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Sea ice is crucial in many natural processes and human activities. Understanding the
dynamical couplings between the inception, growth and equilibrium of sea ice and the
rich fluid mechanical processes occurring at its interface and interior is of relevance in many
domains ranging from geophysics to marine engineering. Here we experimentally investigate
the complete freezing process of water with dissolved salt in a standard natural convection
system, i.e., the prototypical Rayleigh-Bénard cell. Due to the presence of a mushy phase,
the studied system is considerably more complex than the freezing of freshwater in the same
conditions (Wang et al. 2021c). We measure the ice thickness and porosity at the dynamical
equilibrium state for different initial salinities of the solution and temperature gaps across the
cell. These observables are non-trivially related to the controlling parameters of the system as
they depend on the heat transport mode across the cell. We identify in the experiments 5 out
of the 6 possible modes of heat transport. We highlight the occurrence of brine convection
through the mushy ice and of penetrative convection in stably stratified liquid underlying the
ice. A one-dimensional multi-layer heat flux model built on the known scaling relations of
global heat transport in natural convection systems in liquids and porous media is proposed.
It allows, given the measured porosity of the ice, to predict the corresponding ice thickness,
in a unified framework.
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1. Introduction
The evolution of sea ice has important impacts on many environmental and geological
processes as well as human activities. Examples include ocean circulation (Clark et al. 1999;
Straneo&Heimbach 2013; Joughin et al. 2012; Hanna et al. 2013; Stevens et al. 2020), global
sea-level rise (Wadhams & Munk 2004), land-surface albedo (Curry et al. 1995; Perovich
et al. 2002; Scagliarini et al. 2020), biodiversity (Post et al. 2013), microplastic dispersion
and sequestration (Peeken et al. 2018; Obbard et al. 2014), and winter navigation at high
latitudes and polar areas (de Andrés et al. 2018; Ho 2010). Generally, sea ice evolution is
associated with the complex fluid dynamic processes occurring in the oceans which involve
wide ranges of spatial and temporal scales. Their descriptions through numerical models in
the geophysical context make use of so-called, micro-scale physical parametrizations, that
have a key role in the reliability and accuracy of the resulting predictions (Rae et al. 2015;
Rousset et al. 2015).
In this study, we focus on the role of buoyancy-driven natural convection in determining

upper surface sea ice growth and the attainment of dynamical equilibrium. We do this by
performing experiments at the laboratory scale in a highly-controllable setting, the Rayleigh-
Bénard cell (see below). With this approach we aim at providing a highly reliable small-scale
parameterization of the process that is crucial for geophysical scale computational models in
the wide range of applications mentioned above.
The Rayleigh-Bénard (RB) system, a fluid layer parallelly confined between a warmer

horizontal bottom plate and a cooler top plate and insulated on the lateral sides (Ahlers
et al. 2009; Lohse & Xia 2010; Chillà & Schumacher 2012), is a paradigmatic model
system in the physics of non-linear systems and fluid mechanics. Its behaviour has been
studied for decades and it has been crucial in developing the understanding of hydrodynamic
instabilities, transition to chaos, turbulence and turbulent transport. Its local and global
properties across its wide spectrum of regimes are nowadays well-characterized (Ahlers
et al. 2009; Chillà & Schumacher 2012). More recently the RB system has been proven to be
also convenient for studying the couplings between liquid-solid phase change and fluid flow
phenomena (Esfahani et al. 2018; Favier et al. 2019). It has a laboratory scale, it is closed and
in/out energy fluxes can bemeasured, hence highly controllable, yet able to reproduce the rich
process of water freezing in the presence of unsteady and turbulent flow conditions. Several
recent studies have investigated the influence of temperature (Wang et al. 2021c; Yang et al.
2023b), inclination (Wang et al. 2021d; Yang et al. 2022), rotation (Ravichandran et al. 2022),
initial conditions, and aspect ratio (Wang et al. 2021b) on freshwater freezing/melting in the
RB system. However, the presence of dissolved salt in sea water adds to the complexity of
the processes. In particular two factors need to be considered to properly study the evolution
of sea ice.
The first is the mushy structure of sea ice (Feltham et al. 2006), which allows for the

occurrence of interstitial fluid motion, i.e., brine drainage and thermal convection across the
sea ice. Various studies have discussed the mushy structure forming in the solidification of
aqueous solutions. The focus has mainly been on onset conditions for convective brine
drainage (Wettlaufer et al. 1997), mushy phase morphology (Peppin et al. 2008), ice
layer growth rate (Kerr et al. 1990), ice porosity (Wettlaufer et al. 1997), flow structure
within the mushy phase (Chen 1995; Worster & Wettlaufer 1997), and salinity in the
liquid phase (Wettlaufer et al. 1997; Peppin et al. 2008). While these studies together with
relevant reviews (Worster 1997; Anderson & Guba 2020; Wells et al. 2019) provide a
detailed, thorough, and multi-perspective understanding of brine drainage and mushy phase
structure, the interactions between the mushy structure and a neighbouring vigorous thermal
convective flow are much less explored. A few studies discussing the growth of sea ice either
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focus on establishing governing momentum and energy equations suitable for numerical
simulations (Feltham et al. 2006; Covello et al. 2016; Wells et al. 2019), or on theoretical
models which view ice growth as purely diffusion-controlled (Worster & Rees Jones 2015;
Notz 2005).
The second factor is salty water’s peculiar equation of state (EOS), in particular its density

dependence on salinity and temperature (Gebhart & Mollendorf 1977) and its freezing point
depression (Bodnar 1993). While for normal sea water with 3.5% salinity (i.e., the mass
concentration of dissolved salt) the density monotonically decreases as the temperature is
increased from its freezing point. This is not the case for less salty water (encountered
for instance near river estuaries) or fresh water, where a maximal density occurs in the
interval [0, 4]◦C (Pawlowicz 2015; Lyman & Fleming 1940). Salty water’s peculiar density
dependence may lead to different combinations of stable/unstable stratifications of the liquid
phase in the RB cell. In a similar yet simpler scenario, the combination of stable stratification
and unstably stratified turbulence has been found to have a significant influence on the
freezing dynamics and equilibrium ice thickness of fresh water (Townsend 1964; Wang
et al. 2021c). Other studies point out that the kind of stratification, either stable or unstable,
in touch with the melting front has a key role in determining the melting rate of a pure-ice
layer in aqueous solutions (Rosevear et al. 2021;Mondal et al. 2019; Sugawara& Irvine 2000;
Yang et al. 2023a). However, these studies focus on stratifications due to the salinity gradient
in double-diffusive convection with linearized EOS salt-water mixtures, i.e. neglecting the
above-mentioned important nonlinear dependencies of density with respect to temperature
and salinity.
In this work, we investigate how ice growth and fluid dynamics in salty water couple

and co-evolve until the equilibrium in the RB natural convection system is reached. We aim
to reveal how sea ice growth rate depends on controlled environmental conditions through
its interactions with mushy phase convection and with the variety of density stratification
patterns and fluid flows occurring in the underlying liquid phase.
The paper is organized as follows. §2 describes the experimental setup and themeasurement

methodology. §3 describes the experimental results focusing on the growth dynamics and
equilibriummorphology of the ice layer. To provide a first-step understanding of the complex
process, in §4 we discuss how the equilibrium ice thickness, its porosity and the saturation
time depend on temperature and salinity conditions, as well as the correlation among
these global properties. §5 introduces a one-dimensional multi-layer heat flux model which
describes the equilibrium ice thickness’s dependence on the system control parameters and
identifies 5 out of 6 possible modes of heat transport in the experimental system. Finally, we
end with conclusions and outlook in §6.

2. Experiments
The experiments are performed in a rectangular cuboid RB cell (height 𝐻 = 0.12 m,
aspect ratio Γ = 𝐿/𝐻 = 2, width-height ratio 𝑊/𝐻 = 0.5, i.e., a so-called quasi-two-
dimensional system). An expansion vessel is attached to compensate for the volume change
during the freezing process and so to monitor the mushy phase growth, see figure 1(a).
The top and bottom plate temperatures are measured with thermistors and controlled with
circulating baths. Sidewalls are isolated with foam material to approach ideal adiabatic
boundary conditions. The cell is initially filled with degassed salty water of initial salinity
𝑆𝑖 . Here we use sodium chloride (NaCl), the principal solute of sea water (Lyman & Fleming
1940), as the salt. 𝑆𝑖 is varied from 0 (fresh water) to 3.5% (average ocean salinity) with the
corresponding freezing point𝑇0𝑖 (Hall et al. 1988) varying from 0 to -2.1 ◦C. The (hot) bottom
plate temperature, 𝑇𝑏, which is equal to the initial liquid temperature, ranges from 0.4 to 12.9



4 Y. Du, Z. Wang, L. Jiang, E. Calzavarini and C. Sun

0.5 1 1.5 2 2.5 3 3.50
-15

-10

-5

0

5

10

15
 T0i

 Tt
 Tb , Qi = 1/5
 Tb , Qi = 1/3
 Tb , Qi = 3/8
 Tb , Qi = 3/7
 Tb , Qi = 1/2
 Tb , Qi = 3/5

T 
[°

C
]

Si [%]

(a) (b)

Ice / Mushy Phase

Liquid Phase

Expansion 
Vessel

0Cold, 10 Kt iT T= −

0Hot, , b i
b i

b t

T TT
T T

Q
−

=
−

x

H

z

L

h

Figure 1: Sketch of experimental system and temperature-salinity parameter space. (a) Cartoon of the
experimental setup. The height of the cell is 𝐻 = 0.12 m, the aspect ratio is Γ = 𝐿/𝐻 = 2, and the width-
height ratio is 𝑊/𝐻 = 0.5. An expansion vessel is attached to compensate for the volume change and to
monitor the mushy phase growth. The bottom plate temperature is kept at 𝑇𝑏 and the top plate temperature
𝑇𝑡 is maintained at 10 K below the freezing point 𝑇0𝑖 at the initial salinity 𝑆𝑖 . A dimensionless bottom
superheat parameter is defined as Θ𝑖 = (𝑇𝑏 − 𝑇0𝑖)/(𝑇𝑏 − 𝑇𝑡 ). (b) Temperature-Salinity parameter space.
In this work, we test Θ𝑖 = 1/5 (purple), 1/3 (red), 3/8 (green), 3/7 (pink), 1/2 (blue), and 3/5 (brown). The
initial salinity 𝑆𝑖 varies from 0 to 3.5%. 𝑇𝑏 (dots) is shown for each case. 𝑇0𝑖 (back squares) and 𝑇𝑡 (gray
triangles) are also plotted as functions of 𝑆𝑖 .

◦C, and the (cold) top plate temperature 𝑇𝑡 is set 10 K below the freezing temperature, hence
𝑇𝑡 = 𝑇0𝑖 − 10 K (from -10 to -12.1 ◦C depending on 𝑆𝑖). A dimensionless bottom super-heat
parameter can then be defined as Θ𝑖 = (𝑇𝑏 − 𝑇0𝑖)/(𝑇𝑏 − 𝑇𝑡 ). This parameter characterizes
the initial ratio of the admissible temperature difference in the liquid phase over the total
gap across the cell. It can also slightly evolve during the experiment. This is because the
melting temperature depends on the actual salinity, and at the equilibrium state 𝑆𝑒 and so
𝑇0𝑒 might differ from the initial ones (actually 𝑆𝑒 can be as high as 7% with 𝑇0𝑒 ≈ −4.2 ◦C,
see figure 5b). Since the total quantity of solute is constant, one expects an enhancement of
salinity in the liquid due to salt ejection from the mush (and so an increase of Θ).
In this work, we first test the statesΘ𝑖 = 1/3 (red), 3/8 (green) and 1/2 (blue) with salinities

𝑆𝑖 ∈ [0, 3.5]%. Cases with Θ𝑖 = 1/5 (purple), 3/7 (pink), 3/5 (brown) and 𝑆𝑖 = 3.5% are also
performed to test the results in a wider temperature range. A visualization of the temperature-
salinity parameter space explored in the experiments is provided in figure 1(b). It reports the
temperature values 𝑇𝑏 (dots), 𝑇0𝑖 (black squares) and 𝑇𝑡 (gray triangles) for different Θ𝑖 and
𝑆𝑖 . In this experimental configuration, the ice/mushy phase grows from the top plate until the
system reaches an equilibrium. We assume that this state is attained when the mean mushy
phase thickness ℎ(𝑡) (see figure 1a) changes less than 1% in eight hours, with the maximum
experiment duration being three days. The ice or mushy phase thickness and its porosity
𝜙(𝑡) (i.e. the volume fraction of residual liquid in the ice or mushy phase) can be obtained
respectively by identifying the ice-liquid interface in photos of the system, and by using the
expansion vessel readings together with the assumption of total mass conservation in the
system. The evaporation from the expansion vessel is negligible as it only causes a mass loss
less than 0.1% of the total mass of the system. We refer to Appendix A for more details on
the measurement protocols.

3. Mushy phase morphology and growth dynamics
Figures 2(a),(c) show photos of the experiment at its equilibrium state in two typical cases
(𝑆𝑖 = 0, 3.5% and Θ𝑖 = 3/8). One can readily appreciate the different thicknesses of the

Focus on Fluids articles must not exceed this page length
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Figure 2: Images of the iced layer together with its internal structure, and evolution of the freezing front.
(a-d), Photos of ice/mushy phases without (a,b) and with (c,d) porosity. The experimental conditions for
(a,b) are 𝑆𝑖 = 0% for (c,d) 𝑆𝑖 = 3.5%, both with Θ𝑖 = 3/8. In (b,d), the red dye of the same amount
and concentration is deposed into a small hemispherical pit carved at the same location on the upper
surface of the corresponding solid matrix in (a,c). The ice in (a,b) is transparent and the dye does not
spread. Mushy phase with porosity in (c,d) is relatively opaque and the dye spreads anisotropically, possibly
indicating the presence of channels. (e) Dynamics of the freezing front. The mushy phase thicknesses ℎ(𝑡)
non-dimensionalized by 𝐻 are plotted as a function of time non-dimensionalized by the diffusive time scale
𝑡∗ = 𝐻2/𝜅𝑖𝑐𝑒 = 1.22 × 104 s (where 𝜅𝑖𝑐𝑒 is ice thermal diffusivity) for three experimental runs. (f) The
same data as that in (e) are compensated by the diffusive behaviour, ℎ(𝑡)/

√
𝑡 (normalized by the first data to

compare different cases).

iced domains (thinner in the salty-water case) and the different interface shapes between the
two cases. However, their dissimilarity is not only volumetric and morphological but also
structural. To illustrate this we hollowed out a tiny (5 mm) hemispherical cavity on the top
horizontal surface of the ice matrix on which we deposed a drop of red dye. Figures 2(b),(d)
show two lateral view photos of the stain after 5 minutes to form its deposition. We observe
that when 𝑆𝑖 = 0 (panel b) the iced phase is transparent and the dye does not spread into it,
indicating the dense structure of the matrix. On the contrary, at 𝑆𝑖 = 3.5% (panel d) the iced
phase looks opaque and the dye spreads anisotropically, this highlights a complex porous
medium filled with liquid (i.e., a mushy phase structure) with internal vertical channels.
Noteworthy, the different iced phase structures correspond to different freezing dynamics.

This iswell illustrated in figures 2(e),(f), where the temporal growth of the freezing front, ℎ(𝑡),
is shown for three sets of experimental conditions corresponding to pure water, intermediate
salinity and seawater salinity, all at Θ𝑖 = 3/8. Though all three cases display an initial
period of diffusive ice phase growth, i.e., ℎ ∝

√
𝑡, later on the growth rate decreases for the

case 𝑆𝑖 = 0 (gray triangles), 2% (pink squares); while when 𝑆𝑖 = 3.5% (purple dots) the
instantaneous growth-rate increases and even exceeds diffusive growth rate before reaching
the equilibrium. It is remarkable also to note that the equilibrium height is not simply
proportional to the salinity. The above highlighted temporal evolution of the ice growth in a
salty solution depends on the internal structure of the mushy phase that in turn might also
change in time (e.g. due to the formation of brine channels (Wettlaufer et al. 1997; Worster
& Wettlaufer 1997)). A quantitative description of this process is challenging because it
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requires detailed knowledge of the mushy microstructure. The same is true for any attempt
to characterize the morphology of the solid-fluid interface. For this reason, in the following
we focus on a simpler question, we try to tackle the globally averaged equilibrium state that
is reached asymptotically in time. In other words, we aim at understanding the factors that
control the average thickness, denoted ℎ𝑒, of the iced mushy phase.

4. Global properties of the equilibrium state
We display in Figure 3 two important spatially averaged properties of the mushy phase at the
equilibrium (from now on denoted with a subscript 𝑒): they are the dimensionless thickness
ℎ𝑒/𝐻 and the porosity 𝜙𝑒. Besides this we report the saturation time (or time to equilibrium)
denoted as 𝑡90%𝑒 , here for practical reasons defined as the time it takes to reach 90% of
the equilibrium thickness non-dimensionalized by the diffusive time scale 𝑡∗ = 𝐻2/𝜅𝑖𝑐𝑒 =

1.22×104 s. The dependence of the thickness ℎ𝑒 as a function of the initial salinity 𝑆𝑖 is very
different for distinct values of the control parameter Θ𝑖 (see figure 3a): ℎ𝑒 exhibits a similar
non-monotonic (decrease-increase-decrease) pattern for Θ𝑖 = 1/3, 3/8 and monotonically
decreasing for Θ𝑖 = 1/2. These trends are in part reflected on the 𝜙𝑒 (𝑆𝑖) dependence, which
presents considerable fluctuations for intermediate salinity values although its overall trend
is increasing for all Θ𝑖 cases (see figure 3b).
The fact that a more porous ice matrix (high 𝜙𝑒) can release more salt into the liquid and as

a consequence lower the final freezing point of the solution, 𝑇0𝑒, hence reducing the size of
ℎ𝑒 might give a rational for the globally observed trends. However, this alone is not enough
to explain any of the observed fluctuations or non-monotonous dependencies in ℎ𝑒 and 𝜙𝑒.
Moreover, it is here important to notice that the existence of a correlation between 𝜙𝑒 and ℎ𝑒 is
not evident from the present measurements (see figure 3c). If, for instance, mass conservation
and geometry were simply ruling the relation between the equilibrium mushy layer thickness
and the mushy layer porosity, then one would have ℎ𝑒 (1 − 𝜙𝑒) = 𝑐𝑜𝑛𝑠𝑡. (where the constant
represents the height ice-layer in the case zero salinity and correspondingly no-porosity).
This implies an increasing trend of ℎ𝑒 with 𝜙𝑒, while figure 3(c) suggests just the opposite
(one can notice that a decreasing ℎ𝑒 (𝜙𝑒) for fixed values ofΘ𝑖). We conclude that the ℎ𝑒 (𝜙𝑒)
relation is a non-trivial function of the system control parameters 𝑆𝑖 and Θ𝑖 .
Finally, we observe that the trends for 𝑡90%𝑒 are instead consistent with those of ℎ𝑒

(figure 3d) and a clear linear correlation can be seen among the two quantities (figure 3e).
This correspondence can provide a way to estimate the time to equilibrium just by focusing
on the magnitude of ℎ𝑒. Therefore, in the following we will focus on the modelling of the
physical mechanisms responsible for the variations of ℎ𝑒. The question we wish to address
is: Can the equilibrium global properties be understood in terms of a model that considers
just (i) the role of porosity (ii) the role of thermal stratification, on the steady state of the heat
transfer process in the system without taking into account its complex transient dynamics?

5. Multi-layer heat flux model
To answer the above question, we need to understand how ℎ𝑒 and 𝜙𝑒 are related and how the
heat transport across the system is influenced by the convection in the mushy phase and by
the combination of stable stratification and unstably stratified turbulence. We will show that
a one-dimensional (or integral) multi-layer heat flux model that relies on scaling laws known
for natural convection in fluid and porous media can explain ℎ𝑒 with good accuracy once 𝜙𝑒
is provided as input from the experiment. On the other hand we observe that a quantitative
description of 𝜙𝑒 requires a model for the evolution of the microscopic structure of the
porous ice matrix. This is a challenging task that currently goes beyond our capabilities and
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Figure 3: Global properties of the equilibrium state from experiments. The initial superheats are respectively
Θ𝑖 = 1/3 (red), 3/8 (green), and 1/2 (blue), and the intial salinity 𝑆𝑖 varies from 0 to 3.5%. The error bars
are measured by repeated experiments in two cases with 𝑆𝑖 = 3.5% and Θ𝑖 = 1/3, 1/2 respectively. (a) The
mean mushy phase thickness ℎ𝑒 (dots) initially decreases with 𝑆𝑖 for all three superheats, and it is followed
by a sharp increase for the Θ𝑖 = 1/3 and 3/8 cases. The shaded areas indicate the minimal and maximal
spatial variations of mushy phase thicknesses. The thicknesses are non-dimensionalized by 𝐻. (b) The mean
mushy phase porosity 𝜙𝑒 (squares) exhibits a non-monotonous yet overall increasing trend with 𝑆𝑖 . (c) ℎ𝑒
does not exhibit a statistically strong correlation with 𝜙𝑒. (d) The saturation time 𝑡90%𝑒 (triangles) is defined
as the time to reach 90% of the equilibrium mushy phase thickness ℎ𝑒 and non-dimensionalized by the
diffusive time scale 𝑡∗ = 1.22 × 104𝑠. The variations of 𝑡90%𝑒 with 𝑆𝑖 are consistent with those of ℎ𝑒. (e) ℎ𝑒
shows a clear positive correlation with 𝑡90%𝑒 . A linear fitting gives ℎ𝑒/𝐻 = 0.0912 · 𝑡90%𝑒 /𝑡∗ (dash-dot line),
with the correlation coefficient 𝑅2 = 0.9846.
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Figure 4: Synoptic representation of the averaged multi-layer heat flux model. Row 1 provides the adopted
parameterization for the global heat flux expression in the mushy phase, F𝑚, together with the definitions of
Nu𝑚 and Ra𝑚. Row 2-4 report the expression for the global heat flux in the liquid phase, F𝑙 , together with
the Nu𝑙 and Ra𝑙 definitions (Column 4). Three different combinations of stratifications may exist, they are:
(a) unstable, (b) mixed, (c) unstable. The discriminating criterion for their occurrence is the monotonicity
of liquid density within the temperature range [𝑇0𝑒, 𝑇𝑏], i.e., the relative magnitude of 𝑇0𝑒, 𝑇𝑏 and the
maximum-density temperature 𝑇𝑚𝑎𝑥 (Column 2) which depends on the salinity 𝑆𝑒. Column 3 gives the
sketches of these combinations, together with the layer thicknesses and the interface temperatures. The color
gradient indicates the density gradient in the liquid phase, with red representing lighter liquid and blue
representing heavier liquid. The model is supplemented with five input parameters, respectively 𝑇𝑡 , 𝑇𝑏 , 𝑆𝑖 ,
𝜙𝑒 and 𝐻, and leads to an estimation of ℎ𝑒 (Row 5) through the assumption of a statistically steady heat flux
balance among layers.

that we leave for future researches. In summary, the multi-layer heat flux model presented
in the following allows to explain the complex relation linking ℎ𝑒 to 𝜙𝑒, when the latter is
considered as an independent variable.
We assume that the position of the solid-fluid interface in the system at the equilibrium,

ℎ𝑒, is the result of the balance between the mean heat-flux across the mushy-phase, F𝑚,
and the one in the liquid, F𝑙 (see figure 4). Both these quantities require a parameterization,
which we detail in the following. For conciseness and better readability, we refer the reader
to Table 1 in Appendix D for the denomination of the many physical quantities and material
properties involved in the model.
Mushy phase: We express the heat flux across the mushy phase in the statistically steady

condition in the following form:

F𝑚 = Num · Λm(Tm)
Tt − T0e

he
. (5.1)

Eq. (5.1) involves the mushy phase Nusselt number, Nu𝑚, i.e. the ratio between the total
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and the conductive heat transfer across the mushy phase. Its dependence as a function of the
Rayleigh number, Ra𝑚, is known from previous studies on convection in porous media. Here
we use the parametrization by Gupta & Joseph (1973):

Num =

{
1, Ram < Ramcr,

1.3338 + 0.0099Ram, Ram > Ramcr,
(5.2)

where the mushy-critical Rayleigh number is Ra𝑚𝑐𝑟 = 4𝜋2. The Rayleigh number (𝑅𝑎𝑚) for
the flow in a porous medium is defined as:

Ram =
Π

𝜙e

g(𝜌(St, Tt) − 𝜌(Se, T0e))he

𝜈(Tm)𝜅(Tm)𝜌(Se, Tm)
. (5.3)

This definition involves the evaluation of the permeability Π, a quantity describing the
conductivity of a porous medium to fluid flow (Pal et al. 2006). The permeability is a
function of the structure of the porous ice matrix and is notoriously difficult to be measured,
in particular for ice, because it is highly sensitive to the environmental conditions and to the
history of the medium. Several previous studies including Kawamura et al. (2006), Petrich
et al. (2006) and Polashenski et al. (2017) revealed that there exists a threshold porosity (𝜙𝑐)
below which the ice behaves impermeable. Above such threshold the permeability is well
approximated by a power-law function of the porosity. We adopt here a similar functional
parameterization to relate Π to 𝜙𝑒:

Π =

{
0, 𝜙𝑒 < 𝜙𝑐𝑟 ,

𝐶 (𝜙𝑒 − 𝜙𝑐𝑟 )𝛼, 𝜙𝑒 > 𝜙𝑐𝑟 ,
(5.4)

where the three adjustable parameters are chosen as 𝐶 = 7 × 10−8 m2, 𝛼 = 3 (as at the
leading order of Carmen-Kozeny relation (Wells et al. 2019)) and 𝜙𝑐𝑟 = 0.054 to best fit the
experimentally measured ℎ𝑒. Although these values are ad hoc for our study, the modelled
Π is of the same order of magnitude as the ones reported in sea-ice laboratory and field
researches (Kawamura et al. 2006; Petrich et al. 2006; Polashenski et al. 2017).
Liquid phase: Similarly, the mean heat flux in the liquid phase can be expressed in the

following approximate form:

F𝑙 =



Nul · Λl(Tl)
T0e − Tb

H − he
, 𝑇𝑚𝑎𝑥 6 𝑇0𝑒,

Λl(Ts)
T0e − Tmax

hmax
= Nul · Λl(Tu)

Tmax − Tb

H − he − hmax
, 𝑇𝑚𝑎𝑥 ∈ (𝑇0𝑒, 𝑇𝑏),

Λl(Tl)
T0e − Tb

H − he
, 𝑇𝑚𝑎𝑥 > 𝑇𝑏 .

(5.5)

Note that the above expression is composed of three distinct cases according to the value,
𝑇𝑚𝑎𝑥 , of the temperature corresponding to the maximal density of the liquid solution at
the equilibrium with respect to [𝑇0𝑒, 𝑇𝑏]. This reflects in three distinct cases: (a) unstable
stratification, (b) a stable layer above an unstable one and (c) a single stable layer, see
figure 4. The scale ℎ𝑚𝑎𝑥 , appearing in case (b), is the height of the stably stratified layer in
the intermediate case. It can be determined by equating the two fluxes across the stable and
unstable layers of liquid. The dimensionless heat flux in the liquid is accounted for by the
Nusselt number, Nu𝑙 , dependence on the Rayleigh number, Ra𝑙 , a relation that is relatively
well known. Wang et al. (2021c) proposed the parametrization below by fitting the data from
their simulations on the freezing of fresh water in an RB convection system, which leads to
theoretical predictions agreeing well with their experiment results. The same parametrization
is adopted in the present study:
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Nul =


1, Ral < Ralcr,

0.12 + 0.88Ral/Ralcr, Ral ∈ [Ralcr, 1.23Ralcr],
0.27(Ral − Ralcr)0.27, Ral > 1.23Ralcr,

(5.6)

where the critical Rayleigh number for the onset of convection is Ra𝑙𝑐𝑟 = 1708. We note
that the definition of the Rayleigh number in the liquid is needed only for the two cases that
involve a density unstable stratification (cases (a) and (b) in figure 4). We use:

Ral =


𝑔(𝜌(𝑆𝑒, 𝑇0𝑒) − 𝜌(𝑆𝑒, 𝑇𝑏)) (𝐻 − ℎ𝑒)3

𝜈(𝑇𝑙)𝜅(𝑇𝑙)𝜌(𝑆𝑒, 𝑇𝑙)
, 𝑇𝑚𝑎𝑥 6 𝑇0𝑒,

𝑔(𝜌(𝑆𝑒, 𝑇𝑚𝑎𝑥) − 𝜌(𝑆𝑒, 𝑇𝑏) (𝐻 − ℎ𝑒 − ℎ𝑚𝑎𝑥)3
𝜈(𝑇𝑢)𝜅(𝑇𝑢)𝜌(𝑆𝑒, 𝑇𝑢)

, 𝑇𝑚𝑎𝑥 ∈ (𝑇0𝑒, 𝑇𝑏).
(5.7)

Finally, the model tuning requires the numerical values of material properties (see
Appendix C for the empirical formulas adopted) which are evaluated at the equilibrium
salinity 𝑆𝑒. Given the fact that in the present system no salinity source exists, that liquid in
the mushy phase only contains a small salt fraction, and that salt is mixed in the liquid either
vigorously by convection or slowly by diffusion, we can assume that the 𝑆𝑒 is uniform in the
liquid layer. Hence, 𝑆𝑒 can be implicitly related to ℎ𝑒 and the inputs of the model by the mass
conservation of the salt:

𝑆𝑒𝜌(𝑆𝑒, 𝑇𝑚𝑒𝑎𝑛) (𝐻 − ℎ𝑒 (1 − 𝜙𝑒)) = 𝑆𝑖𝜌(𝑆𝑖 , 𝑇𝑏)𝐻. (5.8)

It is worth noticing that Eq. (5.8) is suitable only for the present system (when applied to
other systems, e.g. open systems, a measurement of 𝑆𝑒 must be supplied). The evaluation of
Ra𝑚 requires also the value of 𝜌(𝑆𝑡 , 𝑇𝑡 ). While 𝑇𝑡 is known as it is externally imposed, 𝑆𝑡
is not. We assume here that the latter takes the value such that 𝑇𝑡 is a local freezing point,
𝑇0(𝑆𝑡 ) = 𝑇𝑡 , in other words we assume local thermodynamical equilibrium within the mushy
phase (Wells et al. 2019). Finally, by simultaneously solving the algebraic equations of heat
flux balance F𝑚 = F𝑙 and the mass conservation of the salt (5.8), using the measured value
𝜙𝑒, the model leads to the equilibrium mushy phase thickness ℎ𝑒. We refer to Appendix B
for a more detailed explanation of how the model is numerically implemented.
The model results are all illustrated in figure 5. Figure 5(a) shows the mean mushy phase

thickness ℎ𝑒/𝐻 as a function of 𝑆𝑖 together with its comparison with the experiment results.
At Θ𝑖 = 1/2 (blue lines and symbols) where ice thickness decreases for increasing salinity,
the agreement with themodel is fairly good. Themodel suggests that in this condition the heat
transfer through the mushy phase remains diffusive (mushy diffusion, MD state). Increasing
the salinity the freezing point is lowered and this slightly reduces the frozen layer thickness.
The role of porosity is marginal as here it stays approximately constant with 𝑆𝑖 (see figure 3b).
For Θ𝑖 = 1/3 and 3/8 (red and green lines and symbols), the non-monotonous behaviour is
also captured by the model.
It is relevant here to also consider two reduced versions of the model, one ignoring the

occurrence of convection in the mushy phase (by assuming Nu𝑚 ≡ 1, dash-dot lines in
figure 5a), the other neglecting the non-monotonous density stratification in the liquid phase
(by assuming linear density dependence on temperature, i.e., 𝜌(𝑆𝑒, 𝑇) = 𝜌(𝑆𝑒, 𝑇𝑏) (1 −
𝛽(𝑆𝑒, 𝑇𝑏) · (𝑇 −𝑇𝑏)) where 𝛽(𝑆𝑒, 𝑇𝑏) is the liquid thermal expansion coefficient at the bottom
plate, dash-double-dot lines). The comparison of the calculated ℎ𝑒 stemming from the two
reducedmodels allows to interpret the “jump” or sudden increase in the ice thickness as being
associated with the occurrence of convection in the mushy phase (mushy convection, MC
state) with increased 𝜙𝑒 (see figure 3b). Convection strengthens the heat transport, promoting

Rapids articles must not exceed this page length
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Figure 5: Model results for ice/mushy phase thickness compared with the experiments, and identification
of heat transport modes. MD/MC stands for diffusive/convective heat transfer in the mushy phase, similarly
LD/LC stands for diffusive/convective heat transport in the liquid phase, while LPC stands for diffusive and
convective heat transport due to penetrative convection in the liquid phase, i.e., a combination of diffusive
and convective heat transport as a stable stratification lies above an unstable one. (a) The initial superheat
values are respectively Θ𝑖 = 1/3 (red), 3/8 (green), and 1/2 (blue), and the initial salinity 𝑆𝑖 varies from 0
to 3.5%. The calculated ℎ𝑒 (lines with open circles) is close to the experimental results (dots). The spatial
variations of mushy phase thicknesses from the experiments (shaded areas) are also included, together with
results of reduced models ignoring mushy phase convection (Nu𝑚 ≡ 1, dash-dot lines) and ignoring liquid
stratification (linear density dependence on temperature 𝜌(𝑆𝑒, 𝑇) = 𝜌(𝑆𝑒, 𝑇𝑏) (1 − 𝛽(𝑆𝑒, 𝑇𝑏) · (𝑇 − 𝑇𝑏)),
dash-double-dot lines). (b) Phase-space diagram based on the two effective control parameters, Ra𝑚 and
Ra𝑙 . The third effective control parameter 𝑆𝑒 is not presented as an axis for readability. Instead different
circle sizes are used to distinguish the different 𝑆𝑒. There are in total 6 heat transport modes of the system.
Our experiments fall within 5 cases. Different circle colors are used to distinguish different Θ𝑖 . The highest
salinity (𝑆𝑒 & 2.7%) is expected to suppress the LPC regime as it removes the density anomaly of the
solution. (c-g) Images from the experiment for typical cases corresponding to the 5 observed heat transport
modes.
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a larger mushy phase growth rate, because dℎ/d𝑡 ∝ F𝑚 − F𝑙 . The equilibrium mushy layer
thickness, as a result of the competitive balance between F𝑚 and F𝑙 , also increases because
of the enhanced heat transfer efficiency in the mushy phase.
However, the mushy phase convention alone is not sufficient to explain the tendency of

ℎ𝑒 (see the dash-double-dot lines in figure 5a). Especially large derivations from experiment
results can be seen when 𝑆𝑖 is low as they fall into LD (liquid diffusion) and LPC (liquid
penetrative convection) regimes (see figure 5b). In the LD state, only diffusive heat transport
occurs in the liquid phase, either because the whole liquid phase is stably stratified or because
the liquid phase is too thin to support convection. In the LPC state, there is always a stable
stratification in contact with the mushy phase above the unstably stratified turbulence, also
known as penetrative convection. The presence of this stable layer limits the below convective
motion and prevents the mushy phase from a direct penetration of the convection. As an effect
the heat transport across the liquid phase is relatively low, enabling the mushy phase to grow
thick.When 𝑆𝑖 is increased, the temperature differences decrease in the stably stratified region
(from 𝑇0𝑒 to 𝑇𝑚𝑎𝑥) and increase in the unstably stratified turbulence (from 𝑇𝑚𝑎𝑥 to 𝑇𝑏). As
a consequence the convective motion intensifies becoming even more turbulent, leading to
strong heat transport across the liquid phase and so decreasing ℎ𝑒. Similarly, the temperature
difference in the unstable stratification is smaller when Θ𝑖 is lower. The unstably stratified
turbulence is weaker and the thermal resistance in the stable stratification above plays a more
important role in determining the heat transport of the whole liquid phase. This account
for the relatively larger errors between the dash-double-dot lines (assuming the entire liquid
phase to be unstably stratified) and the experiment results in figure 5(a) when Θ𝑖 = 1/3 and
3/8, compared to cases with Θ𝑖 = 1/2 and the same 𝑆𝑖 . By further increasing 𝑆𝑖 , the stable
stratification layer disappears and the heat transport in the liquid phase is purely convective
(liquid convection, LC state, see figure 5b).
The remaining discrepancies between themodel and the experiments are likely to be related

to the modelization of the mushy phase, in particular from neglecting its non-homogeneous
internal structure and the uncertainties in the parameterization of its permeability. It is also
worth mentioning that the heat transport in the LPC regime can be also clearly described
by means of two alternative parameters introduced in Wang et al. (2021a). They are the
so-called density inversion parameter (which here reads (𝑇𝑚𝑎𝑥 − 𝑇0𝑒)/(𝑇𝑏 − 𝑇0𝑒)) and the
Rayleigh number relative to the whole fluid layer. It is an alternative but equivalent approach
with respect to the one adopted here.
In summary, the possible heat transport modes in the system are 6, depending on whether

the heat transport is purely diffusive (MD) or convective (MC) in themushy phase andwhether
the heat transport in the liquid phase is purely diffusive (liquid diffusion LD), diffusive and
convective in distinct superposed layers (LPC), or convective (LC). The occurrence of these
states is determined by the magnitude of the two control parameters Ra𝑚 and Ra𝑙 . The
boundaries between purely diffusive (MD and LD) and convective (MC, LPC and LC) heat
transport are the critical Rayleigh numbers, respectively Ra𝑚𝑐𝑟 = 4𝜋2 in the mushy phase
and Ra𝑙𝑐𝑟 = 1708 in the liquid. On the other hand the transition from LPC to LC is due to
the disappearance of temperature anomaly in the equation of state of the salty water solution.
This occurs when 𝑇𝑚𝑎𝑥 < 𝑇0𝑒 or equivalently roughly when 𝑆𝑒 & 2.7%. The experimental
measurements can be mapped into this posterior three-dimensional phase space, identified by
the triplet (Ra𝑚, Ra𝑙 , 𝑆𝑒), see figure 5(b). It is worth noticing that while 𝑆𝑖 varies in [0, 3.5%],
𝑆𝑒 can vary in a range from 0% to about 7%. We observe that 5 out of 6 possible equilibrium
state freezing modes (i.e. the 2 × 3 combinations of MD,MC states with LD,LPC,LC ones)
can be realized in our experiments and identified by our model. Figures 5(c-g) show photos
of the interface profile in these typical cases. We may observe that non-flat interfaces are
always associated with convective motions either in the liquid or the mushy phase or both.
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6. Conclusions and outlook
We experimentally investigated the complex physical couplings between the freezing of
salty water (ice inception, growth and equilibrium) and convective fluid dynamics transport
processes. We revealed that the brine convection in the mushy phase and the combination
of stable/unstable stratifications and so conductive/convective heat transfer are crucial in
the determination of an equilibrium state. The mean mush thickness at the equilibrium
can be accurately explained by properly accounting for these two mechanisms via a one-
dimensional multi-layer heat flux model which builds on the known global heat transport
scaling-law properties in Rayleigh-Bénard system in liquid and porous media.
The occurrence of convection inside the mushy matrix enhances the heat transport and

increases the advancement of the freezing front. On the other hand, the stable stratification
weakens convection and heat transport in the liquid phase and sustains a longer diffusive
growth of the mushy phase, both leading to a higher mushy thickness. Finally, unstably
stratified turbulence promotes convection and heat transfer in the liquid phase, leading to
a thinner mushy layer. The resulting heat transport mode at the equilibrium state can be
categorized into 6 regimes, depending on whether convective heat transport exists in the
mushy region and whether purely diffusive/convective or both regimes of heat transport exist
in the liquid phase.
Many open questions remain to be explored. The multi-layer model needs to be further

validated and refined in what concerns the modelization of the permeability and the
evolution of porosity (which is here taken just as an input from experimental measurements).
Furthermore, it would be worthwhile to extend this 1D model to include its temporal
behaviour, this seems doable given the fact that its growth rate occurs on time scales that
are much longer as compared to the ones of fluid convection; in this sense a quasi-static
approximation, as done for pure ice in Wang et al. (2021d), might work. However, the
comprehension of the morphological mushy-phase interface, the role of brine channels and
related desalination calls for more sophisticated spatial models.
The current study provides a first step in the understanding of this complex system. It also

lays a foundation for further studies investigating the interactions between the detailed mushy
phase structure, interface morphology, flow dynamics and heat transport performance of the
system, as well as exploring the influences of other factors (e.g. the inclination of the system,
different geometrical aspect ratio or shapes of the container or the presence of forced next
to natural convection). We expect that our findings can lead to a better understanding and
global modelling of industrial, geophysical and climatological processes involving flows in
liquid and porous media and phase-change in liquid solutions.

Appendix A. Data processing
As the flow is quasi-two-dimensional, the mean mushy phase thickness at the equilibrium
ℎ𝑒, as well as the spatial variation of mushy phase thickness, can be estimated with the
vertical position of the mushy-liquid interface on the front surface of the experimental cell,
which can be obtained by processing the photos of the equilibrium state. The time series
ℎ(𝑡) is obtained with the time series of water level elevation in the expansion vessel Δ𝑣(𝑡)
(non-dimensionalized by 𝐻):

ℎ(𝑡) = ℎ𝑒

Δ𝑣𝑒
· Δ𝑣(𝑡). (A 1)

The mean mushy phase porosity at the equilibrium 𝜙𝑒 is obtained by solving mass
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conservation equations of the system and salt:

𝜌(𝑆𝑖 , 𝑇𝑏)𝐻 = 𝜌(𝑆𝑒, 𝑇𝑚𝑒𝑎𝑛) (𝐶1𝐻 − 𝐶1(1 − 𝜙𝑒)ℎ𝑒 + Δ𝑣𝑒) + 𝜌𝑖𝑐𝑒 (𝐶1(1 − 𝜙𝑒) − 𝐶2)ℎ𝑒 .
(A 2)

𝑆𝑖𝜌(𝑆𝑖 , 𝑇𝑏)𝐻 = 𝑆𝑒𝜌(𝑆𝑒, 𝑇𝑚𝑒𝑎𝑛) (𝐶1𝐻 − 𝐶1(1 − 𝜙𝑒)ℎ𝑒 + Δ𝑣𝑒). (A 3)
where fitting parameters 𝐶1 and 𝐶2 are adopted to compensate for the slight volume change
of the experimental cell and the residual dissolved air in the system. The values are chosen
as 𝐶1 = 1.0033 and 𝐶2 = 0.0105 to set 𝜙𝑒 = 0 for 𝑆𝑖 = 0 and Θ𝑖 = 1/3, 1. The calculated
𝜙𝑒 ≈ 0 for 𝑆𝑖 = 0 and Θ𝑖 = 3/8 indicates the soundness of this treatment.

Appendix B. Numerical implementation of the heat-flux model
Themulti-layer heat fluxmodel introduced in §5 is implemented via an algorithm summarized
in the flow chart of figure 6. It consists of five main steps. First, after inputting 𝑇𝑡 , 𝑇𝑏, 𝑆𝑖 , 𝜙𝑒
and 𝐻, it initializes the ice height to ℎ𝑒 = 0 (gray blocks). Second, the program calculates
the equilibrium salinity 𝑆𝑒 corresponding to ℎ𝑒 via the mass conservation of salt relation
(5.8) (blue blocks). Third, the program approximates the permeability Π with 𝜙𝑒 (5.4) and
evaluates the material properties in the mushy layer, leading to the heat flux across the ice or
mushy phase, F𝑚 (5.1) (yellow blocks). Fourth, based on the different stratification patterns
(see figure 4 in §5), the program evaluates the material properties in the liquid phase and
calculates the heat flux across the liquid phase (5.5) (green blocks). Finally (fifth step), the
code examines whether F𝑚 = F𝑙 . If this is the case, the guessed ℎ𝑒 is outputted, otherwise
the program increases ℎ𝑒 by a small step (10−4ℎ𝑒/𝐻) and repeats the aforementioned steps
until the convergence of the relation F𝑚 = F𝑙 .
As stated in §5, the mass conservation of the salt is an ad-hoc assumption for the present

system, which is not applicable in the study of an open system such as the field study of sea
ice. In that case, the input 𝑆𝑖 and the second step, i.e., the evaluation of 𝑆𝑒 can be replaced by
the independent measurements of 𝑆𝑒 without affecting the model which is established based
on thermodynamical balance. We refer to Appendix C for the empirical formulas adopted in
our study to evaluate the material properties and table 1 in Appendix D for all the definitions
of the symbols used in this paper.

Appendix C. Material properties
The multi-layer heat flux model requires the use of material properties, which in general are
dependent on temperature 𝑇 (◦C) and salinity 𝑆 (%). Their parameterizations are described
in the following. All properties are in SI units.
1) Freezing point 𝑇0(𝑆) (Hall et al. 1988):

𝑇0(𝑆) = −0.6037𝑆 − 5.8123 × 10−4𝑆3. (C 1)

2) Liquid thermal diffusivity 𝜅(𝑆, 𝑇):

𝜅(𝑆, 𝑇) = Λ𝑙 (𝑆, 𝑇)
𝜌(𝑆, 𝑇)𝑐𝑝𝑙 (𝑆, 𝑇)

. (C 2)

where Λ𝑙 (𝑆, 𝑇) is the liquid thermal conductivity (see below), 𝜌(𝑆, 𝑇) is the liquid density
(see below), 𝑐𝑝𝑙 (𝑆, 𝑇) is the liquid specific heat capacity. 𝑐𝑝𝑙 (𝑆, 𝑇) can be determined
with (Driesner 2007):

𝑐𝑝𝑙 (𝑆, 𝑇) = 𝑎1𝑐𝑝𝑤 (𝑇𝑟𝑒 𝑓 ). (C 3)
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Figure 6: Flow chart of the numerical implementation of the model. To obtain the equilibrium mushy phase
thickness ℎ𝑒 in the current system, 5 inputs (𝑇𝑡 , 𝑇𝑏 , 𝑆𝑖 , 𝜙𝑒 and 𝐻) are needed, and a hypothetical ℎ𝑒 is
assumed (gray blocks). Then the 𝑆𝑒 corresponding to the hypothetical ℎ𝑒 is implicitly calculated with the
mass conservation of the salt (blue blocks). Next, the permeabilityΠ is approximated, the material properties
in the ice/mushy phase are evaluated and the heat flux across the ice/mushy phase, F𝑚, is calculated (yellow
blocks). Meanwhile, based on the different combinations of stratifications, the material properties in the
liquid phase are evaluated and the heat flux across the liquid phase, F𝑙 , is calculated (green blocks). Finally,
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where 𝑎1 = 3.3619 − 1.6956(𝑥 + 1.9404)0.5 − 0.2133𝑥, 𝑥 = 𝑆
58.443/(

𝑆
58.443 +

100−𝑆
18.015 ) is the

mole fraction of salt in the liquid, and 𝑐𝑝𝑤 (𝑇𝑟𝑒 𝑓 ) is the heat capacity of pure water at 𝑇𝑟𝑒 𝑓 .
𝑇𝑟𝑒 𝑓 = 𝑎1𝑇 + 𝑎2, where 𝑎2 = 47.8954 − 32.1103(1 − 𝑥) − 15.7851(1 − 𝑥)2. 𝑐𝑝𝑤 (𝑇) can be
determined with (Chase Jr 1998):

𝑐𝑝𝑤 (𝑇) = − 11302 + 84.5568𝑇𝑎𝑏𝑠 − 0.1774𝑇2𝑎𝑏𝑠 + 1.3736 × 10
−4𝑇3𝑎𝑏𝑠 + 2.1401 × 10

8/𝑇2𝑎𝑏𝑠 .
(C 4)

where 𝑇𝑎𝑏𝑠 = 𝑇 + 273.15 is the absolute temperature.
3) Ice thermal diffusivity 𝜅𝑖𝑐𝑒 (𝑇):

𝜅𝑖𝑐𝑒 (𝑇) =
Λ𝑖𝑐𝑒 (𝑇)

𝜌𝑖𝑐𝑒 (𝑇)𝑐𝑝𝑖𝑐𝑒 (𝑇)
. (C 5)

where Λ𝑖𝑐𝑒 (𝑇) is the ice thermal conductivity (see below), 𝜌𝑖𝑐𝑒 (𝑇) is the ice density (see
below), 𝑐𝑝𝑖𝑐𝑒 (𝑇) is the ice heat capacity. 𝑐𝑝𝑖𝑐𝑒 (𝑇) can be determined with (Fukusako 1990):

𝑐𝑝𝑖𝑐𝑒 (𝑇) = 185 + 6.89𝑇. (C 6)

3) Mushy phase thermal conductivity Λ𝑚(𝑆, 𝑇):
Λ𝑚(𝑆, 𝑇) = 𝜙Λ𝑙 (𝑆, 𝑇) + (1 − 𝜙)Λ𝑖𝑐𝑒 (𝑇) (C 7)

where Λ𝑙 (𝑆, 𝑇) is the ice thermal conductivity (see below), Λ𝑖𝑐𝑒 (𝑇) is the ice thermal
conductivity (see below), and 𝜙 is the mushy phase porosity.
4) Ice thermal conductivity Λ𝑖𝑐𝑒 (𝑇) (Fukusako 1990):

Λ𝑖𝑐𝑒 (𝑇) = 2.2156 − 1.0046 × 10−2𝑇 + 3.4452 × 10−5𝑇2. (C 8)

5) Liquid thermal conductivity Λ𝑙 (𝑆, 𝑇) (Yusufova et al. 1975):

Λ𝑙 (𝑆, 𝑇) = Λ𝑤 (𝑇) (1 − (2.3434 × 10−3 − 7.924 × 10−6𝑇𝑎𝑏𝑠 + 3.924 × 10−8𝑇2𝑎𝑏𝑠)𝑆
+ (1.05 × 10−5 − 2 × 10−8𝑇𝑎𝑏𝑠 + 1.2 × 10−10𝑇𝑎𝑏𝑠)𝑆2).

(C 9)

whereΛ𝑤 (𝑇) is the thermal conductivity of pure water at𝑇 ,𝑇𝑎𝑏𝑠 is the absolute temperature.
Λ𝑤 (𝑇) can be determined with (Ramires et al. 1995):

Λ𝑤 (𝑇) = −0.9003 + 2.5006 𝑇𝑎𝑏𝑠

298.15
− 0.9938( 𝑇𝑎𝑏𝑠

298.15
)2. (C 10)

6) Liquid kinetic viscosity 𝜈(𝑆, 𝑇):

𝜈(𝑆, 𝑇) = 𝜇(𝑆, 𝑇)
𝜌(𝑆, 𝑇) . (C 11)

where 𝜇(𝑆, 𝑇) is the dynamic viscosity and 𝜌(𝑆, 𝑇) is the liquid density (see below). 𝜇(𝑆, 𝑇)
can be determined with (Simion et al. 2015):

𝜇(𝑆, 𝑇) = 1.257 × 10−4 + 1.265 × 10−3𝑒−0.04297𝑇 − 1.105 × 10−3𝑒0.3710𝑥

+ 2.045 × 10−4𝑒−0.4231(0.01𝑇 +𝑥) + 1.309 × 10−3𝑒−0.3260(0.01𝑇 −𝑥) .
(C 12)

where 𝑥 is the mole fraction of salt in the liquid.
7) Liquid density 𝜌(𝑆, 𝑇) (Gebhart & Mollendorf 1977):

𝜌(𝑆, 𝑇) = 𝑏1(1 − 𝑏2 |𝑇 − 𝑏3 |1.895). (C 13)

where 𝑏1 = 999.972(1 + 8.046 × 10−3𝑆) is the maximum density, 𝑏2 = 9.297 × 10−6(1 −
0.02839𝑆), 𝑏3 = 3.98(1 − 0.5266𝑆) is the temperature where liquid density reaches the
maximum.
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Symbols Physical meanings Symbols Physical meanings

𝑔 gravitational acceleration MD Only diffusive heat transport exists
in the mushy phase

𝐻 Height of the cell Nu𝑙 Liquid phase Nusselt number

ℎ(𝑡) Mushy phase thickness at time 𝑡 Nu𝑚 Mushy phase Nusselt number

ℎ𝑒 Mushy phase thickness at the equilibrium Ra𝑙 Liquid phase Rayleigh number

ℎ𝑚𝑎𝑥 Stable stratification thickness at the equilibrium Ra𝑙𝑐𝑟 Critical liquid phase Rayleigh number

𝐿 Length of the cell Ra𝑚 Mushy phase Rayleigh number

𝑆𝑒 Equilibrium salinity in the liquid Ra𝑚𝑐𝑟 Critical mushy phase Rayleigh number

𝑆𝑖 Initial salinity Δ𝑣(𝑡) Water elevation in the expansion vessel
at time 𝑡

𝑆𝑡
Equilibrium salinity at the top plate,

corresponding to freezing point 𝑇0 (𝑆𝑡 ) = 𝑇𝑡
Δ𝑣𝑒

Water elevation in the expansion vessel
at the equilibrium

𝑇0𝑒 Equilibrium freezing point at salinity 𝑆𝑒 𝛽(𝑆, 𝑇) Liquid thermal expansion coefficient
at salinity 𝑆 and temperature 𝑇

𝑇0𝑖 Initial freezing point at salinity 𝑆𝑖 Γ Aspect ratio of the cell, 𝐿/𝐻

𝑇𝑏 Bottom plate temperature 𝜅(𝑇) Liquid thermal diffusivity
at salinity 𝑆𝑒 and temperature 𝑇

𝑇𝑙
Mean temperature of the liquid phase,

0.5(𝑇0𝑒 + 𝑇𝑏)
𝜅𝑖𝑐𝑒

Ice thermal diffusivity
at temperature 𝑇𝑚

𝑇𝑚
Mean temperature of the mushy phase,

0.5(𝑇𝑡 + 𝑇0𝑒)
Λ𝑖𝑐𝑒 (𝑇) Ice thermal conductivity at temperature 𝑇

𝑇𝑚𝑎𝑥
Temperature where liquid density
reaches the maximum at salinity 𝑆𝑒

Λ𝑙 (𝑇)
Liquid thermal conductivity
at salinity 𝑆𝑒 and temperature 𝑇

𝑇𝑚𝑒𝑎𝑛
Mean temperature of the whole system,

0.5(𝑇𝑡 + 𝑇𝑏)
Λ𝑚 (𝑇) Mushy phase thermal conductivity at salinity 𝑆𝑒

and temperature 𝑇 , 𝜙𝑒Λ𝑙 (𝑇) + (1 − 𝜙𝑒)Λ𝑖𝑐𝑒 (𝑇)
𝑇𝑠

Mean temperature of the stable stratification,
0.5(𝑇0𝑒 + 𝑇𝑚𝑎𝑥) 𝜈(𝑇) Liquid kinetic viscosity

at salinity 𝑆𝑒 and temperature 𝑇

𝑇𝑡 Top plate temperature 𝜙𝑒 Porosity at the equilibrium

𝑇𝑢
Mean temperature of the unstable stratification,

0.5(𝑇0𝑒 + 𝑇𝑚𝑎𝑥) 𝜙𝑐𝑟 Critical porosity

𝑡 Time Π Permeability

𝑡∗ Diffusive time scale, 𝐻2/𝜅𝑖𝑐𝑒 𝜌(𝑆, 𝑇) liquid density
at salinity 𝑆 and temperature 𝑇

𝑡90%𝑒
Saturation time,

the time it takes to reach 90% of ℎ𝑒
𝜌𝑖𝑐𝑒 Ice density at temperature 𝑇𝑚

𝑊 Width of the cell 𝜌𝑡 Equilibrium liquid density at the top plate

LC Only convective heat transport exists
in the liquid phase Θ𝑖

Dimensionless bottom super-heat,
(𝑇𝑏 − 𝑇0𝑖)/(𝑇𝑏 − 𝑇𝑡 )

LD Purely diffusive heat transport exists
in the liquid phase F𝑙 Mean heat flux across the liquid phase

MC Convective heat transport exists
in the mushy phase F𝑚 Mean heat flux across the mushy phase

Table 1: Symbols used in this paper.

8) Ice density 𝜌𝑖𝑐𝑒 (𝑇) (Fukusako 1990):

𝜌𝑖𝑐𝑒 (𝑇) = 917(1 − 1.17 × 10−4𝑇). (C 14)
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Appendix D. Symbols
The symbols used in this paper are summarized in TABLE 1.
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