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Abstract

In this article, we consider a multidimensional economy where the standard su-

permodularity property fails. We generalize the notion of net gain of investment,

introduced by Kamihigashi and Roy [7] and applied to one-sector growth mod-

els, to the case of multiple capital stocks. We prove the convergence to the set

of steady states without relying on the monotonicity of optimal path. Our ap-

proach differs from the standard dynamic programming based on convexity or

supermodularity. We find that preferences are key to shape the economy in the

long run.
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1 Introduction

Nice properties of dynamic models often rest on convenient but restrictive assump-

tions such as convexity or supermodularity.1 The seminal book by Stokey et al.

[17] is an introduction to dynamic programming with economic applications under

nice convexity properties. Le Van and Dana [8] show how strict convexities in tech-

nology and preferences ensure not only the uniqueness of solutions but also their

convergence (sections 2.4.3 and 2.4.4). Dechert and Nishimura [4] consider a convex-

concave production function and find multiple solutions only for a zero-measure set

of initial states. In the lack of a suitable convexity structure, the supermodularity à

la Amir [1, 2] entails a monotonicity property and unambiguous long-run dynamics.

These classical approaches face a common difficulty. To study the economy in the

long run, scholars use monotonicity based on convexity or supermodularity. How-

ever, these condition may fail when a facet can not be treated in one-sector models,

such as the externalities between different sectors. For instance, investing in Inter-

net or other communication facilities can speed up the transfer of information and

enhance, by this, the productivity. In a different context, an increase in industrial

activities may harm other sectors such as agriculture and tourism, or curb the regen-

eration of renewable resources such as forests or oceans. These cross effects can rule

out convexity or, even, supermodularity properties, with two main consequences:

(1) the uniqueness of the optimal path is no longer ensured; (2) its monotonicity

may also fail. The second issue is more complicated to tackle. For these reasons,

scholars refrain from a global analysis and focus on a neighborhood of the steady

state. Nevertheless and precisely a global approach is needed to overcome these

difficulties.

In this article, we consider a small open economy where the capital prices are sup-

posed to be given. We tackle the lack of supermodularity from a different viewpoint

by considering the innovative concept of net gain of investment in the spirit of Ma-

jumdar and Nermuth [11], and Majumdar and Mitra [10]. We remain closer to
1For a definition of supermodularity, its main properties and applications, see Amir [1], [2].
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Kamihigashi and Roy [6, 7], a growth model with a nonsmooth and nonconvex

technology.

The net gain of investment is a function with nice properties despite the monotonic-

ity failure. We find that, even when it does not increase over time, it converges to

the supremum. In addition, the discounted sum of future net gains always exceeds

the current value and increases over time. The limit of the discounted sums of net

gains is also informative about the economy in the long run. We obtain conver-

gence of the economy to a set of steady states, generically finite and rather easy

to study. Last but not least, the case where optimal paths converge to infinity is

also characterized. These results are very general: we do not need any restriction

on technology but only the concavity of preferences. In other words, we prove that

preferences are key to shape the economy in the long run.

Dechert and Nishimura [4] paved the way to generalize the optimal growth theory

to the nonconvex case. In their article, under a convex-concave production function,

the optimal path is monotonic and converges either to a positive steady state or

to zero, depending whether the initial stock is above or below a critical level, the

poverty trap.2

Kamihigashi and Roy [7] extend the analysis with more general production func-

tions, not only nonconvex, but also, possibly, non-differentiable and discontinuous.

To overcome these difficulties, they develop new tools such as the net gain function

or the Euler inequalities. These authors provide different conditions for the optimal

path to converge to a non-trivial steady state or zero, or to diverge to infinity, and

for the turnpike property to hold, that is the convergence of optimal capital stock

to the golden rule when the discount factor tends to one.

Because the net gain of investment is key, Kamihigashi and Roy [7] is the closest

work to ours. In their contribution, as in Dechert and Nishimura [4], the mono-

tonicity of optimal path is a direct consequence of supermodularity.3 When the

optimal path is bounded, it converges either to a positive steady state or to zero.
2For details, see Le Van and Dana [8].
3See their Lemma 3.1.
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Hence, the main interest of Kamihigashi and Roy [7] rests on the long-run values

instead of on the convergence per se.

Hung et al. [5] study a model of optimal growth where the convexity fails by ag-

gregation of two concave production functions, representing two technologies. One

is more costly but also more productive than the other (for a high level of capital

stock). These authors also study the net gain of investment. In their framework,

supermodularity ensures the monotonicity of the optimal path and the Euler equa-

tion allows them to find candidates for the steady states. Hung et al. [5] provide

conditions to determine these steady states. As in Kamihigashi and Roy [7] and, as

we will see, here, they find that the maximizer of net gain of investment is a steady

state.4

While the results in Decher and Nishimura [4], Kamihigashi and Roy [7], and Hung

et al. [5] are grounded on the monotonicity of the optimal path, our approach no

longer rests on this property and, hence, as a general viewpoint, it unifies these

different results.

The rest of the article is organized as follows. Section 2 introduces the fundamentals

and sufficient conditions to ensure the existence of an optimal solution. Section 3

defines the net gain of investment, while section 4 proves the existence and the

structure of the set of steady states. Section 5 addresses the stability issue in terms

of convergence to the set of steady states. Some examples are given in Section 6.

Section 7 concludes. All proofs are gathered in the Appendix.

2 Fundamentals

Capital and resource stocks are represented by a d-dimensional vector. The pro-

duction function f : Rd
+ → R+ transforms these inputs in a single output which is

consumed or invested.

We denote by θ ∈ Rd
++ the vector of input prices expressed in units of output (nu-

meraire). The economic agent is a price-taker and prices are positive and constant
4See Lemmas 1, 2 and Proposition 4 in Hung et al. [5].
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over time: θi > 0 with i = 1, . . . , d. The assumption of a constant price vector

to a large extent simplifies the dynamic analysis and allows us to focus on the op-

timization aspects we are interested in, without caring about general equilibrium

feedbacks and price adjustments.

At date t, the capital stock xt yields f (xt). The agent consumes a part ct of this

aggregate product and invests in the new capital stock It+1 according to her budget

constraint ct + θ · It+1 ≤ f (xt), where · denotes the scalar product between θ and

It+1. Let ei ∈ [0, 1] be the depreciation rate of capital i. The stock of capital i at

date t+ 1 is defined as

xi,t+1 = Ii,t+1 + (1− ei)xi,t.

The initial stock of capital x0 and agent’s preferences (the discount rate δ ∈ (0, 1)

and the utility function u) are given. She solves the following dynamic program:

v (x0) = max
∞∑
t=0

δtu (ct) , (2.1)

where v denotes the value function, subject to

ct + θ · It+1 ≤ f (xt) ,

xi,t+1 = Ii,t+1 + (1− ei)xi,t,

ct ≥ 0, xi,t ≥ 0 and Ii,t ≥ 0,

for any t ≥ 0 and 0 ≤ i ≤ d.

For xt ∈ Rd
+, let F (xt) ≡ f (xt) +

∑d
i=1 (1− ei) θixi,t. The initial program (2.1) can

be rewritten as:

v (x0) = max
∞∑
t=0

δtu (ct) , (2.2)

subject to

ct + θ · xt+1 ≤ F (xt) ,

xi,t+1 ≥ (1− ei)xi,t,

ct ≥ 0 and xi,t ≥ 0,
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for any t ≥ 0 and 0 ≤ i ≤ d.

In the particular case of reversible capital investment, that is ei = 1 for every

i = 1, 2, . . . , d, (2.2) coincides with (2.1) and F (x) = f(x).

In the general case, given the price system θ and the capital stock xt, we define the

set of affordable inputs:

Γ (xt) ≡
{
xt+1 ∈ Rd

+ such that 0 ≤ θ · xt+1 ≤ F (xt) and xi,t+1 ≥ (1− ei)xi,t for any i
}
.

Let Π (x0) be the set of feasible paths (xt)
∞
t=0 such that xt+1 ∈ Γ (xt) for any t ≥ 0.

We introduce some conditions that ensure the existence of a solution to program

(2.2). For the sake of simplicity, we assume from the outset the continuity of the

maximization with respect to the product topology. Readers interested in technical

details are referred to Le Van and Morhaim [9] (conditions H1 to H8 and Theorem

1).

Assumption F1. 1. The production function F is continuous and increasing.

2. The utility function is strictly concave and strictly increasing.

3. For any x0 with at least one strictly positive component, there exists a sequence

(xt)
∞
t=0 ∈ Π (x0) such that

∑∞
t=0 δ

tu (F (xt)− θ · xt+1) > −∞ and the value

function is well-defined: v (x0) <∞ .

4. The function
∑∞

t=0 δ
tu (F (xt)− θ · xt+1) is upper semi-continuous with respect

to the product topology.

5. The value function v is upper semi-continuous in Rd
+ .

6. For any feasible path starting from x0, we have limT→∞ δ
T θ · xT = 0.

7. For any feasible path starting from x0, we have
∑∞

t=0 δ
t [F (xt)− θ · xt+1] <∞.

Le Van and Morhaim [9] provide conditions ensuring Assumption F1. In their

Lemma 2, H1 and H2 imply the compactness of Π (x0) with respect to the product

topology. In their Theorem 1, H1, H2, H4, H5 and H6 imply conditions 3, 4, 5 in
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F1. The most important condition, which ensures the continuity property of the

value function v, is tail-insensitivity (H6 in Le Van and Morhaim [9]).

Conditions 6 and 7 in Assumption F1 are new. Let us give the intuition behind

them. Given a feasible path (xt)
∞
t=0, condition 6 states that the growth rate never

overcomes the discount factor. In other words, the growth rate is dominated by

the discount factor. In condition 7, the consumption is given at date t by ct =

F (xt) − θ · xt+1. This condition simply means
∑∞

t=0 δ
tct < ∞: the economy can

diverge to infinity, but, from any initial state, the discounted sum of consumptions

is finite.

It is worth to remark that, these conditions are always satisfied if the economy is

bounded, for example under condition H2 in Le Van and Morhaim [9] with 0 < γ <

1, according to their Lemma 1.

Under F1, as shown among others by Le Van and Morhaim [9] (Theorem 1), an

optimal path exists. The value function is a solution of the Bellman functional

equation:

v (x) = max
θ·y≤F (x)

yi≥(1−ei)xi∀i

[u (F (x)− θ · y) + δv (y)] .

Let σ denote the optimal policy correspondence

σ (x) ≡ arg max
θ·y≤F (x)

yi≥(1−ei)xi∀i

[u (F (x)− θ · y) + δv (y)] .

This correspondence allows for optimal paths and multiple steady states. By the

Maximum Theorem, this correspondence is upper hemi-continuous (Theorem 3.6,

chapter 3 in Stokey et al. [17]).

A feasible sequence (xt)
∞
t=0 is an optimal path beginning from x0, if and only if for

every t, we have xt+1 ∈ σ (xt) or, equivalently,

v (xt) = u (F (xt)− θ · xt+1)+δv (xt+1) = max
θ·y≤F (xt)

yi≥(1−ei)xi∀i

[u (F (xt)− θ · y) + δv (y)] .

In terms of capital stock, a steady state is a fixed point x∗ ∈ σ (x∗): the constant

sequence (x∗, x∗, . . . ) is an optimal path starting from x∗.
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In the next section, we study the behavior of the economy in the long run. First,

we introduce the notion of net gain of investment, then we focus on the existence

of steady states. Finally, we consider the convergence in the long run and a more

general technology correspondence.

3 The net gain of investment

In the spirit of Kamihigashi and Roy [6, 7], we define the net gain of investment

function as follows:

ψ (xt) ≡ δF (xt)− θ · xt,

for any t.

Interestingly, for any feasible path (xt)
∞
t=0 ∈ Π (x0), the discounted sum of consump-

tion is equal to the discounted sum of net gains generated by the initial capital stock

x0. More precisely, we observe that the discounted sum of consumption is equal to

the sum of F (x0) and the discounted sum of net gain:

∞∑
t=0

δtct =
∞∑
t=0

δt [F (xt)− θ · xt+1]︸ ︷︷ ︸
=ct

=
T−1∑
t=0

δt [F (xt)− θ · xt+1] + δT
∞∑
s=0

δscT+s

= F (x0) +
T−2∑
t=0

δt [δF (xt+1)− θ · xt+1]− δT−1θ · xT + δT
∞∑
s=0

δscT+s

= F (x0) +
∞∑
t=1

δt−1 [δF (xt)− θ · xt]︸ ︷︷ ︸
=ψ(xt)

− lim
T→∞

δT θ · xT+1,

because of part 7 of Assumption F1. By part 6 of Assumption F1, we obtain:

∞∑
t=0

δtct = F (x0) +
∞∑
t=0

δtψ (xt+1) . (3.1)

The following lemma is an indispensable step to prove that, if the sequence (xt)
∞
t=0

is optimal, then the discounted sum of net gains of investment increases over time.

Lemma 3.1. For any initial state x0 such that θ · x0 ≤ F (x0),

u (F (x0)− θ · x0) ≤ (1− δ) v (x0) . (3.2)
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The intuition for Lemma 3.1 is that, given x0 such that 0 ≤ θ · x0 ≤ F (x0),

(x0, x0, . . .) is feasible. It is clear that

v(x0) ≥
∞∑
s=0

δsu (F (x0)− θ · x0) =
u (F (x0)− θ · x0)

1− δ
,

which implies the inequality in (3.2).

Proposition 3.1 below states that either the economy is at a steady state, or the

net gain of investment increases at some date in the future. This result echoes

Kamihigashi and Roy [6, 7].

Proposition 3.1. Consider an initial capital stock x0 and an optimal path (xt)
∞
t=0

starting from x0.

1. If for every t ≥ 0, we have ψ(xt) ≤ ψ(x0), then the constant sequence

(x0, x0, . . .) is also an optimal path starting from x0.5 Moreover, for every

t ≥ 0, we have F (xt) = F (x0), θ · xt = θ · x0 and ψ (xt) = ψ (x0).

2. If the constant path (x0, x0, . . .) is not an optimal path, then there exists some

t ≥ 1 such that ψ (xt) > ψ (x0).

The following proposition establishes that the net gain of investment is always

smaller than the discounted sum of future net gains of investment and that this

sum increases over time. In other words, along the optimal path, the future gain

always exceeds the present one. These general results draws a picture of the dynamic

behavior of the economy.

Proposition 3.2. Consider an optimal path (xt)
∞
t=0.

1. For any t ≥ 0,

ψ (xt) ≤ (1− δ)
∞∑
s=0

δsψ (xt+s+1) .

5This sequence may differ from (x0, x1, x2, . . .) since the uniqueness of optimal path is no longer

guaranteed.
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2. For any t ≥ 0,

(1− δ)
∞∑
s=0

δsψ (xt+s) ≤ (1− δ)
∞∑
s=0

δsψ (xt+s+1) ,

where the system of weights ((1− δ) δs)∞s=0 well defines an infinite-dimensional

average of net gains of investment.

4 The existence of steady states

Echoing Proposition 3.2 in Kamihigashi and Roy [7], Proposition 3.1 entails that

every input vector xM with the largest net investment is a steady state. Indeed,

since the value of net gain of investment can no longer increase in the future if the

starting point is xM , part 1 of Proposition 3.1 states that it is a steady state.

Corollary 4.1. If arg max [δF (x)− θ · x] is a nonempty set, then every xM be-

longing to this set is a steady state of the economy.

In the literature, standard compactness properties imply the existence of xM and,

hence, the existence of a steady state. The next proposition characterizes the set

of steady states without any assumption of convexity in technology.

Let S∗ be the set of x ∈ Rd
+ such that an optimal path (xt)

∞
t=0 exists with the

following properties:

1. ψ (x) = supt≥0 ψ (xt).

2. There exists a subsequence (xtn)∞n=0 converging to x, that is limn→∞ xtn = x.

Evidently, the existence of a bounded optimal path (xt)
∞
t=0 implies the nonempti-

ness of S∗. Indeed, picking the subsequence (xtn)∞n=0 such that limn→∞ ψ (xtn) =

supt≥0 ψ (xt), we observe that, by the boundedness hypothesis, the sequence (xtn)∞n=0

belongs to a compact set. Hence, there exists a subsequence
(
xtnk

)∞
k=0

of (xtn)∞n=0

that converges to some x ∈ Rd
+. By the definition of S∗ , we have x ∈ S∗. Hence,

S∗ is nonempty. Clearly, every steady state belongs to S∗. The next proposition

states that S∗ coincides with the whole set of steady states.
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Proposition 4.1. Assume that there exists a bounded optimal path. Then S∗ is

nonempty and:

1. Every capital stock x∗ is a steady state if and only if x∗ ∈ S∗.

2. Consider a bounded optimal path (xt)
∞
t=0 . If, for some T , ψ (xT ) = supt≥0 ψ(xt),

then, for any t ≥ T , ψ (xt) = ψ (xT ) and xt is a steady state.

One of the main concerns is to know whether the economy grows to infinity, con-

verges to a steady state, or collapses to zero. On the one hand, standard assumptions

such as Inada conditions, ensure that an optimal path is bounded away from zero.

On the other hand, low productivity for high capital levels implies that the econ-

omy is bounded.6 By Proposition 4.1, the existence of such an optimal path implies

the existence of a non-trivial steady state. More precisely, we get the following

characterization.

Corollary 4.2. There exists a non-trivial steady state if and only if there exists

a bounded optimal path which is bounded away from zero.

5 Stability issue

We now establish our main result.

By definition of the set S∗, a bounded optimal path (xt)
∞
t=0 visits the neighborhood

of S∗ infinitely many times. The next theorem establishes a stronger property

of the set S∗. Its proof rests on Proposition 3.2, which implies the existence of

the limit ((1− δ)
∑∞

s=0 δ
sψ (xt+s))

∞
t=0. Moreover, the value of this limit is precisely

supt≥0 ψ(xt).

According to Proposition 4.1, the optimal path converges to S∗, which is the set of

steady states. Here, convergence means that, for any ε > 0, there exists a critical
6Condition H2 in Le Van and Morhaim [9], with 0 < γ < 1, is weaker but still sufficient. Propo-

sition 3.3 in Kamihigashi and Roy [7] achieves a similar results in the case of a one-dimensional

economy.
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date T such that xt ∈ S∗+B (0, ε) for any t ≥ T , with B (0, ε) denoting the sphere

of radius ε centered in the origin 0d.

Theorem 5.1. 1. Either any optimal path converges to the set of steady states

S∗ or it is unbounded.

2. For any bounded optimal path (xt)
∞
t=0,

lim
t→∞

ψ (xt) = sup
t≥0

ψ (xt) .

In sections 4 and 5, we have found that, if there is a bounded optimal path, then

the set of steady states is nonempty, and any bounded optimal path converges to

it. Now, to study the possibility of unbounded growth, we replace the assumption

of boundedness with the following conditions.

Assumption A1. 1. Unbounded net gains of investment: lim‖x‖→∞ ψ (x) =∞.

2. For any compact set C:

sup
x0∈C

sup
χ0∈Π(x0)

∞∑
t=0

δtψ (xt+1) <∞.

The first condition is less restrictive than the condition (4.8) of Proposition 4.6 in

Kamihigashi and Roy [7] considering marginal productivities larger than 1/δ for

higher levels of capital.

Since, for any feasible path (xt)
∞
t=0,

∑∞
t=0 δ

tct = F (x0)+
∑∞

t=0 δ
tψ (xt+1), the second

condition rules out any discounted sum of intertemporal consumptions taking an

infinite value. The economy can grow forever, but the rate of growth never overtakes

the discount factor δ. This condition is similar, but not identical, to tail-insensitivity

(Assumption H6 in Le Van and Morhaim [9]).

Proposition 5.1. Assume A1. Any optimal path either converges to the set of

steady states or diverges to infinity.

To conclude, let us evoke the possible extension of our results to the case where

capital prices are no longer constant but depend on resources. More precisely, let us

replace the value of capital θ·xt, where the price vector θ is constant, by a continuous
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and increasing cost function Θ (xt). In this case, under the additional assumption

of capital reversibility, that is full capital depreciation (ei = 1 for i = 1, . . . , d), all

the results of Sections 3, 4 and 5 remain valid. One can check it, by replacing the

scalar product θ · xt by the cost function Θ (xt) in each proof of these sections.

6 Applications

6.1 An economy with convex-concave production func-

tion

Focus on a one-sector economy with a convex-concave production function, where

a single good is consumed and invested. Agent’s preferences are the same:

max
∞∑
t=0

δtu (ct) ,

ct + kt+1 ≤ F (kt) ,

ct, kt ≥ 0

for any t ≥ 0.

This model is considered by Le Van and Dana [8] and by Dechert and Nishimura [4]

in a more general context where the production is no longer convex-concave. Using

the concept of net gain of investment, we can address the issue from a different

viewpoint and quickly recover the main results of the third chapter in Le Van and

Dana [8].

For simplicity, assume that F is a continuous S-shaped function with F (0) = 0:

strictly convex for kt < kI and strictly concave for kt > kI where kI denotes the

inflection point. Moreover, suppose F ′(kt) < 1 for any kt large enough. This

condition implies a bounded economy. Hence, as in Theorem 2 by Dechert and

Nishimura [4] or in Proposition 3.4.5 by Le Van and Dana [8], applying our Theorem

5.1, we find that any optimal path converges to a steady state. We require also

δF ′ (kI) > 1. Otherwise, F ′ (kI) being the highest productivity level, δF ′ (k) < 1
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for every k and the economy converges to zero: the unique steady state is the trivial

one.

Dechert and Nishimura [4] and Le Van and Dana [8] show that, under mild dis-

counting, any optimal path with k0 > 0 converges to a strictly positive steady state.

Let us explain why.

The function of net gain of investment is defined as ψ (kt) ≡ δF (kt) − kt. Under

mild discounting (δ > 1/F ′ (0)), we have ψ (0) = 0 < ψ (kt) for every 0 < kt ≤ kI .

Then, starting from 0 < k0 ≤ kI , the optimal path does not converges to zero.

Therefore, the limit is strictly positive. Starting from k0 ≥ k∗, every optimal path

is bounded from below by this limit.

Proposition 6.1. Assume that δ > 1/F ′ (0) (mild discounting). Let k0 > 0. The

economy converges to a strictly positive steady state, which is the unique solution

to δF ′(k) = 1.

For a detailed proof of Proposition 6.1, see the Appendix.

Now, consider the problem with δ < 1/F ′ (0). As above, we assume 1/F ′ (kI) < δ

and F ′ (∞) < 1 < 1/δ. We consider two subcases: (1) intermediate discounting

and (2) strong discounting. Let us provide a formal definition.

Since F ′ (0) < 1/δ and F ′ (∞) < 1/δ < F ′ (kI), there exist ks and ks with 0 < ks <

kI < ks solutions to the equation F ′ (k) = 1/δ.

The intermediate and strong discounting are defined as follows:7

Lemma 6.1. 1. Intermediate discounting: ks/F (ks) < δ < 1/F ′ (0).

2. Strong discounting: δ < ks/F (ks).

The following lemma is key to obtain the main results.

Lemma 6.2. Let 1/F ′ (kI) < δ < 1/F ′ (0). Then:

1. ks = arg min0≤k≤ks ψ (k).
7Since ψ(ks) = maxk≥ks

ψ (k), our notions are equivalent to the ones in Le Van and Dana [8],

pages 50-51.
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2. If ks/F (ks) < δ < 1/F ′ (0) (intermediate discounting), ks = arg maxk≥0 ψ (k).

Moreover, ks is a steady state.

3. If 1/F ′ (kI) < δ < ks/F (ks) (strong discounting), ψ (k) < ψ (0) = 0 for any

k > 0.

0 is always a (trivial) steady state. In the case of intermediate discounting, since

ks = arg maxk≥0 ψ (k), by Corollary 4.1, ks is also a steady state.

Since ks = arg min0≤k≤ks ψ (k), starting from k0 6= ks, by part (2) of Theorem 5.1,

every optimal path converges either to 0 or ks. Thus, if ks is a steady state, the

interval [0, ks] is a poverty trap with limt→∞ kt = 0 if k0 < ks, and kt = ks for any

t ≥ 0 if k0 = ks.8

Proposition 6.2. If ks is a steady state, then every optimal path starting from

k0 < ks converges to 0 and every optimal path starting from k0 > ks converges to

ks.

What happens if ks is not a steady state?9

Let us show that an upper bound, say k, exist for the poverty trap. From point 2 of

Lemma 6.2, we know that, under intermediate discounting, ks is a steady state. We

also have ψ (k0) > 0 for every k < k0 ≤ ks. Hence, starting from k0, the economy

converges to ks.

Lemma 6.3. If ks/F (ks) < δ < 1/F ′ (0) (intermediate discounting), then there

exists k > 0 solution to δ = k/F (k) such that any optimal path starting from

k0 ≥ k converges to ks.

We can prove the existence of a poverty trap
[
0, k̂
)
⊂ [0, k].

Proposition 6.3. Under intermediate discounting, there exists 0 < k̂ ≤ k such

that the economy converges to 0 if k0 < k̂ and to ks if k0 > k̂.
8See also Corollary 3.4.3 and Proposition 3.4.6 in Le Van and Dana [8].
9ks is no longer a steady state under some sufficient conditions considered in Proposition 3.4.7

in Le Van and Dana [8].
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Under strong discounting, ks plays the role of k.

Proposition 6.4. Let 1/F ′ (kI) < δ < ks/F (ks) (strong discounting).

1. If ks is not a steady state, then the economy converges to 0 for any k0 ≥ 0.

2. If ks is a steady state, then there exists 0 < k̂ ≤ ks such that the economy

converges to 0 if k0 < k̂ and to ks if k0 > k̂.

6.2 An economy with renewable resources

Consider the economy à la Dam et al. [3]. In this article, the authors study an

economy with physical capital kt and renewable resources yt. The regeneration

capacity of the renewable resources is a function of the existing stock and the

industrial activity, which is an increasing function of capital stock kt.

Precisely, given the stocks of resources and capital (kt, yt) at time t, the natural re-

sources at time t+1 are given by a regeneration function η (kt, yt) which is decreasing

and convex in kt, and increasing and concave in yt. The production function f and

the regeneration function η are supposed to satisfy the Inada conditions: f ′ (0) =∞

and η′y (k, 0) =∞ for any k > 0.

The capital good can be consumed or invested at the unit price, while the natural

resources can be only invested at the price p > 0. Thus, θ = (1, p) with xt =

(kt, yt) ∈ R2
+. For simplicity, the physical capital fully depreciates (ek = 1 ), while

the natural resources do not (ey = 0). The consumer faces the following program:

max
∞∑
t=0

δtu (ct) ,

subject to

ct + kt+1 + pyt+1 ≤ F (kt, yt) ≡ f (kt) + pη(kt, yt),

0 ≤ yt+1 ≤ η (kt, yt) .

Given the stock (kt, yt) ∈ R2
+, the set of affordable outputs is

Γ (kt, yt) ≡
{

(kt+1, yt+1) ∈ R2
+ such that kt+1 + pyt+1 ≤ F (kt, yt) and yt+1 ≤ η (kt, yt)

}
.
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The additional constraint yt+1 ≤ η (kt, yt) simply means that we can sell the renew-

able resources to buy the physical capital but not the converse. The set affordable

outputs is smaller that the budget set

B(kt, yt) ≡
{

(kt+1, yt+1) ∈ R2
+ such that kt+1 + pyt+1 ≤ F (kt, yt)

}
since this set may contain (kt+1, yt+1) such that yt+1 > η(kt, yt). The results of the

previous sections no longer apply directly.

Let us adapt the proof of Lemma 3.1 to this new context. Given the initial condition

(k0, y0), the inequality 3.2 becomes

u (F (k0, y0)− k0 − py0) ≤ (1− δ) v (k0, y0) . (6.1)

Indeed, recall that inequality 3.2 is satisfied if either k0+py0 > F (k0, y0) or (k0, y0) ∈

Γ (k0, y0). Now, focus on the remaining case, k0+py0 ≤ F (k0, y0) and y0 > η (k0, y0).

By the concavity of η with respect to y, this inequality implies that y0 > y, the

solution to η (k0, y) = y. Moreover, we have y < η (k0, y) for 0 < y < y and

y > η (k0, y) for y > y.

Choose ỹ such that 0 < ỹ < y and let x̃ ≡ (k0, ỹ). Then, x̃ satisfies the following

properties:

1. θ · x̃ < θ · x0,

2. F (x̃)− θ · x̃ = F (x0)− θ · x0.

The first property implies that x̃ ∈ Γ (x0). The second one jointly with ỹ < η (k0, ỹ)

implies that the stock x̃ belongs to Γ(x̃). In other words, this stock can replicate

itself. Then, the sequence (x0, x̃, x̃, . . . ) is feasible. Combining with θ · x0 > θ · x̃,

we get

(1− δ) v (x0) ≥ (1− δ)u (F (x0)− θ · x̃) + (1− δ)
∞∑
t=1

δtu (F (x̃)− θ · x̃)

> (1− δ)
∞∑
t=0

δtu (F (x0)− θ · x0) = u (F (x0)− θ · x0) .
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Hence, inequality 6.1 is proven for any (k0, y0). Following the same arguments in

the proofs of Propositions 3.1 and 3.2, and in Theorem 5.1, we are able to conclude

that the economy always converges to its set of steady states (see also Dam et al.

[3]).

7 Concluding comments

One-dimensional nonconvex economies have been studied in the literature. Readers

are referred to Mitra and Ray [12], Dechert and Nishimura [4] and Kamihigashi

and Roy [7] for a deterministic setting, and to Nishimura and Stachurski [15], and

Nishimura et al. [16] for a stochastic approach. The supermodular property of

their models is key. When supermodularity fails, the economic dynamics may ex-

hibit complex behavior. Under a sufficiently low discount factor, cycles and chaos

may arise, even in one-dimensional economies. Montrucchio and Sorger [13], and

Nishimura and Sorger [14] provide excellent surveys of this literature.

In our model, we have considered a multi-dimensional economy à la Ramsey, where

income is shared into consumption and investment, and proven its convergence

to the set of steady states. Therefore, the study of the long-run behavior of the

economy comes down to the analysis of this set, which, in literature, is often finite.

The Euler equations allow us to compute the set of steady states and to study their

properties.

8 Appendix

8.1 Proof of Lemma 3.1

The inequality θ · x0 ≤ F (x0) implies that the constant sequence (x0, x0, . . .) is

feasible. Hence,

v (x0) ≥
∞∑
t=0

δtu (F (x0)− θ · x0) =
u (F (x0)− θ · x0)

1− δ

and we obtain (2.2).
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8.2 Proof of Proposition 3.1

Fix any x0 and an optimal path (xt)
∞
t=0 starting from x0.

(1) Suppose that ψ (xt) ≤ ψ (x0) for every t ≥ 1. According to (3.1), we have

∞∑
t=0

δtct = F (x0) +
∞∑
t=0

δtψ (xt+1) ≤ F (x0) +
∞∑
t=0

δtψ (x0)

= F (x0) +
ψ (x0)

1− δ
=
F (x0)− θ · x0

1− δ
. (8.1)

First, observe that this implies F (x0) ≥ θ · x0. Hence, x0 ∈ Γ(x0) and the sequence

(x0, x0, . . . ) is feasible. Moreover,

u (F (x0)− θ · x0) ≥ u

(
(1− δ)

∞∑
t=0

δtct

)
.

Noticing that (1− δ)
∑∞

t=0 δ
t = 1 and, using Jensen inequality, we obtain

u (F (x0)− θ · x0) ≥ u

(
(1− δ)

∞∑
t=0

δtct

)
≥ (1− δ)

∞∑
t=0

δtu (ct) = (1− δ) v (x0) .

(8.2)

Inequalities (8.2) entail that (x0, x0, . . . ) is also an optimal path. Moreover, inequal-

ities in (8.2) become equalities. This implies ψ (xt) = ψ (x0) for every t ≥ 0 because,

if ψ (xt) < ψ (x0) for some t, then (8.1) writes (1− δ)
∑∞

t=0 δ
tct < F (x0) − θ · x0

and, by the Jensen inequality and (8.2) taken with equalities,

(1− δ)
∞∑
t=0

δtu (ct) ≤ u

(
∞∑
t=0

(1− δ) δtct

)
< u (F (x0)− θ · x0) = (1− δ) v (x0) ,

leading to a contradiction with the optimality of (ct)
∞
t=0.

Since u ((1− δ)
∑∞

t=0 δ
tct) = (1− δ)

∑∞
t=0 δ

tu (ct), the strict concavity of u jointly

with the Jensen inequality implies ct = c0 and, therefore, F (xt)−θ ·xt+1 = F (x0)−

θ · x1 for any t ≥ 0. Combining this with ψ (xt) = ψ (x0), we get

δF (xt)− θ · xt = δF (x0)− θ · x0, (8.3)

δ [F (xt)− θ · xt+1] = δ [F (x0)− θ · x1] . (8.4)
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Subtracting (8.3) from (8.4), we find θ · xt = δθ · xt+1 + (θ · x0 − δθ · x1) for any t

and, then,

θ · xt = δ2θ · xt+2 + δ (θ · x0 − δθ · x1) + (θ · x0 − δθ · x1)

= δT θ · xt+T +
1− δT

1− δ
(θ · x0 − δθ · x1) =

θ · x0 − δθ · x1

1− δ
, (8.5)

where we have obtained the last equality by letting T converge to infinity and using

condition 6 in Assumption F1.

Setting t = 1 in equality (8.5), we get θ · x0 = θ · x1. Hence, for any t ≥ 0, we have

θ · xt = θ · x0. As ψ (xt) = ψ (x0), this also implies that F (xt) = F (x0).

(2) Assume the contrary, that is that, for every t ≥ 0, we have ψ (xt) ≤ ψ (x0).

Repeating the arguments of part 1, we obtain that the constant path (x0, x0, . . .) is

optimal, a contradiction.

8.3 Proof of Proposition 3.2

(1) We observe that (3.2) holds with x0, but also with xt. Consider the case θ ·xt ≤

F (xt). Using (3.1), we obtain along the optimal path:

u (F (xt)− θ · xt) ≤ (1− δ) v (xt) = (1− δ)
∞∑
s=0

δsu (ct+s)

≤ u

(
(1− δ)

∞∑
s=0

δsct+s

)
= u

(
(1− δ)F (xt) + (1− δ)

∞∑
s=0

δsψ (xt+s+1)

)
.

This implies

F (xt)− θ · xt ≤ (1− δ)F (xt) + (1− δ)
∞∑
s=0

δsψ (xt+s+1) , (8.6)

which is equivalent to

ψ (xt) ≤ (1− δ)
∞∑
s=0

δsψ (xt+s+1) . (8.7)

In the case where θ · xt > F (xt), it is clear that (8.6) holds, and we obtain (8.7).
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(2) Using the result in part 1, we get

(1− δ)
∞∑
s=0

δsψ (xt+s)

= (1− δ)ψ (xt) + δ (1− δ)
∞∑
s=0

δsψ (xt+s+1)

≤ (1− δ)

[
(1− δ)

∞∑
s=0

δsψ (xt+s+1)

]
+ δ

[
(1− δ)

∞∑
s=0

δsψ (xt+s+1)

]

= (1− δ)
∞∑
s=0

δsψ (xt+s+1) .

8.4 Proof of Corollary 4.1

By the definition of xM , for any optimal path (xt)
∞
t=0, we have ψ (xt) ≤ ψ

(
xM
)
for

any t. If x0 = xM , then ψ (xt) ≤ ψ (x0) for any t. Proposition 3.1 holds, that is

x0 = xM is a steady state.

8.5 Proof of Proposition 4.1

Let a bounded optimal path exist.

(1) First, we prove that if x∗ ∈ S∗, then x∗ is a steady state.

Suppose the contrary: x∗ is not a steady state. Take any optimal path (xt)
∞
t=0

and the subsequence (xtn)∞n=0 such that limn→∞ xtn = x∗. For each n, consider the

sequence χtn ≡ (xtn , xtn+1, xtn+2, . . . ). By the compactness of the economy with

respect to the product topology, there exists a subsequence
(
χtnk

)∞
k=0

of (χtn)∞n=0

that converges to some sequence χ∗ in this topology. Let χ∗ ≡ (x∗0, x
∗
1, . . . ). The

convergence in product topology means that for any t ≥ 0, limn→∞ xtnk
+t = x∗t .

By the upper hemi-continuity property of the optimal policy correspondence σ, the

sequence χ∗ is an optimal path starting from x∗0 = limn→∞ xtn = x∗.

Because of Proposition 3.1 and the assumption that x∗ is not a steady state, there

exists some T such that ψ (x∗T ) > ψ (x∗). By the convergence in the product

topology, limn→∞ xtnk
+T = x∗T . Hence, there exists a sufficiently large k such that

ψ
(
xtnk

+T

)
> ψ (x∗) = supt≥0 ψ (xt), a contradiction.
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Consider x∗, that is a steady state. Since (x∗, x∗, . . .) is a bounded optimal path

beginning from x∗, by the definition of S∗, x∗ ∈ S∗.

(2) Assume that a critical date T exists such that ψ (xT ) = supt≥0 ψ (xt). The

statement is a direct consequence of Proposition 3.1.

8.6 Proof of Theorem 5.1

(1) Fix an optimal path (xt)
∞
t=0 and assume that it is bounded. Let s∗ ≡ supt≥0 ψ (xt).

We will prove that the sequence (xt)
∞
t=0 converges to S∗, in the sense that, for any

ε > 0, there exists T such that, for t ≥ T , xt ∈ S∗ + B (0, ε), where B (0, ε) is the

sphere of radius ε centered in 0d.

Suppose the contrary. Then there exists some ε > 0 and a subsequence (xtn)∞n=0

such that, for any n , xtn /∈ S∗ +B (0, ε). Let s∗ = supn≥0 ψ(xtn).

We claim that s∗ < s∗. Indeed, assume the contrary, s∗ = s∗. From the boundedness

of the optimal sequence, there exists a subsequence
(
xtnk

)∞
k=0

which converges to

some x̂. By definition of (xtn)∞n=0, we have x̂ /∈ S∗, while, if s∗ = s∗, then x̂ meets

the two conditions for x̂ ∈ S∗, a contradiction. Hence, s∗ < s∗.

Let us prove that

lim
t→∞

[
(1− δ)

∞∑
s=0

δsψ (xt+s)

]
= s∗.

Indeed, by part 2 of Proposition 3.2, the sequence ((1− δ)
∑∞

s=0 δ
sψ (xt+s))

∞
t=0 is

increasing. The following limit exists and it is not larger than s∗:

lim
t→∞

[
(1− δ)

∞∑
s=0

δsψ (xt+s)

]
≤ s∗. (8.8)

Either there is T such that ψ (xT ) = s∗ and, according to part 2 of Proposition

4.1, ψ (xt) = ψ (xT ) for any t ≥ T , or there is a subsequence (xτn)∞n=0 such that

limn→∞ ψ (xτn) = s∗.

In the first case,

s∗ = ψ (xT ) = (1− δ)
∞∑
s=0

δsψ (xT+s) = lim
t→∞

[
(1− δ)

∞∑
s=0

δsψ (xt+s)

]
.
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In the second case, according to parts 1 and 2 (monotonicity property) of Proposi-

tion 3.2, we get

s∗ = lim
n→∞

ψ (xτn) ≤ lim
n→∞

[
(1− δ)

∞∑
s=0

δsψ (xτn+s+1)

]
= lim

t→∞

[
(1− δ)

∞∑
s=0

δsψ (xt+s)

]
,

and, according to (8.8), again limt→∞ [(1− δ)
∑∞

s=0 δ
sψ (xt+s)] = s∗.

For every n, we have

(1− δ)
∞∑
s=0

δsψ (xtn+s) = (1− δ)ψ (xtn) + δ (1− δ)
∞∑
s=0

δsψ (xtn+s+1)

≤ (1− δ)ψ(xtn) + δs∗,

which implies

lim
n→∞

[
(1− δ)

∞∑
s=0

δsψ (xtn+s)

]
≤ lim

n→∞
[(1− δ)ψ (xtn) + δs∗] ≤ (1−δ)s∗+δs∗ < s∗,

a contradiction. Thus, any bounded optimal path (xt)
∞
t=0 converges to S∗.

(2) Let us prove that, for any bounded optimal path (xt)
∞
t=0, limt→∞ ψ (xt) =

supt≥0 ψ (xt).

Assume that there exists a subsequence (xtn)∞n=0 such that limn→∞ ψ (xtn) = s < s∗.

Using the same arguments as in the proof of the first part of the Theorem, for every

n, we have

(1− δ)
∞∑
s=0

δsψ (xtn+s) = (1− δ)ψ (xtn) + δ (1− δ)
∞∑
s=0

δsψ (xtn+s+1)

≤ (1− δ)ψ(xtn) + δs∗.

Hence, limt→∞ (1− δ)
∑∞

s=0 δ
sψ (xtn+s) ≤ (1− δ)s+ δs∗ < s∗, a contradiction.

8.7 Proof of Proposition 5.1

Fix an optimal path (xt)
∞
t=0. By Theorem 5.1, if this sequence is bounded, then it

converges to the set of steady states.

Consider the case of an unbounded optimal path (xt)
∞
t=0, with supt≥0 ‖xt‖ = ∞.

We will prove that limt→∞ ‖xt‖ =∞.
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By part 1 of Assumption A1, we have supt≥0 ψ (xt) =∞. Using Proposition 3.2,

lim sup
t→∞

[
(1− δ)

∞∑
s=0

δsψ (xt+s)

]
≥ lim sup

t→∞
ψ(xt) =∞.

Applying again Proposition 3.2, we obtain

lim
t→∞

[
(1− δ)

∞∑
s=0

δsψ (xt+s)

]
= lim sup

t→∞

[
(1− δ)

∞∑
s=0

δsψ (xt+s)

]
=∞.

By part 2 of Assumption A1, the existence of a subsequence (xtn)∞n=0 that is bounded

in a compact set implies

lim inf
n→∞

[
(1− δ)

∞∑
s=0

δsψ (xtn+s)

]
<∞,

a contradiction. The sequence (xt)
∞
t=0 diverges to infinity, with limt→∞ ‖xt‖ =∞.

8.8 Proof of Proposition 6.1

By Euler equation and the differentiability of F , a strictly positive steady state is

solution to δF ′(k) = 1. Since δF ′(k) > 1 for 0 < k < kI , and F is strictly concave

in [kI ,∞), the positive solution to this equation is unique.

If δF ′ (0) ≥ 1, then δF ′ (k) > 1 for any 0 < k ≤ kI , where kI denotes the inflection

point. Hence, the function ψ (k) = δF (k)− k is strictly increasing in [0, kI ] and we

have ψ (k) > ψ (0) for any 0 < k ≤ kI . By the second part of Theorem 5.1, any

optimal path with initial condition 0 < k0 ≤ kI does not converge to 0, but to a

strictly positive steady state k∗.

Consider now an optimal path starting from k0 > kI . Using Theorem 1 and Corol-

lary 1 in Dechert and Nishimura [4], we have that this path is bounded from below

by k∗.

8.9 Proof of Lemma 6.2

(1) ψ is strictly convex in [0, kI ] because F is strictly convex in the same interval.

Hence, ψ′ (ks) = 0 implies that ks = arg min0≤k≤kI ψ (k). The property that ψ (k)

is increasing in completes the proof.
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(2) An intermediate discounting implies ψ (ks) > ψ (0). From the strict concavity of

ψ on [kI ,∞) and ψ′ (ks) = 0, we have ψ (ks) = maxkI≤k ψ (k). Then, ψ (ks) > ψ (kI)

and ψ (ks) > max {ψ (kI) , ψ (0)} = max0≤k≤kI ψ (k). According to Corollary 4.1,

ks is also a steady state.

(3) A strong discounting implies ψ (ks) < ψ (0) = 0. From the strict concavity

of ψ on [kI ,∞) and ψ′ (ks) = 0, we have maxkI≤k ψ (k) = ψ (ks) < 0. Then,

ψ (kI) < maxkI≤k ψ (k) < 0. The strict convexity of ψ on [0, kI ] jointly with ψ (kI) <

0 = ψ (0) ensures that ψ (k) < 0 for any k ∈ (0, kI ].

8.10 Proof of Proposition 6.2

Let ks be a steady state. Consider an optimal path (kt)
∞
t=0 starting from k0. If

k0 < ks, by Theorem 1 in Dechert and Nishimura [4], kt < ks for any t. This path

does not converges to ks since, according to point 1 of Lemma 6.2, ψ (kt) > ψ (ks) for

any t and, according to point 2 of our Theorem 5.1, limt→∞ ψ (kt) = supt≥0 ψ (kt).

If this path converges to some 0 < k < ks, then k is a strictly positive steady state.

Euler equation implies that F ′ (k) = 1/δ and ψ′(k) = 0. But ks is the lower solution

to the equation F ′ (k) = 1/δ, a contradiction. Hence, limt→∞ kt = 0.

If k0 > ks, by Theorem 1 in Dechert and Nishimura [4], we have kt > ks for any t.

This path does not converges to ks since, according to point 1 of Lemma 6.2, ψ (kt) >

ψ (ks) for any t and, according to point 2 of our Theorem 5.1, limt→∞ ψ (kt) =

supt≥0 ψ (kt). Thus, this optimal sequence converges to a steady state k > ks.

According to the Euler equation, since k is a strictly positive steady state, F ′ (k) =

1/δ. But ks is the higher solution to the equation F ′ (k) = 1/δ, a contradiction.

Hence, limt→∞ kt = ks.

8.11 Proof of Lemma 6.3

Under the intermediate discounting, δ < 1/F ′ (0), that is ψ′ (0) < 0, and ψ (ks) >

ψ (0) = 0. Thus, there exists a strictly positive solution k > ks to the equation

ψ (k) = 0. Let (kt)
∞
t=0 be an optimal path starting from k.
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Recall that there are three candidates for the limit point of this sequence: 0, ks and

ks.

Assume that this path converges either to 0 or ks. By point 2 of Proposition

3.1, point 2 of Theorem 5.1 and the fact that k is not a steady state, the se-

quence (ψ(kt))
∞
t=0 increases strictly to its supremum. We then obtain ψ (k) <

limt→∞ ψ (kt) ≤ 0, a contradiction. Hence, limt→∞ kt = ks.

Starting from k0 ≥ k, by Theorem 1 in Dechert and Nishimura [4], the optimal path

is bounded away from ks and, therefore, it converges to ks.

8.12 Proof of Proposition 6.3

If ks/F (ks) < δ < 1/F ′ (0) (intermediate discounting), then F ′ (0) < 1/δ <

F (ks) /ks ≤ maxk>0 [F (k) /k] and Theorem 3.4.2 in Le Van and Dana [8] applies.

8.13 Proof of Proposition 6.4

(1) Fix 0 ≤ k0 ≤ ks and k0 6= ks. Since ψ (k0) > ψ (ks), because of point 2 of

Theorem 5.1, any optimal path starting from k0 converges either to 0 or to ks. If

ks is not a steady state, then 0 is the unique candidate.

According to Corollary 1 in Dechert and Nishimura [4], every optimal path is mono-

tonic. Consider k0 ∈ (ks, k
s). The convergence of any optimal path starting from

k0 to 0 implies that any optimal path starting from ks converges also to 0 by Theo-

rem 1 in Dechert and Nishimura [4]. Since neither ks nor ks are steady states, any

optimal path converges to 0.

(2) If 1/F ′ (kI) < δ < ks/F (ks) (strong discounting), then F (ks) /ks < 1/δ <

F ′ (kI). Then, maxk>0 [F (k) /k] < 1/δ and part 2 of Theorem 3.4.3 in Le Van and

Dana [8] applies.
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