Title

The broad spectrum of *TP53* mutations in CLL: evidence of multiclonality and novel mutation hotspots.

Running title (60 max)

Spectrum of TP53 mutations in CLL

Lazarian et al.

Supplementary materials

Supplementary Figure S1: Genetic landscape of *TP53* alterations.

Supplementary Figure S2: High frequency of AT>GC transition in CLL.

Supplementary Figure S3: Copy-neutral LOH (CN-LOH) is frequent in CLL and can be validated by SNP analysis.

Supplementary Figure S4: Identification of TP53 mutation hotspots in CLL in codon 234.

Supplementary Figure S5: Multiple *TP53* variants in codon 234 in a same patient are associated with CLB exposure.

Supplementary Figure S6: Variant NM_000546_c.626_627del (NP_000537_p.Arg209LysfsTer6) is a hotspot mutation in CLL.

Supplementary Figure S7: Frequency of splice mutations in the *TP53* gene among the various types of cancer.

Supplementary Figure S8: CLL hotspot mutation in the splice acceptor signal of intron 6.

Supplementary Figure S9: Wide variant distribution in the number of *TP53* variants in CLL patients.

Supplementary Figure S10 to 10p: TP53 mutations in FILO-cohort polymutated patients are in different alleles.

Supplementary figure S11 A to E: Long-range sequencing of CLL patients shows that *TP53* mutations in multi-mutated patients are in different alleles.

Supplementary Figure S12: Multiple *TP53* variants are found at the same frequency in patients with or without 17p deletion.

Supplementary Figure S13: Distribution of TP53 hotspot variants in CLL patients.

Supplementary Table S1: Patient characteristics.

Supplementary Table S2: Mutations summary.

Supplementary Table S3: Mutation description. (Provided as an Excel file)

Supplementary Table S4: Benign polymorphisms identified in CLL patients included in UMD.

Supplementary Figure S1: Genetic landscape of TP53 alterations.

A: Data from UMD_TP53 (R2, 2022) for solid tumors. **B**: Data from UMD_TP53 (R2, 2022) for hematological neoplasia. LYMPH and MYELOD: all lymphoid and myeloid neoplasms respectively. UMD_CLL: all chronic lymphocytic leukemia except FILO data. FILO: data from the whole FILO cohort or sequenced via Sanger (FILO Sanger or NGS 'FILO NGS). Organ site definition for all tumors in UMD was performed using the OncoTree classification system {Kundra et al., 2021, #201830}.

Supplementary Figure S2: High frequency of AT>GC transition in CLL.

A: Mutation spectra were obtained from the UMD_TP53 database for solid tumors (BOWEL or LUNG) or lymphoid and myeloid neoplasm (LYMPH or MYELOID). **B**: Profile of somatic mutations in four CLL patients (CLL1 to 4) analyzed by whole genome sequencing {Puente et al., 2011, #62374}. Organ site definition for all tumors in UMD was performed using the OncoTree classification system {Kundra et al., 2021, #201830}.

Supplementary Figure S3: Copy-neutral LOH (CN-LOH) is frequent in CLL and can be validated by SNP analysis.

A: Distribution of 11 *TP53* SNPs located in the region covered by NGS sequencing. For each SNP, the population frequency is shown in red. **B**: Haplotype of patients without 17p deletion with high (top) or low (bottom) VAF for *TP53* mutation. For each patient, the approximate position of the *TP53* variant is shown as a red bar.

Supplementary Figure S4: Identification of TP53 mutation hotspots in CLL in codon 234.

A: Distribution of mutations at each codon of the *TP53* protein. Only single nucleotide substitutions are analyzed. Classical *TP53* hotspot mutations are indicated in red with codons 175, 248 and 273 found in every type of cancer. **B**: Close up from figure A for codons 230 to 240 for different types of cancer. Data were updated from the work of Lazarian *et al*. with new patients from the FILO cohort {Lazarian *et al*. 2022, #194534}.

LRG_321t1	TP53alpha	Disease_name	Sample_ID	Complexity	Authors	Year	Journal	Treatment
c.701A>G	p.Tyr234Cys	CLL	SLS_305	ММ	Present work	NR	NR	Multiple lines of treatment including CLB
c.700T>C	p.Tyr234His	CLL	SLS_305	ММ	Present work	NR	NR	Multiple lines of treatment including CLB
c.701A>G	p.Tyr234Cys	CLL	nAVC_129	ММ	Present work	NR	NR	Multiple lines of treatment including CLB
c.700T>C	p.Tyr234His	CLL	nAVC_129	ММ	Present work	NR	NR	Multiple lines of treatment including CLB
c.701A>G	p.Tyr234Cys	CLL	CLL-NHLBI-0011	ММ	Landau DA, et al.	2017	Nat Commun	Treated; no specific information
c.701A>C	p.Tyr234Ser	CLL	CLL-NHLBI-0011	мм	Landau DA, et al.	2018	Nat Commun	Treated; no specific information
c.701A>G	p.Tyr234Cys	CLL	8	ММ	Malcikova J, S et al.	2015	Leukemia	Multiple lines of treatment including CLB
c.701A>C	p.Tyr234Ser	CLL	8	ММ	Malcikova J, S et al.	2015	Leukemia	Multiple lines of treatment including CLB
c.701A>G	p.Tyr234Cys	CLL	485	ММ	Malcikova J, S et al.	2015	Leukemia	Multiple lines of treatment including CLB
c.701A>C	p.Tyr234Ser	CLL	485	мм	Malcikova J, S et al.	2015	Leukemia	Multiple lines of treatment including CLB
c.700T>C	p.Tyr234His	CLL	485	мм	Malcikova J, S et al.	2015	Leukemia	Multiple lines of treatment including CLB
c.701A>G	p.Tyr234Cys	AML	AML_547	DMU	Metzeler KH, et al.	2016	Blood	Multiple lines of treatment: no alkylating agents
c.700T>C	p.Tyr234His	AML	AML_547	DMU	Metzeler KH, et al.	2016	Blood	Multiple lines of treatment: no alkylating agents

Supplementary Figure S5: Multiple *TP53* variants in codon 234 in a same patient are associated with CLB exposure.

A: IGV plot demonstrates the phasing of patient SLS_205 with multiple *TP53* variants in codon 234. Individual DNA sequencing reads harboring mutations within the same exon and no more than 50 nucleotides apart were analyzed. **B**: Details for the six patients harboring multiple mutations in codon 234 included in the entire UMD_TP53 database.

в

Supplementary Figure S6: Variant NM_000546_c.626_627del (NP_000537_p.Arg209LysfsTer6) is a hotspot mutation in CLL.

Distribution of frameshift mutations at each codon of the *TP53* protein in various types of cancer. Only insertions and deletions are analyzed. Scales for the distributions are not standardized. The insets for non-chronic lymphocytic leukemia have been standardized to chronic lymphocytic leukemia data to emphasize the high frequency of variant NM_000546_c.626_627del. AML/MDS: acute myeloid leukemia and myelodysplastic syndrome. Lung: NSCLC and SCLC.

Supplementary Figure S7: Frequency of splice mutations in the *TP53* gene among the various types of cancer.

A: Cancer types were classified according to organ sites as defined in OncoTree. LYMPH: class including all CLL patients (5795) as well as other lymphoid cases (5392). **B**: Cancer types were classified according to tumor types.

Number of variants

Supplementary Figure S8: CLL hotspot mutation in the splice acceptor signal of intron 6.

Distribution of mutations in the 20 splice signals of the 10 introns of the *TP53* gene for various types of cancer. Data are taken from the most recent release of UMD_TP53.

Supplementary Figure S9: Wide variant distribution in the number of *TP53* variants in CLL patients.

A: *TP53* cancer types were analyzed for tumors carrying two (DM), three (MM3) or more than three (MM4+) *TP53* variants. CLL tumors were split into two subgroups including either FILO or UMD_CLL patients. **B**: Number of mutations per patient. SM: patients with a single mutation; DM: patients with two *TP53* variants: MMn: multi-mutated patients with n mutations. **C and D**: Distribution of the number of mutations in tumors from the studies of Catherwood *et al.* and Bomben *et al.* {Bomben et al., 2021, #169498 ; Catherwood et al., 2022, #111726}.

AVC_40

Supplementary Figure S10a

AVC_62

Supplementary Figure S10b

Supplementary Figure S10c

Supplementary Figure S10d

Supplementary Figure S10e

p13.2 p13.1	p12 p11.2	p11.1	q11.2 c	12 q21.1	q21.31	q21.33	q22 q	23.1 q23.3	q24.2	q24.3	q25.1	q25.3
				11	7 hn							
7 579 300 bp	7 579 320 bp		7 579 340 bp		7 579 360 bp		75	79 380 bp		7 57	9 400 bp	
	I				I	I					1	I
P53_11.943473			TP53_1	1.1216011						TP53_	11.1324631	
[0 - 10]												
			-	-			_	<u> </u>		_		
-			≞	_	_							
	_		· · · · · · · · · · · · ·		-		Ξ-				_	
-	·				_	-						
-			-								-	1
					_							
							_				l	
		-			_							
								-	-			
									-			
												-
C T C A G G G C A A C T G A C	C G T G C A A G T C A C A G	A C T T G G C T G	T C C C A G A A T G C	A A G A A G C C	C A G A C G G A A	ACCGTAGCT	бссстб	GTAGGTTTT	CTGGGA	AGGGAC	AGAAGAT	G A <mark>C</mark> A G G

7579311 c.375+1G>T 7579404 c.282_283ins

Supplementary Figure S10f

AVC_62

AVC_20

7577105 7577108 c.833C>A c.830G>T

Supplementary Figure S10g

AVC_69

Supplementary Figure S10h

Supplementary Figure S10i

7577570 c.711_714del 7577580

AVC_47

c.701A>G

Supplementary Figure S10j

GUI NIC 7577057 7577094 c.876delA c.844C>T 165 bp 7 577 020 bp 7 577 040 bp 7 577 060 bo 7 577 100 bp 7 577 000 bp 7 577 080 bp 7 577 ' -----i i GCTTCTTGTCCTGCTTGCTTACCTCGCTTAGTGCTCCCTGGGGGGCAGCTCGTGGTGAGGCTCCCCTTTCTTGCGGAGATTCTCTTCCTCTGTGCGCCGGTCTCTCCCAGGACAGGCACAAAACA R K T S G P P L EHHPEGKK N E E E TP53 R D R G P C A C V R L

Supplementary Figure S10k

ANG_9

		7578 c.65	3190 9A>G			75782 c.5841	65 Г>С
7 578 140 bp	7 578 160 bp 	7 578 180 bp	7 578 200 bp I I	7 578 220 bp	7 578 240 bp	7 578 260 bp I I	7 578 280 bp
							^
TP53_8.884088			TP53_10.1.3	366103			TP53_10.210186
(Q - 10)							
	CAGAGACCCCAGTTGCAA	ACCAGACCTCAGGCGGCTC	ATAGGGCACCACCACACTA Y P V V V S	H R F T N R	D D L Y E V	CGCAAATTTCCTTCCACTCGGA R L N G E V R I	TAAGATGCTGAGGAGGGGCCAGACCTAAGA
				1903			
chr17:7 578 164							685M 01 897M

Supplementary Figure S10I

Supplementary Figure S10n

Supplementary Figure S10n

ANG_12

Supplementary Figure S10o

ANG_13

77

4		7577517 c.764T>C	— 105 bp	7577538 c.743G>A	
77 480 bp	7 577 500 bp	7 577 520 bp		7 577 540 bp	7
	•				•
				т	
		c			
		U			
				Т	
		Т		т	
				T	
				Ŧ	
				С	
				Т	
		U	0		
		G			
					с
		G			
С		т		_	
				1	
				Т	
GGTGGCAAGTGC	CTCCTGACCTGGAGTCTT	CCAGTGTGATGATGGT	GAGGATGG	GCCTCCGGTTCATG	CGCCCATGC

Supplementary Figure S10p

Supplementary Figure S10 to 10p: *TP53* mutations in FILO-cohort polymutated patients are in different alleles.

Each IGV plot depicts the phasing of patients with multiple *TP53* variants. Individual DNA sequencing reads harboring mutations within the same exon and no more than 50 nucleotides apart were analyzed.

Patient Sw1

Sequencing

Haplotype

rs1800370	rs1042522	rs1794287	rs2909430		rs1625895			rs12947788	rs12951053	Frequency 76.5 %	Reads 4135
rs1800370	rs1042522	rs1794287	rs2909430		rs1625895	c.673-2A>C		rs12947788	rs12951053	20.7 %	1119
rs1800370	rs1042522	rs1794287	rs2909430	c.670G>T	rs1625895			rs12947788	rs12951053	1.96 %	106
rs1800370	rs1042522	rs1794287	rs2909430		rs1625895		c.701A>G	rs12947788	rs12951053	<1%	40

Supplementary Figure S11A

Patient Sw3

Sequencing

Haplotype

(
										Frequency	Reads
	rs1800370	rs1042522	rs1794287	rs2909430		c.626_627del2	rs1625895	rs12947788	rs12951053	84.1 %	9390
	rs1800370	rs1042522	rs1794287	rs2909430			rs1625895	rs12947788	rs12951053	0.07.9/	1025
										9.21 %	1035
	rs1800370	rs1042522	rs1794287	rs2909430	c 379T>C		rs1625895	rs12947788	rs12951053		
					0.070120					6.55 %	731

Supplementary Figure S11B

Sequencing

- Mutation outside the amplicon used for the long-range sequencing
- Mutation detected after manual examination but below the cut-off used for clinical validation (5%)
- Mutation detected only by the long-range sequencing

Supplementary Figure S11C

Patient Sw4

Sequencing

Haplotype

rs1800370	rs1042522	rs1794287	rs2909430	rs1625895		rs12947788	rs12951053		Frequency 53.1 %	Reads 5040
rs1800370	rs1042522	rs1794287	rs2909430	rs1625895	c.743G>A	rs12947788	rs12951053		39.1 %	3710
rs1800370	rs1042522	rs1794287	rs2909430	rs1625895		rs12947788	rs12951053	c.844C>T	7.75 %	736

Supplementary Figure S11D

Sequencing

Haplotype

rs1800370	rs1042522	rs1794287	rs2909430		c.524G>A	rs1625895	rs12947788	rs12951053		Frequency 66.4 %	Reads 1088
rs1800370	rs1042522	rs1794287	rs2909430			rs1625895	rs12947788	rs12951053	c.853G>A	25.5 %	419
rs1800370	rs1042522	rs1794287	rs2909430			rs1625895	rs12947788	rs12951053		7.45 %	122
rs1800370	rs1042522	rs1794287	rs2909430	c.391A>T		rs1625895	rs12947788	rs12951053		<1%	8

Supplementary Figure S11E

Supplementary figure S11 A to E: Long-range sequencing of CLL patients shows that *TP53* mutations in multi-mutated patients are in different alleles.

A to E: Detailed analysis of the 5 patients included in this study. For each patient, 2 sections are available i.e. sequencing and haplotype. Sequencing: conventional NGS analysis is shown on the left. No allelic distribution can be inferred from this type of analysis. SMRT sequencing is shown on the right. It provides an accurate picture of the allelic distribution of each *TP53* variant, as well as the remaining wt allele {Lodé et al., 2018, #147689}. The frequencies of the different alleles are shown in parentheses. Haplotype: allelic distribution of all *TP53* variants (germline and somatic) according to the SMRT analysis. Somatic *TP53* variants are shown in red. Biallelic germline variants (SNPs) are shown in white (allele 1) and green (allele 2) to make a distinction for heterozygote cases.

Supplementary Figure S12: Multiple *TP53* variants are found at the same frequency in patients with or without 17p deletion.

SM: patients with a single *TP53* mutation; DM: patients with two *TP53* mutations; MM3 to MM10: patients with three to ten *TP53* mutations.

p.Arg175His	21%		
p.Arg248GIn	42%		
p.Arg273His	22%		
p.Arg248Trp	25%	n i m	
p.Arg273Cys	15%	1 H HH	
Genetic Alteration		Other Mutation No a	Iterations

Supplementary Figure S13: Distribution of *TP53* hotspot variants in CLL patients.

CLL patients included in both UMD_CLL and the FILO cohort were used for this analysis. Data were analyzed by OncoPrinter (cBioPortal Version 1.14.0) {Gao et al., 2013, #80688}.

Supplementary Table S1: Patient characteristics.

Number of patients	n=683
Median age (years), [min;max]	70 [23;98]
Cytogenetics, n (%)	
Trisomy 12	22/181 (12%)
Deletion 17p	127/257 (49%)
Deletion 11q	24/175 (14%)
Complex karyotype	62/169 (36%)
IGHV status, n (%)	
Mutated	204/464 (44%)
Unmutated	260/464 (56%)

Supplementary Table S2: Mutations summary.

	Num	ber of variants	(%)
	Conventional sequencing	NGS	Total
Missense	136 (69.4)	632 (73.5)	768 (72.7)
Nonsense	17 (8.7)	52 (6)	69 (6.5)
Synonymous	1 (0.5)	0 (0)	1 (0.1)
Splice site	13 (6.6)	69 (8)	82 (7.8)
Intronic	4 (2)	0 (0)	4 (0.4)
Frameshift	19 (9.7)	93 (10.8)	112 (10.6)
Inframe	6 (3.1)	14 (1.6)	20 (1.9)
Total	196 (100)	860 (100)	1056 (100)
	Num	ber of patients	(%)
Variants per patients	Conventional sequencing	NGS	Total
1 variant	150 (87.2)	351 (68.7)	501 (73.4)
2 variants	20 (11.6)	81 (15.9)	101 (14.8)
3 variants	2 (1.2)	41 (8)	43 (6.3)
4 and + variants	0 (0)	38 (7.4)	38 (5.6)
Total	172 (100)	511 (100)	683 (100)

Supplementary Table S3: Mutation description.

(Provided as an Excel file)

Table S4: Benign polymorphisms identified in CLL patients included in UMD.

HG19_Variant	Variant_Type	Event_type	Mutation_effect	Protein P1 TP53_alpha NP_000537.3	LRG_321t1	occurrence in UMD_CLL	ACMG_class
chr17:g.7577091G>A	SNV	G>A	Missense_variant	p.Arg283Cys	c.847C>T	16	Benign
chr17:g.7577069C>T	SNV	C>T	Missense_variant	p.Arg290His	c.869G>A	9	Benign
chr17:g.7577577T>C	SNV	T>C	Missense_variant	p.Asn235Ser	c.704A>G	8	Benign
chr17:g.7578464G>A	SNV	G>A	Missense_variant	p.Arg156Cys	c.466C>T	3	Benign
chr17:g.7579705C>T	SNV	C>T	Missense_variant	p.Val31Ile	c.91G>A	3	Benign
chr17:g.7579358C>T	SNV	C>T	Missense_variant	p.Arg110His	c.329G>A	2	Benign
chr17:g.7579470C>T	SNV	C>T	Missense_variant	p.Val73Met	c.217G>A	1	Benign
chr17:g.7579439G>A	SNV	G>A	Missense_variant	p.Ala83Val	c.248C>T	1	Benign

All these variants were defined as rare single nucleotide polymorphisms (SNPs) in the human population; they do not display any loss of function {Doffe et al., 2021, #89023; Soussi, 2022, #253203}. These variants were removed from UMD_CLL for all analyses described in the present study.