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ABSTRACT

Using the concept of net gain of investment, we study a multidimensional economy

and we prove the convergence to its set of steady states. Our approach differs from

a standard dynamic programming based on convexity or super-modularity. We find

that preferences are key to shape the economy in the long run.
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1 INTRODUCTION

Nice properties of dynamic models often rest on convenient but restrictive assump-

tions such as convexity or super-modularity. The seminal book of Stokey, Lucas (with

Prescott) [16] is an introduction to dynamic programming with economic applications

under nice convexity properties. Le Van and Dana [7] show how strict convexities in

technology and preferences ensure not only the uniqueness of solutions but also their
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convergence (sections 2.4.3 and 2.4.4). Dechert and Nishimura [4] consider convex-

concave production function and find multiple solutions only for a zero-measure set

of initial states. In the lack of a suitable convexity structure, the super-modularity à la

Amir [1, 2] entails a monotonicity property and unambiguous long-run dynamics.

These classical approaches face a common difficulty. To study the economy in the

long run, scholars use monotonicity based on convexity or super-modularity. Without

these assumptions, their analysis is limited to a neighborhood of the steady state. This

urges the need for new methods to address the issue of global dynamics in general

terms.

In this article, we tackle the problem from a different viewpoint by considering the

innovative concept of net gain of investment in the spirit of Majumdar and Mitra [9],

and Majumdar and Nermuth [10]. In this respect, our paper is closer to Kamihigashi

and Roy [5, 6], a growth model with a nonsmooth and nonconvex technology.

The net gain of investment is a function with nice properties despite the monotonic-

ity failure. We find that, even when it does not increase over time, it converges to

the supremum. In addition, the discounted sum of future net gains always exceeds

the current value and increases over time. The limit of the discounted sums of net

gains is also informative about the economy in the long run. We obtain convergence

of the economy to a set of steady states, generically finite and rather easy to study.

Last but not least, the case where optimal paths converge to infinity is also character-

ized. These results are very general: we do not need any restriction on technology but

only the convexity of preferences. In other words, we prove that preferences are key to

shape the economy in the long run.

The rest of the article is organized as follows. Section 2 introduces the fundamentals

and sufficient conditions to ensure the existence of an optimal solution. Section 3 de-

fines the net gain of investment, while section 4 proves the existence and the structure

of the set of steady states. Section 5 addresses the stability issue in terms of conver-

gence to the set of steady states. Some examples are given in Section 6 and all the

proofs are gathered in the Appendix.
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2 FUNDAMENTALS

Capital and resources stocks are represented by a d-dimensional vector. The produc-

tion function f : Rd+ → R+ transforms these inputs in a single output which is con-

sumed or invested.

We denote by θ ∈ Rd++ the vector of input prices expressed in units of output (nu-

meraire). The economic agent is price-taker and prices are positive and constant over

time: θi > 0 with i = 1, . . . ,d . The assumption of a constant price vector to a large ex-

tent simplifies the dynamic analysis and allow us to focus on the optimization aspects

we are interested in, without caring about general equilibrium feedbacks and price

adjustments.

At date t , the capital stock xt yields f (xt ). The agent consumes a part ct of this ag-

gregate product and invests in the new capital stock It+1 according to her budget con-

straint ct +θ · It+1 ≤ f (xt ), where · denotes the scalar product between θ and It+1. Let

ei ∈ [0,1] be the depreciation rate of capital i . The stock of capital i at date t + 1 is

defined as

xi ,t+1 = Ii ,t+1 + (1−ei ) xi ,t .

The initial stock of capital x0 and agent’s preferences (the discount rate δ ∈ (0,1) and

the utility function u) are given. She solves the following dynamic program:

v (x0) = max
∞∑

t=0
δt u (ct ) , (2.1)

where v denotes the value function, subject to

ct +θ · It+1 ≤ f (xt ) ,

xi ,t+1 = Ii ,t+1 + (1−ei ) xi ,t ,

ct ≥ 0, xi ,t ≥ 0 and Ii t ≥ 0,

for any t ≥ 0 and 0 ≤ i ≤ d .

For xt ∈Rd+, let

F (xt ) ≡ f (xt )+
d∑

i=1
(1−ei )θi xi ,t .
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The initial program (2.1) can be rewritten as:

v (x0) = max
∞∑

t=0
δt u (ct ) , (2.2)

subject to

ct +θ · xt+1 ≤ F (xt ) ,

xi ,t+1 ≥ (1−ei ) xi ,t ,

ct ≥ 0 and xi ,t ≥ 0,

for any t ≥ 0 and 0 ≤ i ≤ d .

Now, let us consider program (2.2). Given the price system θ and the capital stock xt ,

we define the set of affordable inputs:

Γ (xt ) ≡
{

xt+1 ∈Rd
+ such that 0 ≤ θ · xt+1 ≤ F (xt ) and xi ,t+1 ≥ (1−ei ) xi ,t for any i

}
.

LetΠ (x0) be the set of feasible paths (xt )∞t=0 such that xt+1 ∈ Γ (xt ) for any t ≥ 0.

We introduce some conditions that ensure the existence of a solution to program (2.2).

For the sake of simplicity, we assume from the outset the continuity of the maximiza-

tion with respect to the product topology. Readers interested in technical details are

referred to Le Van and Morhaim [8] (conditions H1 to H8 and Theorem 1).

Assumption F1. 1. The production function F is continuous and increasing.

2. The utility function is strictly concave and strictly increasing.

3. For any x0 with at least one strictly positive component, there exists a sequence

(xt )∞t=0 ∈Π (x0) such that

∞∑
t=0

δt u (F (xt )−θ · xt+1) >−∞,

and the value function is well-defined: v (x0) <∞.

4. The function
∑∞

t=0δ
t u (F (xt )−θ · xt+1) is upper semi-continuous with respect to

the product topology.

5. The value function v is upper semi-continuous in Rd+.
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6. The feasible setΠ (x0) is compact with respect to the product topology.

7. For any feasible path starting from x0, we have

∞∑
t=0

δt [F (xt )−θ · xt+1] <∞.

Le Van and Morhaim [8] provide conditions ensuring Assumption F1. In their Lemma

2, H1 and H2 imply the compactness of Π (x0) with respect to the product topology.

In their Theorem 1, H1, H2, H4, H5 and H6 imply conditions 3, 4, 5 in F1. The most

important condition, which ensures the continuity properties, is tail-insensitivity (H6

in [8]).

Condition 7 in Assumption F1 is new. Let us give the intuition behind. Given a feasible

path (xt )∞t=0, the consumption is given at date t by ct = F (xt )−θ · xt+1. Condition 7

simply means
∑∞

t=0δ
t ct <∞: the economy can diverge to infinity, but, from any initial

state, the discounted sum of consumptions is finite. In other words, the growth rate

never overcomes the discount factor δ. It is worth to remark that, this condition is

always satisfied if the economy is bounded, for example under condition H2 in Le Van

and Morhaim [8] with 0 < γ< 1, according to their Lemma 1.

Under F1, as shown among others by Le Van and Morhaim [8] (Theorem 1), an optimal

path exists. The value function is a solution of the Bellman functional equation:

v (x) = max
θ·y≤F (x)

[
u

(
F (x)−θ · y

)+δv
(
y
)]

.

Let σ denote the optimal policy correspondence

σ (x) ≡ arg max
θ·y≤F (x)

[
u

(
F (x)−θ · y

)+δv
(
y
)]

.

This correspondence allows for optimal paths and multiple steady states. By Theo-

rem of the Maximum, this correspondence is upper hemi-continuous (Theorem 3.6,

chapter 3 in Stokey and Lucas (with Prescott) [16]).

A feasible sequence (xt )∞t=0 is an optimal path beginning from x0, if and only if for

every t , we have xt+1 ∈σ (xt ) or, equivalently,

v (xt ) = u (F (xt )−θ · xt+1)+δv (xt+1)

= max
θ·y≤F (xt )

[
u

(
F (xt )−θ · y

)+δv
(
y
)]

.
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In terms of capital stock, a steady state is a fixed point x∗ ∈ σ (x∗): the constant se-

quence (x∗, x∗, . . . ) is an optimal path starting from x∗.

In the next section, we study the behavior of the economy in the long run. First, we in-

troduce the notion of net gain of investment, then we focus on the existence of steady

states. Finally, we consider the convergence in the long run and a more general tech-

nology correspondence.

3 THE NET GAIN OF INVESTMENT

In the spirit of Kamihigashi and Roy [5, 6], we define the net gain of investment func-

tion as follows:

ψ (xt ) ≡ δF (xt )−θ · xt ,

for any t .

Interestingly, for any feasible path (xt )∞t=0 ∈ Π (x0), the discounted sum of consump-

tions is equal to the discounted sum of net gains generated by the initial capital stock

x0. More precisely, we observe that

∞∑
t=0

δt ct =
∞∑

t=0
δt [F (xt )−θ · xt+1] = F (x0)+

∞∑
t=1

δt−1 [δF (xt )−θ · xt ] ,

that is

∞∑
t=0

δt ct = F (x0)+
∞∑

t=0
δtψ (xt+1) . (3.1)

The following lemma is an indispensable step to prove that, if the sequence (xt )∞t=0 is

optimal, then the discounted sum of net gains of investment increases over time.

LEMMA 3.1. For any initial state x0,

u (F (x0)−θ · x0) ≤ (1−δ) v (x0) . (3.2)

The intuition for Lemma 3.1 is that, given x0, either the sequence (x0, x0, . . .) is feasible,

that is 0 ≤ θ · x0 ≤ F (x0), or F (x0)−θ · x0 < 0. In these two cases, it is clear that

v(x0) ≥
∞∑

s=0
δsu (F (x0)−θ · x0) = u (F (x0)−θ · x0)

1−δ ,
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which implies the (3.2).

Proposition 3.1 below states that either the initial state is steady or the value of the net

gain of investment increases at some future date. This result echoes Kamihigashi and

Roy [5, 6].

PROPOSITION 3.1. Fix an optimal path (xt )∞t=0. One of the two following claims is true.

1. The initial stock x0 is a steady state and, for every t , ψ (xt ) =ψ (x0) with ct = c0.

Moreover, if the sequence (xt )∞t=0 is bounded, F (xt ) = F (x0) and θ ·xt = θ · x0.

2. There exists some t such that ψ (xt ) >ψ (x0).

The intuition behind Proposition 3.1 is that either the economy is stable over time

(consumption and production do not change over time), or the net gain of investment

increases at some date in the future.

The following proposition establishes that the net gain of investment is always smaller

than the discounted sum of future net gains of investment and that this sum increases

over time. In other words, along the optimal path, the gain in future always exceeds

the present one. These general results draws a picture of the dynamic behavior of the

economy.

PROPOSITION 3.2. Consider an optimal path (xt )∞t=0.

1. For any t ≥ 0,

ψ (xt ) ≤ (1−δ)
∞∑

s=0
δsψ (xt+s+1) .

2. For any t ≥ 0,

(1−δ)
∞∑

s=0
δsψ (xt+s) ≤ (1−δ)

∞∑
s=0

δsψ (xt+s+1) ,

where the system of weights ((1−δ)δs)∞s=0 well defines an infinite-dimensional

average of net gains of investment.
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4 THE EXISTENCE OF STEADY STATES

Echoing Proposition 3.2 in Kamihigashi and Roy [6], Proposition 3.1 entails that every

input vector xM with the largest net investment is a steady state. Indeed, since the

value of net gain of investment can no longer increase in the future if the starting point

is xM , part (1) of Proposition 3.1 states that it is a steady state.

COROLLARY 4.1. If argmax[δF (x)−θ · x] is a nonempty set, then every xM belonging to

this set is a steady state of the economy.

In the literature, standard compactness properties imply the existence of xM and,

hence, the existence of a steady state. The next proposition characterizes the set of

steady states without any assumption of convexity in technology.

Let S∗ be the set of x ∈ Rd+ such that an optimal path (xt )∞t=0 exists with the following

properties:

1. ψ (x) = supt≥0ψ (xt ).

2. There exists a subsequence
(
xtn

)∞
n=0 converging to x, that is limn→∞ xtn = x.

Evidently, the existence of a bounded optimal path (xt )∞t=0 implies the nonemptiness

of S∗. Indeed, picking the subsequence
(
xtn

)∞
n=0 such that limn→∞ψ

(
xtn

)= supt≥0ψ (xt ),

we observe that, by the boundedness hypothesis, the sequence
(
xtn

)∞
n=0 belongs to a

compact set. Hence, there exists a subsequence
(
xtnk

)∞
k=0

of
(
xtn

)∞
n=0 that converges to

some x ∈ Rd+. By the definition of S∗, we have x ∈ S∗. Hence, S∗ is nonempty. Clearly,

every steady state belongs to S∗. The next proposition states that S∗ coincides with

the whole set of steady states.

PROPOSITION 4.1. Assume that there exists a bounded optimal path. Then S∗ is nonempty

and:

1. Every capital stock x∗ is a steady state if and only if x∗ ∈ S∗.

2. Consider a bounded optimal path (xt )∞t=0. If, for some T , ψ (xT ) = supt≥0ψ(xt ),

then, for any t ≥ T , ψ (xt ) =ψ (xT ) and xt is a steady state.
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If there is an optimal path exists which converges neither to zero (for instance, because

of the Inada conditions) nor to infinity (for instance, because of low productivity of

high levels of capital1), Proposition 4.1 implies the existence of a non-trivial steady

state. More precisely, we get the following characterization.

COROLLARY 4.2. There exists a non-trivial steady state if and only if there exists an op-

timal path which is bounded away from zero and infinity.

5 STABILITY ISSUE

We now establish our main result.

By definition of the set S∗, a bounded optimal path (xt )∞t=0 visits the neighborhood

of S∗ infinitely many times. The next theorem establishes stronger property of the

set S∗. Its proof rests on Proposition 3.2, which implies the existence of the limit(
(1−δ)

∑∞
s=0δ

sψ (xt+s)
)∞

t=0. Moreover, the value of this limit is precisely supt≥0ψ(xt ).

According to Proposition 4.1, the optimal path converges to S∗, which is the set of

steady states. Here, convergence means that, for any ε > 0, there exists a critical date

T such that xt ∈ S∗+B (0,ε) for any t ≥ T , with B (0,ε) denotes the sphere of radius ε

centered in the origin 0d .

THEOREM 5.1. 1. Either any optimal path converges to the set of steady states S∗ or

it is unbounded.

2. For any bounded optimal path (xt )∞t=0,

lim
t→∞ψ (xt ) = sup

t≥0
ψ (xt ) .

In this section, we have found that, if there is a bounded optimal path, then the set

of steady states is nonempty, and any bounded optimal path converges to it. Now, to

study the possibility of unbounded growth, we replace the assumption of bounded-

ness with the following conditions.

1Condition H2 in Le Van and Morhaim [8], with 0 < γ < 1, is weaker but still sufficient. Proposition

3.3 in Kamihigashi and Roy [6] achieves a similar results in the case of a one-dimensional economy.
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Assumption A1. 1. Unbounded net gains of investment:

lim
∥x∥→∞

ψ (x) =∞.

2. For any compact set C :

sup
x0∈C

sup
χ0∈Π(x0)

∞∑
t=0

δtψ (xt+1) <∞,

where χ0 ≡ (xt )∞t=0.

The first condition is less restrictive than the condition (4.8) of Proposition 4.6 in Kami-

higashi and Roy [6] considering marginal productivities larger than 1/δ for higher lev-

els of capital.

Since, for any feasible path (xt )∞t=0,
∑∞

t=0δ
t ct = F (x0)+∑∞

t=0δ
tψ (xt+1), the second con-

dition rules out any discounted sum of intertemporal consumptions taking an infinite

value. The economy can grow forever, but the rate of growth never overtakes the dis-

count factor δ. This condition is similar, but not identical, to tail-insensitivity (As-

sumption H6 in Le Van and Morhaim [8]).

PROPOSITION 5.1. Assume A1. Any optimal path either converges to the set of steady

states or diverges to infinity.

6 APPLICATIONS

6.1 AN ECONOMY WITH CONVEX-CONCAVE PRODUCTION FUNCTION

Focus on a one-sector economy with a convex-concave production function, where a

single good is consumed and invested. Agent’s preferences are the same:

max

[ ∞∑
t=0

δt u (ct )

]
,

ct +kt+1 ≤ F (kt ) ,

ct ,kt ≥ 0,

for any t ≥ 0.
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This model is considered by Le Van and Dana [7] and by Dechert and Nishimura [4] in

a more general context where the production is no longer convex-concave. We would

like to address the issue from a different viewpoint, through the notion of net gain of

investment, and to show how this concept allows us to recover quickly the main results

of the third chapter in Le Van and Dana [7].

For simplicity, assume that F is a continuous S-shaped function with F (0) = 0: strictly

convex for kt < kI and strictly concave for kt > kI where kI denotes the inflection

point. Moreover, suppose F ′(kt ) < 1 for any kt large enough. This condition implies

a bounded economy. Hence, as in Theorem 2 by Dechert and Nishimura [4] or in

Proposition 3.4.5 by Le Van and Dana [7], applying our Theorem 5.1, we find that any

optimal path converges to a steady state. We require also δF ′ (kI ) > 1. Otherwise,

F ′ (kI ) being the highest productivity level, δF ′ (k) < 1 for every k and the economy

converges to zero: the unique steady state is the trivial one.

Dechert and Nishimura [4] and Le Van and Dana [7] show that, under mild discount-

ing, any optimal path with k0 > 0 converges to a strictly positive steady state. Let us

explain why.

The function of net gain of investment is defined as ψ (kt ) ≡ δF (kt )−kt . Under mild

discounting (δ> 1/F ′ (0)), we have ψ (0) = 0 <ψ (kt ) for every 0 < kt ≤ kI . Then, start-

ing from 0 < k0 ≤ kI , the optimal path does not converges to zero. Therefore, the limit

is strictly positive. Starting from k0 ≥ k∗, every optimal path is bounded from below

by this limit. The detailed of Proposition 6.1 is given in the Appendix.

PROPOSITION 6.1. Assume that δ> 1/F ′ (0) (mild discounting). Let k0 > 0. The economy

converges to a strictly positive steady state, which is the unique solution to δF ′(k) = 1.

Now, consider the problem with δ < 1/F ′ (0). As above, we assume 1/F ′ (kI ) < δ and

F ′ (∞) < 1 < 1/δ. We consider two subscases: (1) intermediate discounting and (2)

strong discounting. Let us provide a formal definition.

Since F ′ (0) < 1/δ and F ′ (∞) < 1/δ< F ′ (kI ), there exist ks and k s with 0 < ks < kI < k s

solutions to the equation F ′ (k) = 1/δ.
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The intermediate and strong discounting are defined as follows:2

LEMMA 6.1. 1. Intermediate discounting: k s/F (k s) < δ< 1/F ′ (0).

2. Strong discounting: δ< k s/F (k s).

The following lemma is key to obtain the main results.

LEMMA 6.2. Let 1/F ′ (kI ) < δ< 1/F ′ (0). Then:

1. ks = argmin0≤k≤k s ψ (k).

2. If k s/F (k s) < δ< 1/F ′ (0) (intermediate discounting), k s = argmaxk≥0ψ (k). More-

over, k s is a steady state.

3. If 1/F ′ (kI ) < δ< k s/F (k s) (strong discounting), ψ (k) <ψ (0) = 0 for any k > 0.

0 is always a (trivial) steady state. In the case of intermediate discounting, since k s =
argmaxk≥0ψ (k), by Corollary 4.1, k s is also a steady state.

Since ks = argmin0≤k≤k s ψ (k), starting from k0 ̸= ks , by part (2) of Theorem 5.1, every

optimal path converges either to 0 or k s . Thus, if ks is a steady state, the interval [0,ks]

is a poverty trap with limt→∞ kt = 0 if k0 < ks , and kt = ks for any t ≥ 0 if k0 = ks .3

PROPOSITION 6.2. If ks is a steady state, then every optimal path starting from k0 < ks

converges to 0 and every optimal path starting from k0 > ks converges to k s .

What happens if ks is not a steady state?4

Let us show that an upper bound, say k, exist for the poverty trap. From point 2 of

Lemma 6.2, we know that, under intermediate discounting, k s is a steady state. We

also have ψ (k0) > 0 for every k < k0 ≤ k s . Hence, starting from k0, the economy con-

verges to k s .

2Since ψ(k s ) = maxk≥ks ψ (k), our notions are equivalent the ones in Le Van and Dana [7], pages

50-51.
3See also Corollary 3.4.3 and Proposition 3.4.6 in Le Van and Dana [7].
4ks is no longer a steady state under some sufficient conditions considered in Proposition 3.4.7 in Le

Van and Dana [7].
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LEMMA 6.3. If k s/F (k s) < δ< 1/F ′ (0) (intermediate discounting), then there exists k > 0

solution to δ= k/F (k) such that any optimal path starting from k0 ≥ k converges to k s .

We can prove the existence of a poverty trap
[
0, k̂

) ⊂ [
0,k

]
.

PROPOSITION 6.3. Under intermediate discounting, there exists 0 < k̂ ≤ k such that the

economy converges to 0 if k0 < k̂ and to k s if k0 > k̂.

Under strong discounting, k s plays the role of k.

PROPOSITION 6.4. Let 1/F ′ (kI ) < δ< k s/F (k s) (strong discounting).

1. If k s is not a steady state, then the economy converges to 0 for any k0 ≥ 0.

2. If k s is a steady state, then there exists 0 < k̂ ≤ k s such that the economy converges

to 0 if k0 < k̂ and to k s if k0 > k̂.

6.2 AN ECONOMY WITH RENEWABLE RESOURCES

Consider the economy à la Dam et al. [3]. In this article, the author study an econ-

omy with physical capital kt and renewable resources yt . The regeneration capacity

of the renewable resources is a function of the existing stock and the industrial activity,

which is an increasing function of capital stock kt .

Precisely, given the stocks of resources and capital
(
kt , yt

)
at time t , the natural re-

sources at time t + 1 are given by a regeneration function η
(
kt , yt

)
decreasing and

convex in kt , and increasing and concave in yt . The production function f and the

regeneration function η are supposed to satisfy the Inada conditions: f ′ (0) =∞ and

η′y (k,0) =∞ for any k > 0.

The capital good can be consumed or invested at the unit price, while the natural re-

sources can be only invested at the price p > 0. Thus, θ = (
1, p

)
with xt =

(
kt , yt

) ∈R2+.

For simplicity, the physical capital fully depreciates (ek = 1), while the natural re-

sources do not (ey = 0). The consumer faces the following program:

max

[ ∞∑
t=0

δt u (ct )

]
,
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subject to

ct +kt+1 +pyt+1 ≤ F
(
kt , yt

)≡ f (kt )+pyt ,

0 ≤ yt+1 ≤ η
(
kt , yt

)
.

Given the stock
(
kt , yt

) ∈R2+, the set of affordable outputs is

Γ
(
kt , yt

)≡ {(
kt+1, yt+1

) ∈R2
+ such that kt+1 +pyt+1 ≤ F

(
kt , yt

)
and yt+1 ≤ η

(
kt , yt

)}
.

The additional constraint yt+1 ≤ η
(
kt , yt

)
simply means that we can sell the renewable

resources to buy the physical capital but not the converse. The set affordable outputs

is smaller that the budget set and the results of the previous sections no longer apply

directly.

Let us adapt the proof of Lemma 3.1 to this new context. Given the initial condition(
k0, y0

)
, the inequality 3.2 becomes

u
(
F

(
k0, y0

)−k0 −py0
)≤ (1−δ) v

(
k0, y0

)
. (6.1)

Indeed, recall that inequality 3.2 is satisfied if either k0 + py0 > F
(
k0, y0

)
or

(
k0, y0

) ∈
Γ

(
k0, y0

)
. Now, focus on the remaining case, k0+py0 ≤ F

(
k0, y0

)
and y0 > η

(
k0, y0

)
. By

the concavity of η with respect to y , this inequality implies that y0 > y , the solution to

η
(
k0, y

)= y . Moreover, we have y < η(
k0, y

)
for 0 < y < y and y > η(

k0, y
)

for y > y .

Choose ỹ such that 0 < ỹ < y and let x̃ ≡ (
k0, ỹ

)
. Then, x̃ satisfies the following proper-

ties:

1. θ · x̃ < θ ·x0,

2. F (x̃)−θ · x̃ = F (x0)−θ · x0.

The first property implies that x̃ ∈ Γ (x0). The second one jointly with ỹ < η
(
k0, ỹ

)
implies that the stock x̃ belongs to Γ(x̃). In other words, this stock can replicate itself.

Then, the sequence (x0, x̃, x̃, . . . ) is feasible. Combining with θ · x0 > θ · x̃, we get

(1−δ) v (x0) ≥ (1−δ)u (F (x0)−θ · x̃)+ (1−δ)
∞∑

t=1
δt u (F (x̃)−θ · x̃)

> (1−δ)
∞∑

t=0
δt u (F (x0)−θ · x0)

= u (F (x0)−θ ·x0) .
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Hence, inequality 6.1 is proven for any
(
k0, y0

)
. Following the same arguments in the

proofs of Propositions 3.1 and 3.2, and in Theorem 5.1, we are able to conclude that

the economy always converges to its set of steady states (see also Dam et al. [3]).

7 CONCLUDING COMMENTS

One-dimensional nonconvex economies have been studied in the literature. Readers

are referred to Mitra and Ray [11], Dechert and Nishimura [4] and Kamihigashi and Roy

[6] for a deterministic setting, and to Nishimura and Stachurski [14], and Nishimura

and al. [15] for a stochastic approach. The super-modular property of their models

is key.5 When super-modularity fails, the economic dynamics may exhibit complex

behavior. Under a sufficiently low discount rate, cycles and chaos may arise, even in

one-dimensional economies. Montrucchio and Sorger [12], and Nishimura and Sorger

[13] provide excellent surveys of this literature.

In our model, we have considered a multi-dimensional economy à la Ramsey, where

income is shared into consumption and investment, and proven its convergence to

the set of steady states. Moreover, the long-run behavior of the economy comes down

to the structure of this set, which is finite in many cases. The Euler equations allow us

to compute the set of steady states and to study their properties.

In the case of multiple steady states, the optimal path may fluctuate between them.

But, if the utility function is strictly concave, production, investment and consump-

tion levels converge to constant values in the long run, as proven in Proposition 3.1.

5For a definition of super-modularity, its main properties and applications, see Amir [1], [2].
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8 APPENDIX

8.1 PROOF OF LEMMA 3.1

We have to consider only the case θ · x0 ≤ F (x0), which implies that the constant se-

quence (x0, x0, . . .) is feasible. Hence,

v (x0) ≥
∞∑

t=0
δt u (F (x0)−θ · x0)

= u (F (x0)−θ ·x0)

1−δ ,

and we obtain (2.2).

8.2 PROOF OF PROPOSITION 3.1

Fix any x0 and an optimal path (xt )∞t=0 starting from x0. Either ψ (xt ) ≤ψ (x0) for any t

or there exists some t such that ψ (xt ) >ψ (x0).

Suppose ψ (xt ) ≤ψ (x0) for any t . According to (3.1), we have

∞∑
t=0

δt ct = F (x0)+
∞∑

t=0
δtψ (xt+1)

≤ F (x0)+
∞∑

t=0
δtψ (x0)

= F (x0)+ ψ (x0)

1−δ
= F (x0)−θ · x0

1−δ .

Noticing that (1−δ)
∑∞

t=0δ
t = 1 and using Jensen inequality, we obtain

(1−δ)
∞∑

t=0
δt u (F (x0)−θ · x0)

= u (F (x0)−θ · x0) ≥ u

(
(1−δ)

∞∑
t=0

δt ct

)
(8.1)

≥ (1−δ)
∞∑

t=0
δt u (ct ) = (1−δ) v (x0) . (8.2)

Inequality 8.1 implies that θ·x0 ≤ F (x0). Hence, x0 ∈ Γ(x0) and the sequence (x0, x0, . . . )

is feasible. This implies u (F (x0)−θ · x0) ≤ (1−δ) v (x0). Inequality 8.2 entails that
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(x0, x0, . . . ) is an optimal path. Then, the initial state x0 is a steady state and for any

t , ψ (xt ) = ψ (x0). The strict concavity of utility function u and inequalities (8.1) and

(8.2) ensure that ct = c0, otherwise the passage from (8.1) to (8.2) will be a strict in-

equality.

Now, assume that the optimal sequence (xt ) is bounded. We have found that ct = c0

for any t , or, equivalently, F (xt )−θ · xt+1 = F (x0)−θ ·x1. Since ψ (xt ) =ψ (x0), we get

δF (xt )−θ · xt = δF (x0)−θ ·x0, (8.3)

δ [F (xt )−θ · xt+1] = δ [F (x0)−θ · x1] . (8.4)

Subtracting (8.3) from (8.4), we find θ·xt = δθ·xt+1+(θ · x0 −δθ · x1) for any t and, then,

θ · xt = δ2θ · xt+2 +δ (θ · x0 −δθ · x1)+ (θ · x0 −δθ · x1)

= δTθ · xt+T + 1−δT

1−δ (θ · x0 −δθ · x1) (8.5)

= θ · x0 −δθ · x1

1−δ , (8.6)

where we have obtained the last equality letting T converge to infinity and using the

boundedness of the path (xt )∞t=0.

Setting t = 1 in equality (8.6), we get θ ·x0 = θ ·x1. Hence, for any t ≥ 0, we have θ ·xt =
θ ·x0. As ψ (xt ) =ψ (x0), this also implies that F (xt ) = F (x0).

8.3 PROOF OF PROPOSITION 3.2

(1) We observe that (3.2) holds with x0, but also with xt . Using (3.1), we obtain along

the optimal path:

u (F (xt )−θ · xt )

≤ (1−δ) v (xt )

= (1−δ)
∞∑

s=0
δsu (ct+s)

≤ u

(
(1−δ)

∞∑
s=0

δsct+s

)
= u

(
(1−δ)F (xt )+ (1−δ)

∞∑
s=0

δsψ (xt+s+1)

)
.
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This implies

F (xt )−θ · xt ≤ (1−δ)F (xt )+ (1−δ)
∞∑

s=0
δsψ (xt+s+1) ,

which is equivalent to

ψ (xt ) ≤ (1−δ)
∞∑

s=0
δsψ (xt+s+1) .

(2) Using the result in part (1), we get

(1−δ)
∞∑

s=0
δsψ (xt+s) = (1−δ)ψ (xt )+δ (1−δ)

∞∑
s=0

δsψ (xt+s+1)

≤ (1−δ)

[
(1−δ)

∞∑
s=0

δsψ (xt+s+1)

]
+δ

[
(1−δ)

∞∑
s=0

δsψ (xt+s+1)

]
= (1−δ)

∞∑
s=0

δsψ (xt+s+1) .

8.4 PROOF OF COROLLARY 4.1

By the definition of xM , for any optimal path (xt )∞t=0, we haveψ (xt ) ≤ψ(
xM

)
for any t .

If x0 = xM , then ψ (xt ) ≤ψ (x0) for any t and only the case (1) of Proposition 3.1 holds,

that is x0 = xM is a steady state.

8.5 PROOF OF PROPOSITION 4.1

Let a bounded optimal path exist.

(1) First, we prove that if x∗ ∈ S∗, then x∗ is a steady state.

Suppose the contrary: x∗ is not a steady state. Take any optimal path (xt )∞t=0 and the

subsequence
(
xtn

)∞
n=0 such that limn→∞ xtn = x∗. For each n, consider the sequence

χtn ≡ (
xtn , xtn+1, xtn+2, . . .

)
. By the compactness of the economy with respect to the

product topology, there exists a subsequence
(
χtnk

)∞
k=0

of
(
χtn

)∞
n=0 that converges to

some sequence χ∗ in this topology. Let χ∗ ≡ (
x∗

0 , x∗
1 , . . .

)
. The convergence in product

topology means that for any t ≥ 0, limn→∞ xtnk
+t = x∗

t . By the upper hemi-continuity

property of the optimal policy correspondence σ, the sequence χ∗ is an optimal path

starting from x∗
0 = limn→∞ xtn = x∗.
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Because of Proposition 3.1 and the assumption that x∗ is not a steady state, there ex-

ists some T such that ψ
(
x∗

T

) > ψ (x∗). By the convergence in the product topology,

limn→∞ xtnk
+T = x∗

T . Hence, there exists a sufficiently large k such that ψ
(
xtnk

+T

)
>

ψ (x∗) = supt≥0ψ (xt ), a contradiction.

Consider x∗, that is a steady state. Since (x∗, x∗, . . .) is a bounded optimal path begin-

ning from x∗, by the definition of S∗, x∗ ∈ S∗.

(2) Assume that a critical date T exists such that ψ (xT ) = supt≥0ψ (xt ). The statement

is a direct consequence of Proposition 3.1.

8.6 PROOF OF THEOREM 5.1

(1) Fix an optimal path (xt )∞t=0 and assume that it is bounded. Let s∗ ≡ supt≥0ψ (xt ).

We will prove that the sequence (xt )∞t=0 converges to S∗, in the sense that, for any ε> 0,

there exists T such that, for t ≥ T , xt ∈ S∗+B (0,ε), where B (0,ε) is the sphere of radius

ε centered in 0d .

Suppose the contrary. Then there exists some ε > 0 and a subsequence
(
xtn

)∞
n=0 such

that, for any n, xtn ∉ S∗+B (0,ε). Let s∗ = supn≥0ψ(xtn ).

We claim that s∗ < s∗. Indeed, assume the contrary, s∗ = s∗. From the boundedness of

the optimal sequence, there exists a subsequence
(
xtnk

)∞
k=0

which converges to some

x̂. By definition of
(
xtn

)∞
n=0, we have x̂ ∉ S∗, while, by definition of S∗, x̂ ∈ S∗, a contra-

diction. Hence, s∗ < s∗.

Let us prove that

lim
t→∞

[
(1−δ)

∞∑
s=0

δsψ (xt+s)

]
= s∗.

Indeed, by part (2) of Proposition 3.2, the sequence
(
(1−δ)

∑∞
s=0δ

sψ (xt+s)
)∞

t=0 is in-

creasing. The following limit exists and it is not larger than s∗:

lim
t→∞

[
(1−δ)

∞∑
s=0

δsψ (xt+s)

]
≤ s∗. (8.7)

Either there is T such that ψ (xT ) = s∗ and, according to part (2) of Proposition 4.1,

ψ (xt ) =ψ (xT ) for any t ≥ T , or there is a subsequence
(
xτn

)∞
n=0 such that limn→∞ψ

(
xτn

)=
s∗.
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In the first case,

s∗ =ψ (xT ) = (1−δ)
∞∑

s=0
δsψ (xT+s) = lim

t→∞

[
(1−δ)

∞∑
s=0

δsψ (xt+s)

]
.

In the second case, according to parts (1) and (2) (monotonicity property) of Proposi-

tion 3.2, we get

s∗ = lim
n→∞ψ

(
xτn

)
≤ lim

n→∞

[
(1−δ)

∞∑
s=0

δsψ
(
xτn+s+1

)]
= lim

t→∞

[
(1−δ)

∞∑
s=0

δsψ (xt+s)

]
,

and, according to (8.7), again

lim
t→∞

[
(1−δ)

∞∑
s=0

δsψ (xt+s)

]
= s∗.

For every n, we have

(1−δ)
∞∑

s=0
δsψ

(
xtn+s

)= (1−δ)ψ
(
xtn

)+δ (1−δ)
∞∑

s=0
δsψ

(
xtn+s+1

)
≤ (1−δ)ψ(xtn )+δs∗,

which implies

lim
n→∞

[
(1−δ)

∞∑
s=0

δsψ
(
xtn+s

)]≤ lim
n→∞

[
(1−δ)ψ

(
xtn

)+δs∗
]

≤ (1−δ)s∗+δs∗ < s∗,

a contradiction. Thus, any bounded optimal path (xt )∞t=0 converges to S∗.

(2) Let us prove that, for any bounded optimal path (xt )∞t=0, limt→∞ψ (xt ) = supt≥0ψ (xt ).

Assume that there exists a subsequence (xtn )∞n=0 such that

lim
n→∞ψ

(
xtn

)= s < s∗.

Using the same arguments as in the proof of the first part of the Theorem, for every n,

we have

(1−δ)
∞∑

s=0
δsψ

(
xtn+s

)= (1−δ)ψ
(
xtn

)+δ (1−δ)
∞∑

s=0
δsψ

(
xtn+s+1

)
≤ (1−δ)ψ(xtn )+δs∗.
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Hence

lim
t→∞ (1−δ)

∞∑
s=0

δsψ
(
xtn+s

)≤ (1−δ)s +δs∗ < s∗,

a contradiction.

8.7 PROOF OF PROPOSITION 5.1

Fix an optimal path (xt )∞t=0.

By Theorem 5.1, if this sequence is bounded, then it converges to the set of steady

states.

Consider the case of an unbounded optimal path (xt )∞t=0, in the sense that limsupt→∞ ∥xt∥ =
∞. By point 1 of Assumption A1, we have supt≥0ψ (xt ) =∞. Using Proposition 3.2, we

have

lim sup
t→∞

[
(1−δ)

∞∑
s=0

δsψ (xt+s)

]
≥ lim sup

t→∞
ψ(xt ) =∞.

Applying again Proposition 3.2, we obtain

lim
t→∞

[
(1−δ)

∞∑
s=0

δsψ (xt+s)

]
= lim sup

t→∞

[
(1−δ)

∞∑
s=0

δsψ (xt+s)

]
=∞.

By part 2 of Assumption A1, the existence of a subsequence
(
xtn

)∞
n=0 that is bounded

in a compact set implies

lim inf
n→∞

[
(1−δ)

∞∑
s=0

δsψ
(
xtn+s

)]<∞,

a contradiction. The sequence (xt )∞t=0 diverges to infinity, in the sense that limt→∞ ∥xt∥ =
∞.

8.8 PROOF OF PROPOSITION 6.1

By Euler equation and the differentiability of F , a strictly positive steady state is solu-

tion to δF ′(k) = 1. Since δF ′(k) > 1 for 0 < k < kI , and F is strictly concave in [kI ,∞),

the positive solution to this equation is unique.
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If δF ′ (0) ≥ 1, then δF ′ (k) > 1 for any 0 < k ≤ kI , where kI denotes the inflection point.

Hence, the functionψ (k) = δF (k)−k is strictly increasing in [0,kI ] and we haveψ (k) >
ψ (0) for any 0 < k ≤ kI . By the second part of Theorem 5.1, any optimal path with

initial condition 0 < k0 ≤ kI does not converge to 0, but to a strictly positive steady

state k∗.

Consider now an optimal path starting from k0 > kI . Using Theorem 1 and Corollary 1

in Dechert and Nishimura [4], we have that this path is bounded from below by k∗.

8.9 PROOF OF LEMMA 6.2

(1)ψ is strictly convex in [0,kI ] because F is strictly convex in the same interval. Hence,

ψ′ (ks) = 0 implies that ks = argmin0≤k≤kI ψ (k). The property that ψ (k) is increasing

in [kI ,k s] completes the proof.

(2) An intermediate discounting implies ψ (k s) >ψ (0). From the strict concavity of ψ

on [kI ,∞) and ψ′ (k s) = 0, we have ψ (k s) = maxkI≤k ψ (k). Then, ψ (k s) > ψ (kI ) and

ψ (k s) > max
{
ψ (kI ) ,ψ (0)

} = max0≤k≤kI ψ (k). According to Corollary 4.1, k s is also a

steady state.

(3) A strong discounting implies ψ (k s) < ψ (0) = 0. From the strict concavity of ψ on

[kI ,∞) andψ′ (k s) = 0, we have maxkI≤k ψ (k) =ψ (k s) < 0. Then,ψ (kI ) < maxkI≤k ψ (k) <
0. The strict convexity of ψ on [0,kI ] jointly with ψ (kI ) < 0 =ψ (0) ensures that ψ (k) <
0 for any k ∈ (0,kI ].

8.10 PROOF OF PROPOSITION 6.2

Let ks be a steady state. Consider an optimal path (kt )∞t=0 starting from k0. If k0 < ks ,

by Theorem 1 in Dechert and Nishimura [4], kt < ks for any t . This path does not

converges to ks since, according to point 1 of Lemma 6.2, ψ (kt ) >ψ (ks) for any t and,

according to point 2 of our Theorem 5.1, limt→∞ψ (kt ) = supt≥0ψ (kt ).

If this path converges to some 0 < k < ks , then k is a strictly positive steady state. Euler

equation implies that F ′ (k) = 1/δ and ψ′(k) = 0. But ks is the lower solution to the

equation F ′ (k) = 1/δ, a contradiction. Hence, limt→∞ kt = 0.
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If k0 > ks , by Theorem 1 in Dechert and Nishimura [4], we have kt > ks for any t .

This path does not converges to ks since, according to point 1 of Lemma 6.2, ψ (kt ) >
ψ (ks) for any t and, according to point 2 of our Theorem 5.1, limt→∞ψ (kt ) = supt≥0ψ (kt ).

Thus, this optimal sequence converges to a steady state k > ks . According to the Euler

equation, since k is a strictly positive steady state, F ′ (k) = 1/δ. But k s is the higher

solution to the equation F ′ (k) = 1/δ, a contradiction. Hence, limt→∞ kt = k s .

8.11 PROOF OF LEMMA 6.3

Under the intermediate discounting, δ< 1/F ′ (0), that is ψ′ (0) < 0, and ψ (k s) >ψ (0) =
0. Thus, there exists a strictly positive solution k > ks to the equation ψ (k) = 0. Let

(kt )∞t=0 be an optimal path starting from k.

Recall that there are three candidates for the limit point of this sequence: 0, ks and k s .

Assume that this path converges either to 0 or ks . By point 2 of Proposition 3.1, point

2 of Theorem 5.1 and the fact that k is not a steady state, the sequence (ψ(kt ))∞t=0 in-

creases strictly to its supremum. We then obtain ψ
(
k
) < limt→∞ψ (kt ) ≤ 0, a contra-

diction. Hence, limt→∞ kt = k s .

Beginning from k0 ≥ k, by Theorem 1 in Dechert and Nishimura [4], the optimal path

is bounded away from ks and, therefore, it converges to k s .

8.12 PROOF OF PROPOSITION 6.3

If k s/F (k s) < δ < 1/F ′ (0) (intermediate discounting), then F ′ (0) < 1/δ < F (k s)/k s ≤
maxk>0 [F (k)/k] and Theorem 3.4.2 in Le Van and Dana [7] applies.

8.13 PROOF OF PROPOSITION 6.4

(1) Fix 0 ≤ k0 ≤ k s and k0 ̸= ks . Sinceψ (k0) >ψ (ks), because of point 2 of Theorem 5.1,

any optimal path starting from k0 converges either to 0 or to k s . If k s is not a steady

state, then 0 is the unique candidate.

According to Corollary 1 in Dechert and Nishimura [4], every optimal path is mono-
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tonic. Consider k0 ∈ (ks ,k s). The convergence of any optimal path starting from k0 to

0 implies that any optimal path starting from ks converges also to 0 by Theorem 1 in

Dechert and Nishimura [4]. Since neither k s nor ks are steady states, any optimal path

converges to 0.

(2) If 1/F ′ (kI ) < δ < k s/F (k s) (strong discounting), then F (k s)/k s < 1/δ < F ′ (kI ).

Then, maxk>0 [F (k)/k] < 1/δ and part 2 of Theorem 3.4.3 in Le Van and Dana [7] ap-

plies.
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