIME) [17] is investigated in recent
works to interpret the decisions made by classifier of plant
diseases. In fact, the authors in [18] used LIME to check if
the model focuses on the affected regions of the leaves to
make its predictions (see Fig. 1-(f)). LIME is also used in
the research work [10] to confirm that the proposed classifier
focuses on the disease portion, as shown in Fig. 1-(e).

We remark that related previous works have investigated
existing visual explainability methods to understand classi-
fier model behavior for plant leaf disease recognition. Un-
fortunately, no quantitative evaluation is performed for the
used explainability methods, limited only to visual evaluation.
Additionally, there is a lack of works on the explainability
of plant disease (i.e object) detection which consider both
the localization and classification aspects of the detection. It
should be noted that no proper XAI saliency map method
is proposed in potato leaf disease detection. After this study,
one can say that D-RISE is the only perturbation-based method
founded to explain both model’s classification and localization
[19]. The other perturbation-based methods designed for image
classifiers, such as LIME and RISE, require research efforts
to extend them to be used for object detectors [20]. That is
why we take D-RISE as a state-of-the-art in order to improve
explainability accuracy.



Fig. 2. Overview of the proposed explainability method workflow.

III. PROPOSED METHOD

The proposed method gets an object detector model F ,
an input image X and a target prediction T to explain
identified by the coordinates of the bounding box BB (xmin,
ymin, xmax, ymax) with associated probability vector P =
[PPLEB , PPLLB ], representing the probability that BB be-
longs to each of the classes: PLEB (Potato Leaf Early Blight)
or PLLB (Potato Leaf Late Blight). For example, if the
target to explain is classified as potato leaf late blight with
a probability equals to 0.84, the probability vector will be
P = [0, 0.84]. The output of our proposed method is a saliency
map SM having the same size of X and highlighting the most
important pixels in X that contribute to both classification and
localization of T by F . Fig 2 gives an overview of the proposed
method workflow.

The key idea is to perturb the image X with a mask Mi, then
fed the masked version MXi of X (MXi = X �Mi) to the
model F to have proposals of bounding boxes. We select the
proposal Propi that has maximum similarity with the target
T . Propi is defined by it bounding box BBi (xi

min, yimin,
xi
max, yimax) with probability vector P i = [piPLEB , p

i
PLLB ].

The similarity between two detections is computed as follow:

Simi(T, Propi) = IoU(BB,BBi).P
i.cosinesim(P, P i)

(1)
where IoU is the intersection over union between two bound-
ing boxes computed as a ratio of the area of overlap to the
area of the union.

IoU(BB,BBi) =
BB ∩BBi

BB ∪BBi
(2)

and cosinesim is the cosine similarity of probability vectors
to evaluate how similar the two bounding boxes BB and BBi

look to the network.

cosinesim(P, P i) =
P.P i

‖P‖ ‖P i‖
(3)

For masking the input image, we adopt the same mask gen-
eration approach from [5]. This method consists of sampling a
binary mask with a size smaller than image size by setting each
element independently to 1 with probability p and to 0 with
probability (1−p), then upsampling it to the image size using
bilinear interpolation. Instead of masking random regions as
in D-RISE method, we propose to use the detector’s output
Propi obtained at each iteration i, to differently perturb the
image addressing spatial analysis. For this, we put out two
interpretation regions comparing the target T to the obtained
result Propi as follow:

• Areainter is the intersection area between T and Propi,
• OutAreainter is the rest of the image outside the inter-

section area.
So we propose to perturb the interpretation regions sepa-

rately. The Areainter are outcome where the model correctly
detect part of the target T . So we aim to keep these pixels
for the next iterations considering them important for the
prediction of T. For this, we slightly perturb Areainter with its
10x10 neighborhood, by setting elements to 1 with probability
p = 0.8 in the binary mask. The pixels of the intersection area
Areainter will thus be softly masked to precisely investigate
the differences between the importance of the pixels inside the
Areainter. For the rest of the pixels OutAreainter, we inves-
tigate their importance values with new random perturbations.

All steps described above are repeated until having a high
degree of similarity Simi between detection result Propi
and target T . Hence the stable state is reached when Simi

converges to 1 and absolute difference between similarities
from consecutive iterations is less than or equal to ε. So, the
saliency map SM will be a weighted sum of masks Mi across
all iterations {1, .., N}, where the weights are the similarity
between T and Propi at each iteration i.

SMF,X,T =

N∑
1

simi(T, F (X �Mi)).Mi (4)



IV. EXPERIMENTS

In this section, we quantitatively and qualitatively evaluate
the performance of the proposed explainability method on
deep models used for potato disease detection.

A. Experimental setup

The value of ε was experimentally determined to be 10−3.
a) Dataset: We have used the PlantDoc dataset recently

published in [21] with instance-level annotations (i.e. bounding
boxes enclosing leaf disease object). PlantDoc is an open
access repository of plant leaf images in a field environment
published online at [22] which contains 2568 images of leaves
across 13 plant species and 27 classes. From this dataset, we
extract only images of potato leaves splitted into two diseases:
Potato leaf early blight and Potato leaf late blight. Sample
images with annotated bounding boxes from PlantDoc dataset
are shown in Fig. 3.

Fig. 3. Sample images from dataset with annotated bounding boxes for two
disease classes: Potato Leaf Early Blight (left) and Potato Leaf Late Blight
(right).

b) Deep learning models: For the training and detection
of potato plant diseases, we used Faster RCNN [23], that
offers high performances in plant leaf disease detection. So
the first deep model Model1 used in this research work is
Faster RCNN based on Resnet50 architecture, pre-trained on
ImageNet dataset [24] and finetuning on the target potato
leaves images to detect diseases. Since data augmentation
techniques are widely used during training to enhance the
dataset’s diversity and avoid overfitting, we train the same
setup of Model1 with data augmentation techniques, namely
horizontal flipping and vertical flipping, to put out Model2 for
potato leaf disease detection. The architecture of Model1 and
Model2 is illustrated in Fig. 4. The used data augmentation

Fig. 4. Graphical illustration of the architecture of Model1 and Model2.

techniques are applied on-the-fly for each batch since this can

generate more unique training images than offline augmen-
tation, and can hence improve generalization capability [25].
The metric used to evaluate object detector performances is the
mean Average Precision (mAP) [26]. Model2 yields a 46.22%
of mean average precision (mAP) across two classes, slightly
outperforming Model1 which achieves 39.37%. Experiments
were conducted on a desktop computer with 3.9GHz Intel i7-
9750H CPU and an NVidia GeForce GTX 1650 GPU.

B. Evaluation metrics

We used the deletion and insertion metric proposed in [5] to
quantitatively evaluate the proposed explanation method. The
idea behind the deletion metric is that the gradual removal
the top N salient pixels (i.e. mask them with blurred ones)
from the input image by following the order suggested by
the obtained saliency map will force the model to change its
decision. If the pixels that were highlighted in the saliency
map are truly important, we would expect a rapid decrease
in detection performance as the model’s output deviates from
the original prediction rapidly with increasing N [27]. On the
other hand, starting with a blurred image, the insertion metric
consists in progressively showing the most important pixels
to the model and measuring how fast the object detection
approaches the target. We would expect a sharp increase in
object detection performance as more and more important
pixels are introduced. We follow [28] to blur input images
by using Gaussian Blur with kernel size = 51 and sigma = 50.

C. Quantitative evaluation

In this section, we provide a comparative quantitative evalu-
ation of explainability methods based on deletion and insertion
curves generated for Model2. Fig. 5 shows the deletion curve,
which measures the drop in similarity by iteratively removing
important pixels from the input image. The importance of
pixels are given by the obtained saliency maps. We see that our
method drop faster than D-RISE. This implies that the relevant
pixels highlighted with our saliency maps are more faithful to
the model compared to those obtained with D-RISE. Fig. 6,

Fig. 5. Deletion plot.

on the other hand, illustrates the increase in similarity as more
and more important pixel are added back to the image. As can
be seen, the explanation based on our method increases faster
than that based on D-RISE. This sharp rise during insertion



supports that our method better identifies the contribution
of the image pixels for the prediction. The Area Under the

Fig. 6. Insertion plot.

deletion and insertion Curves (AUC) represent the deletion
and insertion scores, respectively. Table I reports the obtained
deletion and insertion scores over test images. For both potato
disease detector models (Model1 and Model2), our proposed
method achieves better performance on both metrics compared
to D-RISE method. The obtained deletion scores indicate that
removing salient pixels based on our saliency maps forced
the models to change its decisions, so the network’s output
will quickly deviate from the original prediction, and hence
the detection performance will rapidly diverge. Analyzing the
insertion scores, we can deduce that our method converges
better to the original prediction.

TABLE I
QUANTITATIVE EVALUATION IN TERMS OF DELETION (LOWER IS BETTER)

AND INSERTION (HIGHER IS BETTER) SCORES

Model Metric Our Method D-RISE method

Model2
Deletion 0.114 0.275
Insertion 0.697 0.532

Model1
Deletion 0.059 0.154
Insertion 0.26 0.19

D. Visualization results

In our method, performing separately and differently the
perturbation of interpretation regions made it produce a more
precise saliency map. Our method could hence more faithfully
reveal the object detection process. As shown in Fig 7,
our proposed method presents higher concentration at the
relevant pixels in comparison with the D-RISE method.
We qualitatively compare the saliency maps produced by our
proposed explanation method for the used object detector
models Model1 and Model2. Examples of visualization re-
sults are shown in Fig. 8. According to the obtained results,
we observe that the important area, represented with green
and yellow colors, is highlighted with a regular shape which
can be explained by the fact that the model has learned
from bounding box annotations (i.e. class and localization
information) and the target to explain has also regular shape.

Input Image + Target Our Method D-RISE

Fig. 7. Qualitative comparison of our proposed XAI method with D-RISE
method for Model2.

Inside the important area, our method provides fine-grained in-
terpretation by locating most relevant pixels (e.g. yellow pixels
in the saliency maps at second row of Fig. 8) that correspond
mainly to the affected parts of disease in leaves. Qualitative
comparison between saliency maps produced for Model1 and
Model2 shows that the saliency map become more focused
on affected parts as the object detection performance increases
with Model2. Our proposed explanation method can work as a
hint to determine the limitations of deep models. For instance,
the saliency maps produced for Model1 indicate that it did not
learn properly discriminative features of potato diseases in the
images recommending revising the learning configuration for
training (e.g. data quality, hyper-parameters of models, etc.).

V. CONCLUSION

The presented work introduces, for the first time, a visual
explanation method for deep learning model that detect and
localize potato plant diseases. The explanation of object de-
tection results is based on particular perturbation which is
not random but driven by the intermediate model’s output
obtained for masked versions of input image. The experimental
results have proved that our proposed XAI method achieves
better results than the implementation of the D-RISE method.
Thanks to the explanation results, we can control and track
further performance improvement of other versions of detector
models. As future work, it is interesting to prove the efficiency
of our XAI method, not only, on other detector models, but
also on other plant diseases.
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