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Abstract

The conservation laws of mass, momentum and energy of classical mechanics are replaced by the

conservation of acceleration alone, one energy per unit of mass and per unit of length. The concept of

conservation of momentum is discussed when the motion is accelerated. This notion, often presented

as a principle when phenomena are stationary, ignores the wave-like character of wave propagation for

time-dependent motions. As this is a wave equation, it is naturally relativistic. The discrete formulation

enables accelerated and non-accelerated phenomena to be approached with continuity, whatever the

celerity of the media, as a physical homology. A simple example compares the concept of momentum in

classical mechanics with that of discrete mechanics.
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1. Introduction

The notion of momentum p = m v in mechanics is often associated with its conservation for
an isolated system, where m is the mass and v the velocity measured in an inertial reference
frame. In the absence of external forces, or if their resultant is zero, the momentum of a material
system is a constant of motion dp/dt = 0. In general, this notion is presented as a principle
applicable to all types of stationary or accelerated motion [1]. This is the case in many textbooks,
for example Landau & Lifchitz [7], p44, [7]. In the case of relativistic motion, the quantity m is
the moving mass defined last century by A. Einstein [4] by the relation m = m0/γ where m0 is

the rest mass and γ = 1/
»

1− |v|2/c20, the Lorentz factor [9] with c0 the celerity of light. At the
time, this form of moving mass allowed us to return to the concept used in classical mechanics
when velocity is much lower than the celerity of light. The physics described by these relations is
therefore assumed to be of the same nature as that where the velocity of any medium is compared
to the celerity of light.

Discrete mechanics develops another point of view where velocity v is associated with a local
frame of reference satisfying Galileo’s principle of relativity. The principle of weak equivalence
is reformulated in terms of acceleration, i.e. the intrinsic acceleration of a particle or material
medium is equal to the sum of the accelerations applied to it. The notion of mass is replaced by
that of compressional energy, which is associated with longitudinal wave propagations. These
waves can be very different in nature, such as swell waves, acoustic waves or the propagation of
light, c0. This formal physical homology amounts to comparing the velocity of a mobile moving
through a medium to the celerity of the medium itself, and not to the celerity of light. P.H.
Hugoniot [6] had already understood this in 1889, when he stated his theorem that the velocity
of a gas in a pipe of constant cross-section cannot exceed the celerity of gas. More than 15 years
later, A. Einstein reached the same conclusion for light in a vacuum. Since then, the "velocity of
sound" has been largely exceeded in the presence of appropriate curvatures such as those found
in nozzles.

The solutions of this new formalism are also those of the equations of classical mechanics,
the Navier-Stokes equation for fluids [3], the Navier-Lamé equation for solids, those of the wave
equation, etc. in their domain of validity. It also makes it possible to recover emblematic results



from special and general relativity. The equation of motion of discrete mechanics is relativistic,
and naturally so, since it can be transformed into a wave equation. Indeed, the fundamental
derivation principles of this formalism are those established by J.C. Maxwell [10].

The very simple case of the collision of two finite-dimensional particles allows us to compare
the concepts very directly, and to deduce an in-depth analysis of the observed divergences.

2. Rebuttal of the use of momentum

The concept of momentum, sometimes presented as a principle, expresses that the material
derivative of the product of mass and velocity q = m v is equal to the sum of the forces. In
continuum mechanics, however, it is expressed as the product of mass and velocity q = ρ v and
the right hand side becomes the sum of forces per unit volume f :

d(m v)

dt
=

∑

F ⇐⇒ ρ
dv

dt
=

∑

f . (1)

What poses a problem of consistency is the equality between the term of the first member
associated with one medium or a single set of different media and the second, which expresses
the sum of the forces applied to each of the media. If we divide the second relation of (1) by the
density, it reads:

γ ≡
dv

dt
=

1

ρ

∑

f , (2)

but what is the meaning of this density ρ? In continuum mechanics, γ is the local acceleration
and the force per unit volume is also local fi = ρi gi where g is a force per unit mass, such
as gravity. The density ρ is then presented as an average in some sense of the densities of the
medium. Whatever the definition, the solution to a variable-density problem depends on the
choice made.

Let’s consider the case of a particle whose parts are made up of media of density ρ1 and
ρ2 respectively, in a constant gravity field g. Let’s assume that the average density is equal to
ρ = (ρ1 + ρ2)/2. When the particle is subject to the acceleration of gravity, the law of classical
mechanics (2) applies:

ρ1 + ρ2
2

dv

dt
= ρ1 g + ρ2 g, (3)

or γ = 2g, an absurd result, the weak equivalence principle is violated. Any other average would
lead to an absurd result. The problem is that the first member of (3) is associated with the
momentum of the particle as a whole, while the second member is linked to each of its parts.
If we formulate the problem in terms of mass, we obtain d(m1 +m2) v/dt = (m1 +m2) g and
another difficulty arises because the quantity m = (m1 + m2) is the moving mass of the first
member, which depends on velocity in special relativity. If m is extracted from the derivative
of the particle, we find γ = g but in this case it’s a question of equality between accelerations
and not conservation of momentum. The case of media immersed in a fluid is different, as
Archimedes’ acceleration must be applied.

This trivial example shows that the formulation (2) is intrinsically flawed. The momentum
q = mv is present in many areas of physics, from particle mechanics to the theory of special and
general relativity. In fluid mechanics, particularly for two-phase flows, it poses serious problems
for defining the density associated with each term of the Navier-Stokes equation.

We have to go back to the end of the 16th century, to the time of Galileo, to understand the
profound meaning of the principle of weak equivalence. Under the effect of terrestrial gravitation,
two bodies of different masses fall with the same velocity and acceleration. The meaning given
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at the time, and which remains true today, is intimately linked to mass, i.e. gravitational mass
is equal to inertial mass. Observation of the fall of two bodies shows above all that they fall with
the same velocity and acceleration at each instant. This is a purely kinematic problem, and mass
has no effect on the outcome. Newton’s fundamental principle of dynamics, or second principle,
can therefore be revisited in terms of the conservation of acceleration:

γ = h. (4)

The intrinsic acceleration of a particle or material medium γ is equal to the sum of the
accelerations h imposed on it.

The theory of relativity takes up this notion of momentum by considering that mass depends
on velocity. The principle of equivalence of mass and energy does not alter this point of view,
and retains both notions. The fundamental law of dynamics revisited (4) definitively discards
the notion of mass, since acceleration already represents energy per unit of mass and per unit of
length.

3. Exchange of energies during wave propagation

Let’s consider a one-dimensional elastic medium whose longitudinal celerity is equal to cl,
the wavefront velocity, the celerity of sound in a solid, or c0 the celerity of light in a vacuum.
At the initial instant to, the medium is compressed by subjecting its boundary located at x = 0
to an imposed normal velocity v. What is the energy required to maintain this velocity v for a
time dt? This value is easy to determine if the phenomenon under consideration is hyperbolic;
indeed, no disturbance can be felt at a distance dh greater than that defined by the celerity,
i.e. dh = cl dt, where dh is the discrete horizon. Calculation of the energy per unit mass φo

corresponding to propagation can be obtained by modeling the compression of a one-dimensional
medium. The energy of compression per unit mass is the integral of v dp where v = 1/ρ is the
specific volume, but dp/ρ is also expressed from the compressibility coefficient χT . The elemental
energy becomes dp/ρ = −dt/(ρ χT )∇ · v where

√

1/(ρ χT ) = cl is the longitudinal celerity. For
isentropic motions, celerity is equal to cl =

√

γ/(ρ χT ) where γ is the ratio of heats of mass at
constant pressure and volume. In discrete mechanics, the energy per unit mass, the retarded
potential φo is therefore of the form:

φo = −

∫

t
o+dt

to

c2l ∇ · v dτ, (5)

between the initial time to and its current value at to + dt.
It is possible to assign orders of magnitude to each term of the expression (5), (i) the velocity

is equivalent to v the velocity imposed in x = 0, (ii) the time dt is of the order of magnitude of
dh/cl and (iii) the characteristic length equal to dh. A simple analysis leads to the expression of
the energy per unit mass required to propagate a wave of celerity cl at a velocity level equal to
v; we find in absolute value:

φo = cl v. (6)

In one dimension of space, the velocity of a particle or material medium cannot exceed the
celerity of the medium; for example, the velocity of a massless photon cannot exceed the celerity
of light c0 on a straight trajectory. The equivalent phenomenon is observed for a gas of acoustic
celerity cl, which cannot exceed this value in a pipe of constant cross-section. So, if v = cl, the
energy value is equal to φ = c2

l
. In the case of light propagating in a vacuum, this expression

becomes φ = E/m = c20 where E is total energy and m is mass. This expression is none other
than the famous special relativity formula E = m c20. It should be noted, however, that this is
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a simple proportionality of mass and energy, contrary to what is generally accepted. There is
indeed a principle of equivalence that expresses a homology between mass and energy, but its
demonstration relies on the conservation laws of both. What’s more, we’re not talking about
total energy, but only expansion energy. Discrete mechanics states that the intrinsic acceleration
of a particle or material medium is equal to the sum of the expansion and rotation accelerations.
The former is linked to the divergence of the velocity ∇·v and the latter to its rotational motion
∇⊗ v. The acceleration extended to a segment Γ of length dh is the energy:

φ =

∫

Γ

γ · t dl, (7)

where t is the unit vector associated with the oriented segment. The law of discrete motion is
written as γ = −∇φ+∇⊗ψ where the symbol ∇⊗ corresponds to the dual curl; it replaces the
fundamental law of mechanics expressed in terms of momentum. Thus, the law of acceleration
expresses the conservation of total energy, the sum of the effects of compression and rotation
(conservation of angular momentum in classical mechanics).

There is some confusion over the notion of energy conservation, where the quantity |v|2 is
supposed to express energy conservation, but this is a misinterpretation. The term |v|2/2 that
appears in Bernoulli’s law is part of a stationary formulation of motion and not in the case of
wave propagation. To clarify the notion of energy required for the propagation of a compressional
wave, the law of discrete mechanics [2],















∂v

∂t
= −∇

Å

φo +
1

2
|v|2 − c2l dt∇ · v

ã

,

φo − c2l dt∇ · v 7−→ φo,

(8)

is repeated, removing any rotational effects that are not relevant to this presentation. The symbol
7−→ reflects the update of the retarded potential φo. This potential corresponds to the potential
energy per unit mass and |v|2/2 is the kinetic energy per unit mass; the last term reflects the
potential exchange between compression energy and kinetic energy. These three terms form an
oscillator that allows energy to change nature without dissipation. The vector equation of (8) is,
in the absence of the rotation terms, a law of conservation of total energy.

Figure 1. Evolution of energy according to x where φo
= cl v = 0.9 et x0 = dh = cl dt = 0.7

Computer resolution of the system (8) for celerity cl = 1, time dt = 0.7 and velocity v = 0.9
gives the simulation result in Figure 1. As expected, the distance traveled by the wavefront is
indeed equal to x0 = dh = cl dt and the value of potential energy per unit mass is equal to
φo = cl v.
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The equation (8) has remarkable properties due to its structure derived from its initial for-
mulation: it is a nonlinear wave equation [3], relativistic by nature. In particular, it verifies the
limitation of velocity v to the celerity of the medium cl in one dimension of space, whatever
the medium considered (solid, fluid, vacuum) and the nature of the wave (swell, acoustic waves,
light). This essential feature shows that the phenomenon corresponding to the limitation of the
velocity of a gas in a duct of constant cross-section fixed by Hugoniot’s theorem, is of the same
nature as that linked to the velocity of a photon limited to the celerity of light c0 [5], [12], [11].
These limitations do not depend on the level of acceleration imposed.

4. Collision of two masses

Before analyzing the causes of the potential abandonment of the notion of momentum in the
general case of unsteady motion, a very simple case of impact between two masses is explored.
Consider two particles of masses m1 and m2, to simplify two cylinders of equal cross-section
S, densities ρ1 and ρ2 and different lengths such that m1 = ρ1 L1 S and m2 = ρ2 L2 S. The
S cross-section is large enough to neglect transverse expansion during particle compression. In
a Galilean reference frame, the first particle has a velocity uo

1 and the second a velocity uo
2.

The first particle collides with the second (Newton’s pendulum is an example), so what are the
quantities u1 and u2 at the end of their separation? The shock is considered perfectly elastic,
with the two media propagating longitudinal waves at velocities c1 and c2.

4.1. In continuum mechanics

Initially, the solution is obtained by considering the principle of conservation of momentum
and that of conservation of energy. The conservation of momentum q = (mv) is expressed by the
equation d(m v)/dt = F where F is the sum of the forces applied to the physical system under
consideration. For an isolated system, for example a set of particles, we have d(m v)/dt = 0.
In the case of two masses, the system of equations is very classical and can be found in many
textbooks:







m1 u
o

1 +m2 u
o

2 = m1 u1 +m2 u2,

m1 u
o2
1 +m2 u

o2
2 = m1 u

2
1 +m2 u

2
2,

(9)

whose solution is:


















u1 =
m1 −m2

m1 +m2

uo

1 +
2m2

m1 +m2

uo

2,

u2 =
2m1

m1 +m2

uo

1 +
m2 −m1

m1 +m2

uo

2.

(10)

For equal densities, the solution is simplified and the problem is reformulated in a single
direction of space. This apparent restriction does not entail any loss of generality, since compres-
sional wave propagation is always associated with a one-dimensional model; extension to other
spatial dimensions is achieved by a causal link. The system (10) becomes:



















u1 =
L1 − L2

L1 + L2

uo

1 +
2 L2

L1 + L2

uo

2,

u2 =
2 L1

L1 + L2

uo

1 +
L2 − L1

L1 + L2

uo

2.

(11)
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When uo
2 = 0 we find u2 = 2L1/(L1+L2)u

o
1. Two questions then arise, (i) does the velocity

of the particle 2○ depend on the length L1 of the particle 1○ whatever its value, does this imply
an infinite wave velocity? And (ii) the velocity u2 is greater than u1, so what happens to the
velocity value of the second particle if the first is relativistic? These questions are discussed
further below.

4.2. In discrete mechanics

In discrete mechanics, the notions of mass and force are abandoned in favor of a formulation
in acceleration. The law of dynamics is replaced by a one-dimensional equation derived from the
system:











du

dt
= −∇

(

φo − dt c2l ∇ · u
)

,

φo − c2l dt∇ · u 7−→ φo,

(12)

where γ is the acceleration of the medium, φo is the energy accumulated since the initial instant
and u is the local velocity; the velocities are such that c1 ≤ c2. When both particles are in uniform
motion, acceleration is zero and the principle of inertia prevails for both media, uo = cte.

When the two particles come into contact, the Σ interface between the two media itself
advances at a velocity uΣ which can be calculated by respecting two conditions: (i) the normal
velocities are the same u1 = u2 = uΣ and (ii), the scalar potential φo = p/ρ = c u is equal on
both sides of the interface, giving an interface velocity:

uΣ =
c1 u1 + c2 u2

c1 + c2
. (13)

Without loss of generality, we can adopt a global reference frame whose velocity is equal to
uΣ; in this frame of reference, the velocity of the particle 1○ will be equal to v1 = u1 − uΣ and
the relative velocity of the particle 2○ will be equal to v2 = u2 − uΣ. The initial conditions
on v are therefore vo1 = uo

1 − uΣ and vo2 = uo
2 − uΣ. Given the principle of relativity, it is of

course necessary that vo1 and vo2 satisfy the conditions vo
i
≤ ci. Consider the diagrams in figure

2 representing the evolution of the two particles in the new reference frame at different phases:

• the initial phase (P0) presents the two particles 1○ and 2○ at velocities of vo1 and vo2
respectively. The uniform kinetic energy per unit mass of the 1○ medium is equal to
|vo1|

2/2 and that of the 2○ medium is equal to |vo2|
2/2. Subsequent evolution is marked

by local spatial variations in velocity within the two media, due to compressional wave
propagation;

• the first phase (P1) of exchange begins when the two particles come into perfect contact,
the contact surface remains at rest, vΣ = 0. In the very first instants after contact, the left
side of 1○ is always at velocity vo1 and the right side of 2○ is always at velocity vo2. Only the
right-hand side of 1○ and the left-hand side of 2○ undergo accelerations that bring them
to a velocity equal to vΣ = 0. For a short time, the particle 1○ undergoes a negative mean
acceleration γ1 and the particle 2○ undergoes a positive acceleration γ2, but locally, each
medium is in motion or at rest. Zones compressed to an energy φo = cv, at zero velocities,
are represented by the blue color on Figure 2 while other parts are at reference potential
or φo = 0. In the particle 1○, the blue zone therefore moves with celerity c1 and energy
φo = c1 v

o
1 since the left-hand zone of 1○ is always moving at velocity vo1. In the medium

2○, the energy is the same since c1 v
o
1 = c2 v

o
2 but the celerity is equal to c2. This phase

has a duration of dt = L2/c2;
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• the second phase (P2) corresponds to a reflection of the wave on the right wall of the second
particle, from time to + dt; the potential energy is then doubled, φ1 = 2 φo in the zone
where the wave progresses to the left at celerity c2, and the kinetic energy of the zone close
to the wall is correspondingly increased to bring the velocity of 2○ to its final velocity v2.
This wave of celerity c2 and energy φ1 = 2 φo is directed towards the medium 1○;

• the third phase (P3) in figure 2 represents an instant when the φ1 energy wave reaches the Σ
interface. From a time t = to+2dt with dt = L2/c2 the two particles dissociate and energy
exchange is interrupted. In the particle 2○ the potential energy 2 φo is transformed into
kinetic energy, and it continues its trajectory with a uniform final velocity v2 = 2φo/2L2 =
cte. The medium 1○, on the other hand, is not at uniform velocity, its left zone still being
at velocity vo1, while its right zone is at zero velocity;

• the final phase (P4) is characterized by the propagation of waves at celerity c1 in the
medium 1○; these waves persist indefinitely if the medium does not dissipate energy. In
the general case, the waves dissipate over time and the particle 1○ takes on a final velocity
equal to v1. Depending on the parameter values, velocities c1 and c2 and lengths L1 and
L2, the final velocities v1 and v2 can take on different values. However, as each particle is
subject to the relativistic constraint in one dimension of space, its velocity cannot exceed
the celerity of the medium considered;

1
1 2

v
o

1v
o

2v
o

2v
o

2v
2c

2c1c

0P

1P

2P

3P

4P
2vv

v=0 v=0

2v

1

1c

1c

1v
o

1v
o

v=0

v=0

Figure 2. Shock between a solid of length L1 initially moving at velocity v
o

1 > 0 and a solid of length L2 moving

at velocity v
o

2 in the moving reference frame of velocity u|Σ; the colored area represents the compression energy

transferred. φo
= c1 v1 = c2 v2.

For this example, let’s assume that c1 ≤ c2 and that L1 > L2. The value of the time lapse
corresponding to contact is equal to dt = 2 L2/c2 because beyond this characteristic time the
two particles are separated. This is because the compression waves move back and forth along
the length of L2, and the entire medium 2○ is accelerated in the positive direction. At this
instant, the energy per unit mass that the medium 1○ has transferred to the medium 2○ is equal
to 2 φo = 2 c1 v

o
1 during time 2 dt. As exchanges between the media are no longer possible,

the compression energy in the perfectly elastic medium 2○ will remain there. The value of the
mean acceleration of this medium is therefore easily calculated, γ2 = 2vo1/L2. Since velocity is a
relative quantity, it can only be evaluated from its velocity at the initial instant, v2 = v

o
2 +γ2 dt

or v2 = c1/c2 v
o
1. Propagation at celerity c2 of the medium 2○ increases its potential energy by

the value c1v
o
1 in the compression phase and decreases its potential energy by the same value in
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the release phase, transforming it into kinetic energy. During this exchange, the particle 1○ loses
energy per unit mass equal to φ = 2 c1 v

o
1 for the duration 2 dt and its acceleration is equal to

γ1 = −c1v1/L1 and its final velocity after impact is therefore equal to v1 = v
o
1 (1−(c1L2/c2L1)).

The result on the relative velocities v is then written:


















v1 =

Å

1−
c1 L2

c2 L1

ã

vo1, v1 ≤ c1,

v2 =
c1
c2
vo1, v2 ≤ c2.

(14)

The results corresponding to the velocity u from continuum mechanics (CM) and discrete
mechanics (DM) are summarized by the relations:

C.M.



















u1 =
L1 − L2

L1 + L2

uo

1 +
2 L2

L1 + L2

uo

2,

u2 =
2 L1

L1 + L2

uo

1 +
L2 − L1

L1 + L2

uo

2,

6= D.M.



















u1 =

Å

1−
c1 L2

c2 L1

ã

(uo

1 + u|Σ) ,

u2 =
c1
c2

(uo

1 + u|Σ) .

(15)

with, in discrete mechanics, the additional constraints u1 ≤ c1 and u2 ≤ c2.
In the case of Newton’s pendulum, with equal lengths L1 = L2, equal velocities c1 = c2 and

the particle 2○ initially at rest (uo
2 = 0), both formalisms lead to the same result, u1 = 0 and

u2 = u
o
1. In this case, the velocity of the reference frame uΣ is globally zero at instant 2 dt and

the position of the particle 1○ is the same as at the initial instant when the two particles collide.

In the general case, the expressions (15) show a divergence. In discrete mechanics, the velocity
u2 of the particle 2○ does not depend on the length L1 of the particle 2○; indeed, this particle
has no way of "knowing" the upstream conditions beyond a distance dh = c1 dt. The reasons for
this discrepancy are analysed in depth in the last section.

4.3. Collision of two steel spheres

Whatever the dimension of space considered, the discrete equation (8) provides the solution
to a problem where rotation is absent. It replaces all Euler equations of momentum q = (ρ v),
energy E, conservation of mass ρ and state law f(p, ρ, T ) = 0 with a single law of total energy
per unit mass.

Figure 3. Shock between two spheres of radii r1 = 1 and r2 = 0.5; snapshot of scalar potential φo during wave

propagation in the case of equal celeration c1 = c2.
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To illustrate this point, let’s consider two spheres of radii R and 2 R that collide, as shown
in figure (3) shortly after the initial instant when the spheres come into contact. At this instant,
the Σ interface is represented by a disk whose radius depends on the celerity of the two media.
When the sphere of radius 2 R and velocity vo1 collides with the second, stationary sphere, two
compression waves are formed in each medium, propagating at velocities c1 and c2. As soon as
the wave in the second medium reaches the radius R, the potential rises sharply and an expansion
wave develops upstream. When this wave reaches the contact zone between spheres of the same
radius, they dissociate and the smallest sphere is projected downstream.

This example, which has not been quantitatively documented, is only intended to illustrate
the phenomena of wave propagation when two media collide. Mass and momentum are not
relevant quantities for understanding and simulating physical phenomena, which are by nature
complex.

5. Discussion

The argument used to challenge the concept of momentum for accelerated motions is intrinsic
to continuum mechanics itself. Consider the velocity result v2 from the relations (15), v2 =
2 L1/(L1 + L2) v

o
1. If L2 < L1 and vo1 is relativistic, vo1 ≈ c0 where c0 is the celerity of light,

then the celerity of the second medium is greater than the "speed of light", v2 > c0. The SRT

treatment of this problem consists in introducing a momentum of the form p = mv/
»

1− v2/c20

where m is the rest mass, γ = 1/
»

1− v2/c20 is the Lorentz factor and set p1 = −p2 in a
reference frame corresponding to the center of mass [8]; the momentum of each colliding medium
does not change magnitude after the collision, but reverses the direction of its motion. Under
these conditions, the results of special relativity allow us to recover those of classical mechanics,
assuming that v1 << c0 and v2 << c0. But what does this have to do with the celerity of
light c0 when it comes to the propagation of elastic mechanical waves in a solid material? This
profound disagreement is not due to the relativistic or non-relativistic aspect of mechanics, since
the theory of relativity itself appeals to the notion of conservation of momentum. What’s more,
the celerity c0 bears no relation to the longitudinal celerities cl of the two media considered
in the previous example. The conservation of acceleration of discrete mechanics provides a
fundamentally different and consistent result for this case, where v2 is always smaller than the
proper celerity of the medium. This constraint is written into the equation of discrete motion
(8); indeed, in one dimension of space, the velocity obtained by this equation cannot exceed the
local celerity, whatever the acceleration applied to it. In all cases, the result of the collision of two
media by conservation of momentum is incompatible with that of discrete mechanics, whether
or not the velocities considered are close to the celerity of light c0. In discrete mechanics, there
is no different treatment depending on the velocity level considered.

The kinetic energy of a material medium of mass m and velocity v is equal to Ec = m|v|2/2
but the latter corresponds to pressure, a potential energy per unit volume. This is the pressure
recorded, for example, in front of a fixed obstacle in a flow whose upstream velocity is equal to
v when the motion is not accelerated. In this case:

−∇

Å

φo +
|v|2

2

ã

= 0 =⇒ φo +
|v|2

2
= cte, (16)

Bernoulli’s theorem describes this situation very well, where p+ρ |v|2/2 = cte or, with the scalar
potential, φo + |v|2/2 = cte.

But the energy per unit mass required to set in motion a medium of length dh whose celerity
is equal to cl with a velocity v is equal to φo = cl v i.e. a global energy of E = mcl v for a mass

9



m. In this case, the local velocity evolution is not zero, nor is the velocity divergence, and the
equation for these phenomena is:

∂v

∂t
= −∇

Å

φo +
|v|2

2
− c2l dt∇ · v

ã

= 0. (17)

In certain phenomena, such as sonoluminescence or a nuclear explosion, mass or its equivalent,
the compression energy φo, is transformed partly into a radiation emission at celerity c0 and partly
into a shock wave whose velocity cannot exceed the local celerity of the external medium cl.

The concept of conservation of momentum, in its various forms, ignores the phenomena of
wave propagation (acoustic or light). Its association with the conservation of kinetic energy
makes no sense when motion is accelerated, as kinetic energy can be transformed locally into
potential energy. The concept of momentum is purely classical.
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