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A similarity approach to estimating the source of geometric and topologic random walks

This work addresses the issue of identifying the source of random walks in geometric and topologic spaces by using a methodology based on the Jaccard and coincidence similarity indices. Uniform random random walks are performed by a set of agents departing from the same source node and performing the same number of steps. The final positions of these agents are then taken into account while attempting to estimate the respective origins. In the case of geometrical spaces, the described methodology involves calculating the Jaccard similarity mean of the coordinates of the final points (also including respective outliers), which is found to have potential for providing accuracy higher than that allowed by the more traditional estimation of the center of mass (arithmetic mean). Topological random walks are addressed by identifying the maximum average coincidence similarity between topological the features (distances to every other node) of the termination nodes and corresponding features of every other node in the network. The respective results are shown to be more accurate than randomly choosing the source nodes. Though the reported developments focus on uniform random walks taking place in Watts-Strogatz networks, extensions to other types of random walks and complex networks provide interesting prospects for further investigations.

Introduction

The physical world can be understood as a complex system composed of several mutually interacting modules, which are often complex systems themselves. Diverse types of dynamics can take place, frequently in a simultaneous manner, within these modules, including linear dynamics such as diffusion and wave propagation, as well as non-linear dynamics, including integrate-and-fire and organized criticality.

A complex system can be decomposed into two parts: (a) the geometric/topologic structure of the interconnection between its parts; and (b) the type of dynamics taking place on (a). An issue of particular importance is then implied, which consists in trying to understand how these two aspects interrelate one another (e.g. [START_REF] Da | Characterization of complex networks: A survey of measurements[END_REF]).

From the above perspective, one problem that has attracted substantial interest because of its theoretical and applied importance consists in, given a specific complex system composed by its structure and considered dynamics, to try to identify the initial state of an observed dynamics. For instance, in the case of a complex system defined by a discrete random walk (e.g. [START_REF] Zinn-Justing | From random walks to random matrices[END_REF][START_REF] Lovász | Random walks on graphs[END_REF][START_REF] Masuda | Random walks and diffusion on networks[END_REF][START_REF] Noh | Random walks on complex networks[END_REF]) taking place on a geometric space or on a complex network, it would be interesting to identify the initial point from which this diffusion dynamics emanates (e.g. [START_REF] Comin | Identifying the starting point of a spreading process in complex networks[END_REF]).

In the present work, a mean of similarities approach is described for estimating the original point from which a set of non-preferential random walks emanate. All random walks are supposed to start simultaneously and to last an identical number of steps N t . Two versions of the suggested similarity-based methodology are presented respectively to random walks taking place in: (i) geometrical random walks taking place in 2D geometrical spaces (extensions to higher dimensional spaces are immediate); and (ii) topological random walks unfolding on complex networks.

In the case of 2D geometrical spaces, the recently described concept of similarity between a data element and a reference set of data elements [START_REF] Da | Similarity means: Seeking for robustness to outliers[END_REF][START_REF] Da | Toward robust data classification[END_REF] is employed in order to determined the similarity mean of the positions of agents which performed random walks with the same length after having departed from a same source node. The basic idea underlying this methodology is that the similarity mean will tend to result near the starting point of the random walks. For comparison purposes, this methodology is compared with taking the center of mass (arithmetic mean) of the same final positions.

The suggested methodology to be applied to topological random walks involves comparing features (topological distances to every other node) of the final node reached by a set of same length random walks emanating from the same source and the corresponding features of every other node in the network. The node yielding the maximum average of maximum similarities observed between the available terminations and the network nodes is taken as the estimated respective source of the random walks. This rationale of this methodology assumes that neighboring nodes in a network tend to share most of their topological characteristics, here quantified in terms of distances to the other nodes in the network, so that the topological features of the termination nodes will tend to be maximally similar, in the average, to the features of the source node. Observe that not every type of network will present this property, which is more typically found in lattices and uniformly random complex networks.

The present work starts by describing some basic concepts and the adopted similarity-based methodology for estimation of the sources of random walks, and proceed by illustrating these methodologies respectively to some case examples. The obtained results support, at least for the considered data and parameter configurations, the potential of the similarity-based approaches for estimation of the sources of random walks.

Basic Concepts

All situations considered in the present work assume that the similarity comparisons take place between scalars and vectors composed exclusively by positive integer or real values. Extensions to generic real values (i.e. including negative values) can be found in [START_REF] Da | Coincidence complex networks[END_REF][START_REF] Da | On similarity[END_REF][START_REF] Da | Multiset neurons[END_REF] and references herein.

The Jaccard similarity between two positive-valued vectors x x x and y y y can be defined [START_REF] Da | Coincidence complex networks[END_REF][START_REF] Da | On similarity[END_REF][START_REF]Jaccard index[END_REF] in terms of the multiset (e.g. [START_REF] Da | Multisets[END_REF]) operations of union (max) and intersection (min) as follows:

J(x x x, y y y) = N i=1 min {x i , y i } N i=1 max {x i , y i } (1)
with 0 < J(x x x, y y y) ≤ 1. The interiority similarity index (also known as overlap, [START_REF] Vijaymeena | A survey on similarity measures in text mining[END_REF]) between the two above vectors can be expressed as:

I(x x x, y y y) = N i=1 min {x i , y i } min N i=1 x i , N i=1 y i (2)
with 0 < I(x x x, y y y) ≤ 1. The coincidence similarity index (e.g. [START_REF] Da | Further generalizations of the Jaccard index[END_REF][START_REF] Da | On similarity[END_REF][START_REF] Da | Multiset neurons[END_REF]) between the two vectors x x x and y y y with positive entries can now be calculated as:

C(x x x, y y y) = [J(x x x, y y y)]

D I(x x x, y y y).

where D > 0 corresponds to a parameter controlling how strict the implemented comparison is. The higher the value of D, the more selective and sensitive the similarity comparison becomes.

As with the two previous indices, we again have that 0 < C(x x x, y y y) ≤ 1.

Given that the Jaccard index cannot account for how much one of the multisets is contained (interior) into the other [START_REF] Da | Further generalizations of the Jaccard index[END_REF], the quantification of this property provided by the interiority index can be incorporated into the Jaccard index through respective multiplication as in the above equation. Therefore, the coincidence similarity index becomes capable of performing more selective and sensitive comparisons, incorporates intrinsic data values noramlization, and providies good resilience to data perturbations and outliers [START_REF] Da | Further generalizations of the Jaccard index[END_REF][START_REF] Da | Coincidence complex networks[END_REF][START_REF] Da | On similarity[END_REF][START_REF] Da | Multiset neurons[END_REF][START_REF] Da | Similarity means: Seeking for robustness to outliers[END_REF].

More recently [START_REF] Da | Similarity means: Seeking for robustness to outliers[END_REF], the concept of similarity between vectors has been extended to address the comparison of a scalar data element x and a reference set of N data elements y y y by using the following expression:

J(x, y y y) = N i=1 min {x, y i } N i=1 max {x, y i } (4)
Given a set S of samples of a random variable X, the respective similarity mean has been defined [START_REF] Da | Similarity means: Seeking for robustness to outliers[END_REF] as the value x that maximizes the respective similarity between the latter value and the values in the set S.

The above definition of similarity between a scalar data element and a reference set of scalar elements can be generalized to M × 1 vector data elements [START_REF] Da | Similarity means: Seeking for robustness to outliers[END_REF][START_REF] Da | Toward robust data classification[END_REF] by using the following expression:

J(x x x, y y y) = M j=1 N i=1 min {x j , y i,j } M j=1 N i=1 max {x j , y i,j } (5) 
where y y y corresponds to a matrix containing each of the reference 1 × M vectors as subsequent lines.

In the case of the present work, this equation is employed to obtain the Jaccard similarity mean of the coordinates (x, y) involved in the geometric random walks.

Methodology

The methodology to perform estimation of the starting point of geometric random walks consists in identifying, among all possible points in the 2D continuous region R of interest (represented by a respective finite spatial quantization), the point corresponding to the Jaccard similarity mean of the coordinates of the observed termination points. As suggested in [START_REF] Da | Similarity means: Seeking for robustness to outliers[END_REF], this type of mean corresponds to taking the value in the domain of the data that maximizes its similarity with the points (with the same dimension) in a given reference set.

The Jaccard similarity between a vector and a reference set of vectors is here performed by using Equation 5with M = 2 (the x and y coordinates of the points in the 2D geometrical space).

In the present work, the 2D region R is spatially sampled, so that each of the N discrete points can be considered in this calculation. Each point is therefore represented by a respective 2 × 1 vector [x, y]

T . The reference set consists of a matrix y y y whose each line corresponds to one of the terminations of the random walks, while the columns corresponds to the respective x and y coordinates in the 2D domain of the random walks.

For the sake of comparison, the center of mass of the coordinates of the terminations are also calculated. Though it is known [START_REF] Révész | Random walk in random and non-random environments[END_REF][START_REF] Spitzer | Principles of random walk[END_REF] that the center of mass of 2D random walks tends to the origin of the respective walks, the present work considers practical situations in which additional points may also also present in the reference set which correspond to errors, terminations implied by random walks initiating at other points, noise, or outliers.

In the case of the estimation of the source of random walks in graphs or complex networks, we adopt a methodology which is also based on similarity, more specifically the coincidence similarity index. Because there is no coordinate system typically associated to a graph, the nodes of the given network of interest are henceforth represented in terms of its topological distances to the other N -1 network nodes. Each of the network nodes [ [ [x] [i] is thus represented in terms of a feature vector of the type:

x x x [i] = [d i,1 , d i,2 , . . . , d i,N ] T (6)
where d i,j is the shortest topological distance from node i to node j in the given network.

Once the network nodes have been represented as described above, N a uniformly distributed random walks (non-preferential) are performed in the network, starting at the same node s and successively choosing, at each time step, one of the possible outgoing links of the node where one of the agent is, which is done with identical probabilities. For instance, if the node where one of the agents is currently present contains n outgoing links, the next position of the agent will correspond to the destination node of one of these links, taken with probability 1/n. A total of N t steps is considered for all random walks. Therefore, a set of N a termination nodes are obtained, each represented by the respective vector of distances as described above.

The estimation of the possible source of the random walks is then performed by identifying which of the net-work nodes has the maximum average coincidence similarity of respective feature vectors considering all the available termination nodes. For each of the N candidate nodes, this is done by determining its coincidence similarity, by using Equation 3, with each of the available termination nodes, and then taking the respective sum (or average) to be maximized.

Geometric Random Walks

Henceforth, we consider uniform random walks taking place in a 2D geometrical space. After departing from the same source, at the same time, a set of N a moving agents perform N t steps and then stop. The termination nodes, described by respective coordinates, are then considered as subsidy for inferring the respective starting point.

Figure 1 illustrates one realization of the experiments that have been performed as part of the present work in order to test the above described methodology. We have a set of N a = 30 termination points resulting after 50 steps of uniform random walks initiation from the center (x c , y c ) of the depicted region. A set of outlier points is also incorporated in order to quantify the resilience of the proposed methodology respectively to the presence of outliers or noisy data. The error of the estimation of the source nodes can be quantified in terms of the Euclidean distance between that point and the point (x c , y c ). Figure 2 presents these errors obtained by employing the center of mass (arithmetic average of the termination points coordinates, including outliers) and the coincidence similarity mean. It can be readily verified that the coincidence similarity mean provided the most accurate identification of the sources of the random walks. This has been achieved thanks to the enhanced robustness of this similarity indes [START_REF] Da | On similarity[END_REF][START_REF] Da | Multiset neurons[END_REF] to data perturbations.

Topological Random Walks

In this work, the methodology for estimation of the sources of topological random walks is illustrated respectively lattice Watts-Strogatz networks (e.g. [START_REF] Watts | Collective dynamics of 'small-world'networks[END_REF][START_REF] Barabási | Network Sience[END_REF][START_REF] Newman | Networks: An introduction[END_REF][START_REF] Da | Characterization of complex networks: A survey of measurements[END_REF]) with N = 144 nodes, average degree 12, and rewiring probability p r = 0.05. Figure 3 illustrates the network adopted in the henceforth described experiments.

The respectively obtained coincidence complex network obtained by considering the shortest distance feature vectors is illustrated in Figure 4. The coincidence similarity was calculated considering D = 31.

All the N a random walks initiate at the same node s, and unfold during N t = 5 steps. The thus obtained N a termination nodes are then considered as the reference set for the estimation.

In a similar manner with geometrical random walks, the error of the estimation of the source node can be quantified in terms of its topological distance to the known original starting point. Figure 5 presents these errors obtained for the above describe experiment.

It can be readily verified that the obtained errors are markedly smaller than the original distances between any pair of nodes in the given network, and also substantially smaller than the total number N t = 5 of steps in the 

Concluding Remarks

The study of the interrelationship between the topological and dynamical properties of complex systems has motivated continuing research in respective scientific research areas. A particular related problem of special importance regards the identification of the source of random walks while considering a set of termination states reached after a given number of steps as performed by a number of random walk agents.

The present work has addressed the identification of the sources of geometrical random walks by considering Jaccard mean, related to recent developments [START_REF] Da | Similarity means: Seeking for robustness to outliers[END_REF] in which the concept of similarity between a given data element and a set of reference data elements has been proposed. In the case of topological random walks, averages (or sums) of coincidence similarities between each of the the network nodes and the set of reference nodes (including outliers) have been considered.

The obtained results indicate that, at least for the con-sidered data sets and parameter configurations, the similarity methods described in the present work present good potential for estimation of the starting points in geometrical and topological random walks. These results are mostly a consequence of the enhanced selectivity and sensitivity of the Jaccard and coincidence similarity index when compared to several other quantifiers of similarity (or distances). In addition, these two indices also present good potential for comparing data in presence of data perturbations, outliers, and noise. The reported concepts and developments pave the way to a number of related further research. In particular, it would be important to further evaluate their performance respectively other types of random walks, higher dimensional geometrical spaces, parameter configurations, as well as other types, sizes and parameters of considered complex networks. In addition, it would be interesting to investigate how the observed performance varies with the number of agents and number of time steps taken during the random walks.
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 1 Figure 1: Estimation of the origin of random walks while taking into account the position of 30 agents after 50 time steps (shown in black) in the presence of a group of outlier points, shown in gray. All agents started at central position (50, 50), shown as a blue circle. The original positions estimated by the arithmetic mean and Jaccard mean methods are shown in green and red, respectively. The latter approach resulted more accurate.

Figure 2 :

 2 Figure 2: Histograms of the errors obtained from 100 estimations of the origin of the random walks as in Fig. 1 by using the arithmetic mean (a) and coincidence similarity mean (b) methodologies. The errors correspond to the Euclidean distance from the position of the origin of the random walks and the estimated origins. The latter approach resulted markedly more accurate.

Figure 3 :

 3 Figure 3: Watts-Strogatz complex network considered in the caseexample, containing N = 144 nodes, average degree 12 and rewiring probability of 0.05.

Figure 4 :

 4 Figure 4: Coincidence complex networks obtained from the WS network in Fig. 3 by adopting D = 31. The edge widths are proportional to the respective coincidence values between the topological distances (see text) from each compared pair of nodes.

Figure 5 :

 5 Figure 5: Results from the estimation of the source nodes after topological random walks with length 5 taking place on the WS network in Fig. 3. The histogram of the topological distances between the nodes in the original network is shown in (a), and the histogram of the errors (topological distance between the original and estimated sources) is presented in (b). The fact that the obtained distances are substantially smaller in (b) than in (a) suggests that the similaritybased estimation of the sources performed substantially better than selecting the sources randomly.
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