A novel protein fold and extreme domain swapping in the dimeric TorD chaperone from Shewanella massilia - Archive ouverte HAL
Journal Articles Structure Year : 2003

A novel protein fold and extreme domain swapping in the dimeric TorD chaperone from Shewanella massilia

Abstract

TorD is the cytoplasmic chaperone involved in the maturation of the molybdoenzyme TorA prior to the translocation of the folded protein into the periplasm. The X-ray structure at 2.4 A resolution of the TorD dimer reveals extreme domain swapping between the two subunits. The all-helical architecture of the globular domains within the intertwined molecular dimer shows no similarity with known protein structures. According to sequence similarities, this new fold probably represents the architecture of the chaperones associated with the bacterial DMSO/TMAO reductases and also that of proteins of yet unknown functions. The occurrence of multiple oligomeric forms and the chaperone activity of both monomeric and dimeric TorD raise questions about the possible biological role of domain swapping in this protein.

Dates and versions

hal-04147706 , version 1 (30-06-2023)

Identifiers

Cite

Samuel Tranier, Chantal Iobbi-Nivol, Catherine Birck, Marianne Ilbert, Isabelle Mortier-Barrière, et al.. A novel protein fold and extreme domain swapping in the dimeric TorD chaperone from Shewanella massilia. Structure, 2003, 11 (2), pp.165-174. ⟨10.1016/s0969-2126(03)00008-x⟩. ⟨hal-04147706⟩
11 View
0 Download

Altmetric

Share

More