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ASYMPTOTIC BEHAVIOR OF LARGE EIGENVALUES
OF THE TWO-PHOTON RABI MODEL

ANNE BOUTET DE MONVEL! AND LECH ZIELINSKI?

ABsTrRACT. We investigate the asymptotic behavior of large eigenvalues for the two-photon
Rabi Hamiltonian, i.e., for the two-photon Jaynes—Cummings model without the rotating wave
approximation. We prove that the spectrum of this Hamiltonian consists of two eigenvalues
sequences (E,J{);’lo:o, (En )5, satisfying the same two-term asymptotic formula with remainder
O(n’1/3) when n tends to infinity. We also propose a conjecture on a three-term asymptotics
formula modeled on the GRWA for the one-photon Rabi model.

1. INTRODUCTION

The simplest interaction between a two-level atom and a classical light field is described by
the Rabi model [20,21]. The quantum Rabi model couples a quantized single-mode radiation
and a two-level quantum system according to the idea that each photon creation accompanies an
atomic de-excitation, and each photon annihilation accompanies atomic excitation (see [23] for the
microscopic derivation of the quantum Rabi model in Cavity Quantum Electrodynamics). In the
pioneer work [17], E. T. Jaynes and F. W. Cummings introduced the rotating wave approximation
(RWA) of the quantum Rabi model. The model of [17] (with the RWA) is explicitly diagonalizable
and explains a range of experimental phenomena, but further developments in engineering of
quantum systems, shows the necessity of understanding the full Rabi Hamiltonian given by the
formula (1.3). We refer to [27] for an exhaustive overview of theoretical and experimental works
in relation with the quantum Rabi model and its various generalizations (see also [6]).

In this paper we investigate the two-photon quantum Rabi model. The corresponding Hamilton-
ian is given by the formula (1.2) which differs from (1.3) by the fact that the atomic excitation/de-
excitation appears via annihilation/creation of two photons. This model was used in [13] to
describe a two-level atom interacting with squeezed light and we refer to [8] for the overview of
works about the two-photon quantum Rabi model (see also [11]).

The purpose of this paper is to investigate the asymptotic behavior of large eigenvalues of
the two-photon quantum Rabi Hamiltonian. It appears that this problem can be reduced to the
analog problem for some infinite Jacobi matrices. The asymptotic behavior of large eigenvalues of
classes of infinite Jacobi matrices with discrete spectrum was initiated by J. Janas and S. Naboko
[16] and continued in [1,15,18]|. However, in the case of a non-degenerated two-level system, the
corresponding Jacobi matrices do not belong to the classes of operators considered in [1,15,16, 18]
and the asymptotic behavior of large eigenvalues is quite different. It appears that one deals with
Jacobi matrices that have diagonal entries perturbed by periodic oscillations, but the contribution
of these oscillations to the behavior of the n-th eigenvalue tends to 0 when n — oo. This
phenomenon for the quantum Rabi Hamiltonian (1.3), was first investigated by E. A. Tur [24,25]
(see also [26] and [2-5]). In this paper we prove that a similar phenomenon still holds for the
two-photon Rabi Hamiltonian (1.2). The main result of this paper is the two-term asymptotic
formula (1.4) given in Theorem 1.1. However, our approach allows us to conjecture the three-term
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2 A. BOUTET DE MONVEL AND L. ZIELINSKI

asymptotic formula (1.6) which is the two-photon version of the three-term asymptotic formula
proved in [4].

1.1. The two-photon Rabi model. The two-photon Rabi model is given by a Hamiltonian
HRapbi acting in a complex Hilbert space Hrabi = Hatom @ Heeld. This Hamiltonian is of the form

I;[Rabi - ﬁatom 02y IHfield + I’Hamm (24 ﬁﬁcld + ﬁintv (11)

where H,iom is the Hamiltonian of the two-level atomic system, flﬁeld is the Hamiltonian of the
light field, and ﬁint is the interaction term.

The two-level atomic system is defined by a self-adjoint operator Hitom acting in the two-
dimensional complex Hilbert space Hatom = C?. We denote by E, < E, its eigenvalues, that is,
the energies of the ground state and of the excited state. To simplify the model we assume the
eigenvalues are j:%A where A := E, — E, is the level separation energy. Identifying a basis of
eigenvectors {eq,e,} with the canonical basis of Hatom = C? we have

Hatom = 5 03,

where 03 =0, = (5 _01) is the usual Pauli matrix. Henceforth we denote e; = e, and e_; = ;.

Hela is a complex Hilbert space equipped with an orthonormal basis {e, }5°. The Hamiltonian
Hielq is the self-adjoint operator in Hgeq characterized by

Hield en =ne,, n=0,1,2,...
The photon annihilation and creation operators are defined in Hgeq by
&en:\/ﬁen*h CA’/Ten: n+1en+1a n=0,1,2 ...

(with @ey = 0). In particular, afa = N, where N is the photon number operator characterized by
Ne,, = ne,. Therefore Hzeq can be written as

Hgoa = N = ata.
Finally, the interaction term Hipg is given by
ﬁint = g01 ® (&2 + (AT)g) )
0
1

where g > 0 is the coupling constant and o1 = o, := ({}) is the Pauli matrix.

To summarize, (1.1) takes the explicit form

~ A ~
Hravi = = 03 @ Iy + Iaen ® N + g @ (a2 + (a1)?). (1.2)

2

Remark. The usual (one-photon) quantum Rabi Hamiltonian is given by

atom

A o A A
5 789 Ditgeg + Dt © N + g1 @ (0 + 1), (1.3)

1.2. Main result. Our aim is to prove

Theorem 1.1 (large eigenvalues of ﬁRabi). Let HRabi be the two-photon Rabi Hamiltonian given
by (1.2), with parameters A > 0 and g > 0. We make the additional assumption g < % Then

Hryany is self-adjoint, has discrete spectrum, its eigenvalues can be enumerated in two nondecreasing
sequences {E;7}5° and {E, }&:

o(Hrani) = {EF 1 U{E, I,

and the large n behavior of these eigenvalues is given by

Ef = (n + %) V1—4g% - % +0(n~13). (1.4)
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Remark. In the degenerated case A = 0 we have an exact formula for E}f = E;:

1 1
B = (n43) VIZi - 5. (15)

The proof of (1.5), based on a paper by Emary and Bishop [10], is given in Section 6.2.

By analogy with the Generalized Rotating-Wave Approximation (GRWA) proposed by Irish
[14] for the one-photon Rabi model (see also Feranchuk, Komarov, and Ulyanenkov [12]), and
proved in [4], we propose the following conjecture for the two-photon Rabi model.

Conjecture. For p=0,1 and % < p < 1, we have the three-term asymptotics

1
Eiﬂt + 3= Engru +A % cos(apk +6,)+O(k™") as k — oo, (1.6)

1 1
Ejyy = (2k+ﬂ+*>\/1*4§/2**7

2 2
and wy, a,, and 8, are real constants, depending only on g (see Section 5.3 for explicit expressions
of these constants).

where

Comment. As we will show in Section 5.3 below, the validity of this three-term asymptotics can
be derived from the following improvement of the estimate (5.8) from Lemma 5.6:

N(L2) = Nj(LS) + 6 R, (4, 5) + O(|j]7*) as || — oo. (1.7)

1.3. Plan of the paper. In Section 2, by splitting the canonical basis B of Hgap; into four
parts B, ,,, v = £1, u = 0,1 we introduce a natural orthogonal splitting

HRabi = GopyHoy = H10 P H_10PH11DH 11 (1.8)

which is invariant under the two-photon Rabi Hamiltonian. Moreover, using %, , we show that
the restriction of the two-photon Rabi Hamiltonian to #,,, is unitary equivalent to some operator
defined in ¢?(N) by a Jacobi matrix .J,,, u- Thus the initial problem is reduced to the asymptotic
analysis of large eigenvalues of these Jacobi matrices J, .

In Section 3 we reduce this analysis to that of a simpler class of Jacobi matrices

) gy 0 0
gy 1—0 g(1+7%) 0
=0 gty 245  g2+79) ... (1.9)

0 0 g2+4) 3-96

Lemma 3.2 shows that suitable estimates for large eigenvalues of the associated operator J:‘j imply
the assertion of Theorem 1.1.

In Section 4 we replace the operator j,‘j acting in ¢2(N) with its natural extension j,‘j acting in
((Z). Tt appears that the spectrum of J was explicitly described in [9,19]. Following [9] we use
the Fourier transform Fy: L?(—m,7) — ¢?(Z) defined by (4.1) and consider the operator

LS =F T (1.10)

acting in L?(—n, 7). In the case § = 0 this operator, Lg, is a first order differential operator in
L%(—n, ) with periodic boundary conditions (or a differential operator with smooth coefficients
on the circle). Our analysis of L?Y given in Section 4 is a modification of the approach used in [9].
The main difference is that we use a unitary equivalence in order to obtain an explicit expression
for an orthonormal basis of eigenvectors of Lg.
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In Section 5 we use the form of eigenvectors of Lg to estimate the difference between the
eigenvalues of Lf{ and va thanks to an idea coming from [26]. Since the operator LfsY is unitary
equivalent to jg, we obtain the asymptotic behavior of the eigenvalues of jg

In Section 6 we complete the proof of Theorem 1.1, using that J:‘j is the restriction of jg to

2(N).
1.4. Notations and conventions. ¢%(Z) is the Hilbert space of square-summable complex
sequences Z: Z — C indexed by the set of integers Z and equipped with the scalar product

(@,9) =) _2(k)j(k), & 7€)
kez
and the associated norm ||Z|| :== \/(Z,%). We denote by {&, }mez the canonical basis of (2(Z),
that is &, (m) = 1 and &,,(k) = 0 when k # m.
The space ¢?(N) of square-summable complex sequences indexed by the set of nonnegative
integers N is identified with the closed subspace of £?(Z) generated by {&,, }men. Thus £2(N) is a
Hilbert space with the scalar product

(@,y) =Y x(k)y(k), z,ye*(N)
keN
and the canonical basis {&,, }meny which we also denote by {ep, }men-

If L is an operator acting in the Hilbert space H, let o(L) denote its spectrum. We say that
L has discrete spectrum if and only if every point A € o(L) is an isolated eigenvalue of finite
multiplicity.

Assume that L has discrete spectrum. We say that {\;(L)};eg is a complete eigenvalue sequence
of L if and only if any A € o(L) is some A;(L) and has multiplicity my = dimker(L — \I) =
card{j € J: \;(L) = A}

Assume that a self-adjoint operator L has discrete spectrum such that inf o(L) = —co and
supo(L) = +oo. Then we can choose a complete eigenvalue sequence {\;(L)};ez such that
{X;j(L)}jez is a nondecreasing sequence such that \;(L) — £oo as j — +oo. Moreover, there
exists an orthogonal basis {f;};ez such that Lf; = X\;(L)f; holds for all j € Z and any other
nondecreasing complete eigenvalue sequence is of the form {A;4,(L)}; ez with a shift x € Z.

Assume now that L is a self-adjoint operator with discrete spectrum such that inf o (L) > —o0
and supo(L) = 4+o0o0. Then there exists a unique nondecreasing complete eigenvalue sequence
{An(L)}nen which we will call the eigenvalue sequence of L. Moreover, A, (L) — +00 as n — 0o
and there exists an orthogonal basis { f,, }nen such that Lf,, = A\, (L) f,, holds for all n € N.

2. FORMULATION IN TERMS OF JACOBI MATRICES

2.1. Jacobi matrices. Let J be a real symmetric tridiagonal matrix
d(0) b0) 0 0

) d(3)

b0) d(1) b1) 0 ...
J= 0 b(1) d(2) b(2) ... (2.1)
0 0 b2

whose entries {d(k)}?°, and {b(k)}72, satisty the two conditions

d(k) = —+0o0, (2.2a)
lim sup PN = DIy (2.2b)
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Let D = diag{d(k)};>, and B be the diagonal and off-diagonal parts of .J:
J=D+B. (2.3)

Then it is known (see [7]) that under conditions (2.2) there exist constants Cp > 0 and 0 < ¢p < 1
such that, in ¢2(N),

+ (x, Bz) < co(x, Dx) + Co||z|? (2.4)
and the Jacobi matrix (2.1) defines a self-adjoint operator J characterized by
Jer = d(k)ex, + b(k)exs1 4+ b(k — Dex_1, k=0,1,... (2.5)

where Jeg = d(0)e + b(0)e; for k = 0.

2.2. Jacobi matrices and the two-photon Hamiltonian. Henceforth, v = +1 and =0, 1.

We reindex the orthogonal basis B = {e, ® e,,} where v = +1 and n =0,1,2,... as follows:
e;’,’f = eV(_l)m X Coam+4pu-

Let H,,,, denote the closed subspace of Hrani generated by B, ,, = {el'},>0. An easy calculation

shows that

. A
Hgabi eTVr’L“ = <2m +u+ I/(].)m) €y(—1)m &Q e2m+p

2
+9vV/(2m 4+ p)2m + p—1)e_y(—1ym @ eamip2
+ 9V 2m+ p+ 1)(2m+ p+ 2)e_y(—1ym ® eamppt2s (2.6)

where e, (_1ym ® ey = et and e_,(_1ym @ eomypts = e, hi 1. Therefore, each subspace H,,,
is Hgapi-invariant and the partition B = |, u B, ,, defines the Hyapi-invariant splitting (1.8):

HRabi = H1,0 D H11 D H_10DH_1,1.

Let ﬁv,u denote the restriction of fIRabi to H,,,. Thus the spectrum of ﬁRabi splits into four
parts: . . . .

U(}AIRabi) = O'(HL()) U O'(Hl,l) U O'(H_l)o) U O'(H_l)l).
Moreover, each H,,,, is isometric to ¢*(N) through the surjective isometry U, ,: M, , — ¢(*(N)
defined by U, e} = ep,. This isometry transforms }AL,V# into the operator jl,’# = UU’#IYV,HU;ﬁ
in £2(N), so that both operators have the same spectrum:

U(ﬁu,u) =0o(Jup)-

Lemma 2.1. The operator jv,u = Uy,uﬁqu;; 1s associated with a Jacobi matriz whose diagonal
and off-diagonal entries are given by d(m) = d,, ,(m) and b(m) = b,(m), m € N, with

dyu(m) =2m+p+ V(—l)mg, (2.7a)
bu(m) =g/ (2m + p+1)(2m + p +2). (2.7b)
Proof. Follows from (2.6) given (2.5). O

Lemma 2.2. Assume that 0 < g < 1/2. Let jv,w v =41, u = 0,1 be the operator in (*(N)
defined in Lemma 2.1. Then,

(i) Ju,. is self-adjoint, bounded from below, and has discrete spectrum.
il) Moreover, its eigenvalue sequence {A,(J, )}, satisfies
s/ Sn=0

en—C < A(Jy ) <COn+1), (2.8)

where C' and ¢ are some positive constants.
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Proof. (i) By the previous lemma it suffices to show that both conditions (2.2) are fulfilled when
the diagonal and off-diagonal entries are given by (2.7). By (2.7a) we clearly have d(m) — 400 if
m — oo. Moreover, for d(m) and b(m) given by (2.7):

L [bm)l+ o — 1)
m— o0 d(m)

=2g < L.
(ii) The estimate (2.8) follows from (2.3), (2.4), and the min-max principle. O

Proposition 2.3. Assume that 0 < g < % Let v==+1 and p = 0,1 be given, and let jw‘ be the

self-adjoint operator defined in Lemma 2.1. If {\p(Ju 1) 02, 15 its eigenvalue sequence we have
the large n asymptotic estimate

) 1 1 ,
M) = (204 it 5) VI g — 5+ 019, (2.9)

Proof. Lemma 3.2 will reduce the proof to that of Proposition 3.1, and the proof of Proposition
will be completed in Section 6.1. g

The next lemma shows that Proposition 2.3 implies Theorem 1.1.
Lemma 2.4. Estimates (2.9) for v =41 and p = 0,1 imply estimate (1.4), that is, Theorem 1.1.

Proof. We deduce (1.4) from (2.9) setting Eiﬂt = \(Ji1,) for p=0,1. O

3. A NEW FAMILY OF JACOBI MATRICES

In this section we introduce a new family of Jacobi matrices and we will prove Proposition 2.3,
hence Theorem 1.1 in the degenerated case A = 0.

3.1. Jacobi matrices J,‘:. For v,0 € R, let JA;S be the self-adjoint operator in ¢?(N) defined by
the Jacobi matrix (1.9). Its diagonal and off-diagonal entries d(m) = dg(m) and b(m) = b3 (m)
are defined by (m € N)

dd(m) == m+ (=1)™, (3.1a)
bg(m) =g(m+ 7). (3.1b)

Thus, jﬁf is characterized by
jﬁjem =d(m)em + bg(m)emﬂ + bg(m —Dem—1.

Proposition 3.1. Assume 0 < g < 1/2. The eigenvalue sequence {)\n(jfj)}zo:o satisfies the large
n estimate

An(J2) =ny/1—4g% + (7 - %) (vV1—4g2—1)4+0(n"1/3). (3.2)

Proof. The proof is completed in Section 6.1. O

Lemma 3.2. Let v = £1, p = 0,1 be given. Estimate (3.2) for )\n(j,‘j) with v = 4% + 3 and
6 = vA/4 implies estimate (2.9) for An(J,.,)-

The proof of Lemma 3.2 is given in the next section and uses the following consequence of
[22, Theorem 1.1]:
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Theorem 3.3 (Rozenbljum [22]). Let Ly be a self-adjoint operator which is bounded from below
and has discrete spectrum. Let {\,(Lo)}5%, be its eigenvalue sequence. Assume that 0 ¢ o(Lyg).
Let also R be a bounded symmetric operator such that R|Lg|? is bounded for a certain p > 0.

Then L = Lo + R is a self-adjoint operator which is bounded from below and has discrete
spectrum. Moreover, its eigenvalue sequence { A, (L)}, satisfies

An (L) = An(Lo) + O(JAn(Lo)| ™) as n — oo.

3.2. Proof of Lemma 3.2. We assume we know estimate (3.2) for )\n(jg) The diagonal entries
dy,;(m) and d2(m) of J,,, and J,‘Ys are given by (2.7a) and (3.1a), respectively. They are related
by

1

§(du,u(m) — 1) = dJa4(m). (3.3)

The off-diagonal entries by, (m) and b3 (m) are given by (2.7b) and (3.1b), respectively, and they
are related by

%bu(m) =10, () + ru(m), (3.4)
1

where 7,(m) = O(;;) as m — oo and

To prove (3.4) it suffices to observe that

gtulm =y (m 1+ 5) (o 5+ §) = otm )+ 0()

holds with y(x) given by (3.5). Therefore, using (3.3) and (3.4) we can write

s (o —u) = 28 4 By,

where
]A%Mem =7ru(m)emqr +ru(m — Lepm_1.

The operator R,J, , is clearly bounded due to r,(m) = O(). Therefore, using the estimate
(2.8) and Theorem 3.3 with p = 1, we find

1 7 JvA/4 1
5 (M) =) =l 0fH +0( ) (3.6)
Combining (3.6) with (3.2) we obtain
M) = = 20/ T= 4G + (22(0) - DT AE — 1) + O™ 3).  (37)

However the equality 2y(u) — 1 = p+ 5 allows us to write (3.7) in the form

. 1 1 _
An(Jop) — = (2n+u+§)\/174g27u—§+0(n 173y,

which is exactly the estimate (2.9).
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3.3. Proof of Proposition 2.3 in the case A = 0. It’s about proving the estimate (2.9) in
that case. Due to Lemma 3.2 for 6 = vA/4 = 0 it suffices to prove the large n asymptotics (3.2)
for 6 = 0. We will actually prove that

An(J9) = ny/1—4g2 + (v— %)(\/1—492 ~1)+0(nN) (3.8)

holds for any integer N > 1. Let j,‘§71 be the self-adjoint operator in ¢?(N) defined by

j$71em =dj(m)e,, + b}Y(m)em_H + b}Y(m — Dem—1,
where dj(m) = dg(m) for m > 1 and bl(m) = b3(m) for m > 1. Next we set bl (0) = 0,
which implies J e = d}(0)eg. Then we take d}(0) < 0 to ensure that \o(J9 ;) = d}(0). Since

R:= jj — jj‘hl is defined by a 2 x 2 block, Theorem 3.3 ensures that
An(J9) = An(J91) + O™ ™)

holds for any integer N > 1. Let £2(N*) be identified with the closed subspace of £2(N) generated
by {em }oo_,. This subspace is invariant under Ji?w1 and we denote by j,’y the restriction of g’lj,?’l
to £2(N*). It turns out that this operator jjy was investigated by Janas and Malejki in [15]. The
result of [15, Theorem 3.4], as completed in [15, Section 4], and applied for § = g—!
says that the eigenvalue sequence {)\n(j;) o satisfies

/\n(jf/) =nyg 2—4+ (’y + %) (\/ g 2—4-— g_l) +g 4+ O(n_N)

for any fixed integer N > 1. Thus for n > 1 one has

A(J01) = ghn1(J)) = (n—1)\/1 —4g> + 1+ (v + 1) (V1—4g2—1)+0(n™ ),

2

and ¢ = v,

completing the proof of (3.8).

4. EXTENSION TO (%(Z)
For 7,6 € R, we consider the self-adjoint operator J:‘j in ¢2(7Z) characterized by
j’(jém = (m+ (=1)"0)&m + g(m +7)em+1 + g(m — 1 +7)ép_1, mEZ,

where {&,, }mez denotes the canonical basis in ¢2(Z).
The following theorem is a special case of the result of [9] (see also [19])

Theorem 4.1 (see [9,19]). The complete eigenvalue sequence {Aj(jf)}jez of the operator j$

can be ordered so that ) )
A (J0) = (j+7—§)\/1—492—7+§.

In this section we present a modification of the proof given in [9]. Our purpose is to give an
explicit expression of a basis of eigenvectors of J,?.

4.1. Preliminaries.

Notations. (a) We denote by L?(—m, ) the Hilbert space of Lebesgue square integrable functions
[—7, 7] — C equipped with the scalar product

s

(9= o | T@ e
and with the norm || f|| == +/(f, f).
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(b) For f € L?(—m, m) we denote by (f) its mean value

=2 [ fan.

o -

(c) We denote by Fy: L2(—m,7) — ¢2(Z) the Fourier transform defined by
. [ _ij
(FhG) =5 [ fe)eeae, (@.1)

(d) We denote by C32,([—m,7]) the set of functions u € L?(—, ) whose 2m-periodic extension

is a smooth function R — C.
(e) We denote by {f};ez the orthonormal basis given by f7(n) = e'".

(f) We denote by Ly the self-adjoint operator in L2(—, 7) defined by
Lof] = jfy for j € Z.
We denote by D(Lg) the domain of Ly and observe that Ly is the closure of the operator D,, == %%
defined on CX.([—m,7]).

per

Proposition 4.2. Let q € C35 ([—,7]) be a real valued function and let L, denote the self-adjoint
operator defined by

Lyf = Lof +af, [ €D(Lo). (4.2)
Then L is unitary equivalent to Lo + (q).

Proof. We define a unitary operator U, in L?(—m, ) by

(U f)(n) = eid(n)—i<q>nf(n)7

o0
per

oo

where ¢ is a primitive of g. Since ¢ — (g) belongs to C32, ([, 7]), the subspace C3¢,([—7,7]) is

invariant under U '. Moreover, for f € C32,([—m, 7)),

Uqg(Dy + Q)Uglf = (Dy+{a)f

To complete the proof it remains to observe that L, is the closure of the operator f — D, f 4 ¢f
defined on C ([—m,7]). O

per

Corollary 4.3. Let {f{};ez be the orthonormal basis of L%(—n,7) given by f= Uq_lfJQ. Then,
for every j € Z we have
f}](n) — oildH{(a))n—ig(n)

and
qujq =+ <Q>)qu

4.2. A unitary change of variable. Assume that p € C2 ([—=,x]). Further on p(§)D¢ + he

per
denotes a symmetric operator in L?(—7,7) defined on C32,([—m, 7]) by
(P(§) D¢ + he) f = pDe f + De(pf). (4.3)
The right-hand side of (4.3) can be expressed in the form
2(Rep)De f — (Imp' +1iRep’) f. (4.4)

Assumptions. Further on we assume that ®: [-7, 7] — [—7, 7] is a bijection which has a

derivative ®" € C32,([—7, 7]) with &' > ¢y > 0 for some positive constant co.



10 A. BOUTET DE MONVEL AND L. ZIELINSKI

These assumptions ensure the property

feC® ([-m 7)) = fod ! eC® (-7, ).

per per

Moreover, we define a unitary operator Ug in L%(—n,7) by

(Us ) (&) = ' (©)2F(D(€)),

> ([, 7]) is invariant under UL

per

and observe that the subspace C

Proposition 4.4. Assume that ¢ € C2.([—m,7]) and Ly is given by (4.2). Then for any

per
h € C ([=m,7]) one has the relation

~ ~ 1
UpLyUg'h = <§<I>’(§)‘1D5 +hc)h+ (qo®)h. (4.5)
Proof. We assume that  — f(n) belongs to C2 ([—m,7]) and write n = ®(£). Then

per

Us(af)(€) = (€)' 2q(2(€))f((€)) = (a0 2)(€) (U f)(€)

and
Us(Dyf)(€) = ()2 (Dy f)(®(€)) = (&)™ /* De(f(2(£)))- (4.6)
Let us consider the quantity
(€)' De(Ua f)(€) = @'(€) 7' De(@'(6)' 2 £(2(€))). (4.7)
However, the right hand side of (4.7) can be written in the form
(&) 2De(f(2(6))) + @’(5)*1(;2i)‘l>'(£)*1/2‘1>”(€)f(‘1>(£)) (4.8)

and the first term of (4.8) equals Us (D, f)(€) due to (4.6). Thus the quantity (4.7) can be written
in the form

(€)' De(Ua f)(€) = Ua(Dyf)(€) — %‘I"(f)_%"(f)(ﬁ@f)(ﬁ)- (4.9)
Then using ®'(£) 720" (¢) = —(1/®')/(£) we find that (4.9) gives

- 50/2) ()

Using f = Uz 'h and taking into account (4.4) with p = 1/(2®’) we obtain

Us(Dy f) = (1/2")D¢(Us f)

- 1
Us DUz h = (5(1/@’) De + hc)h

for any h € C2.([—m, 7). O

per

Corollary 4.5. The operator L? = U}quUq:l is essentially self-adjoint on C3 ([—m, 7). If
h e CX.([—m,7]) then LY is given by (4.5) and one has

per
Ly fe =G+ (@) s
where {fg?j}jez is the orthonormal basis of L2(—m, ) given by f;?j = f]@ff, i.e.

T (€) = @ (€)1 21U+ @)PO-TT(@(©) (4.10)
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4.3. Proof of Theorem 4.1. We consider the operator Lg = f61j$f0 introduced in (1.10).
Following [9] we find that L9/ is given by the formula

Ly = ((% + geig)Dg - hc) +yg(e'€ + 7).
Using (4.4) we find
L0 = (%(1 +29€0s ) De + he) + (27 = 1)g cos €.
Now we define
~vitig [

and observe that an easy computation (see [9]) gives ®(£7m) = +w. Thus P satisfies the
assumptions of Section 4.2 and one has

4.11
1+2900s§’ ( )

1/@'(€) = (1 —49%) 71 /2(1 + 2g cos &).

Introducing
- 1 -
0, (1) = (1= 4g%) 772 (7 = 5 ) 2g cos(@~* () (1.12)
we find that
=\/1-4¢2UsL, Uy*

Combining the last formula with Corollary 4.5 we obtain

Proposition 4.6. Let ® and g, be given by (4.11) and (4.12), respectively. For each j € Z we
denote f, ; = fq j» where fq’» is given by (4.10).
Then {f,,;}jez is an orthonormal basis of L?(—m, ) and, for every j € Z,

L fos = VI= 2620 + (0)) fr s

Due to Proposition 4.6, the proof of Theorem 4.1 will be complete if we show that

)= (v—3)(1- ¢1ing>' (4.13)

However using the change of variable n = ®(§) in

1 w

(gy) = ——2—
T on /T —4g2 ) »

we can express the quantity (4.14) in the form

2g cos(® 1 (n)) dn (4.14)

s

1
2
27r\/ — 4¢°

and the right hand side of (4.15) equals

G0 ) rrme) = 0D =)

_ 1 pm .
29@’(§)cos§d£:72772 [ 290058 _ e (4.15)

= 1+ 2gcosé
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5. EIGENVALUE ASYMPTOTICS FOR Lfr

In this section we investigate the operator Lfsy introduced in (1.10). We observe that we can
express

LY = Fo "I Fo = LS + 6T, (5.1)
where T, is defined in L?(—7, ) by the formula

CJfE=m) ifo<e<m,
(T )(§) = {f(£+7f) if —m<£<0.

The operator T, is unitary and self-adjoint because it satisfies T2 = I. We will prove

Proposition 5.1. The operator L‘i has discrete spectrum and its complete eigenvalue sequence
{}; (L?Y)}jez can be ordered as a nondecreasing sequence such that

ML) = (G + (g,))V/1 = 4g% + O(G"/%) as || — oo, (5.2)
where (gy) is given by (4.13).
By (5.1) the operators jjj and Lg are unitary equivalent, hence Proposition 5.1 gives the
following corollary.
Corollary 5.2. The operator j5 has discrete spectrum and its complete eigenvalue sequence

{X;(J3)}jez can be ordered as a nondecreasmg sequence such that

N (T2) = (G + (g,))V/1 — 4g2 + O( /%) as |j] — oo, (5.3)
where (q,) is given by (4.13).

5.1. Auxiliary results. The following result was proved by Janas and Naboko (see [16, Lemma
2.1]):

Theorem 5.3 (Janas and Naboko [16]). We fiz g > 0 and assume that ()22, is a real sequence
such that pi, — 400, |pin] < |pny1| and |pn — pm| > €0 if pn # pm (n,m € N). Let {e)}o2 be
an orthonormal basis of the Hilbert space H and denote by Lo the self-adjoint operator satisfying
Loe® = pnel for any n € N.

If R is compact in H, then the operator L := Ly + R has discrete spectrum and its eigenvalue
sequence {\, (L)}, can be ordered so that one has the estimate

ML) = jin] < CILRS,

where C > 0 is a large enough constant and R* denotes the adjoint of R.

Theorem 5.3 was used by E. A. Yanovich to prove the following result (|26, Theorem 2.2]):

Theorem 5.4 (Yanovich [26]). Let {€2}2°, be an orthonormal basis of the Hilbert space H and
let Lo be the self-adjoint operator satisfying Loe® = nel forn € N.
If R is a symmetric bounded operator in H satisfying
Tim (ef,,,, Rel) = 0
for every k € Z, then the operator L := Ly + R has discrete spectrum and the eigenvalue sequence
{An (L)}, satisfies the estimate
A (L) —n — (€2, Re2)| < C’s}/2 for allm € N, (5.4)

where C > 0 is some constant and
)2
-y et

k#n
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We will also use the following version of van der Corput Lemma.

Lemma 5.5. For h, ¥ € CX ([—7,7]) and 7 € R denote

T (1) = [ i TV b () de.

Assume that V is real-valued and satisfies the condition
V() =0 = ¥"(&) #0. (5.5)

Then there is a constant Cy such that for all T € R* one has

()] < Co e~V <h<0>| +f

—T

|R ()] dt) :
5.2. Proof of Proposition 5.1. We begin by

Lemma 5.6. Let {f, ;};cz be the orthonormal basis of L?(—m,m) defined in Proposition 4.6 and
denote (j,k € Z)

Ry (5, k) = {fr.5, Tx ) (5.6)
If for every k € Z one has
i Ry(k+j,j) =0, (5.7)
j|—=o0

then L§Y has discrete spectrum and its complete eigenvalue sequence {\; (Lf/)}jez can be ordered
in nondecreasing order so that we have the estimate

I\(L8) = A (LS) — 8R, (4, 5)| < Cs)/? for all j € Z, (5.8)
where C' > 0 is some constant and
Ry (j, k)2
k]

Proof. Define the operators

Lo = (1—4¢)""2LY — (¢,),

R:=(1—-4¢>)"Y25T, + (gy)-
Then f/of%j =jf,,; for all j € Z and (5.8) becomes

N(Eo) = 5 = {frg By ) < Casy/?.

This estimate is similar to the estimate (5.4), except that indices belong to Z instead of N.
However we obtain the result in the case of Z by reasoning as in [26] and replacing Theorem
5.3 with its generalized version proved by Malejki [18]. In fact the assumption u, — 400 from

Theorem 5.3 can be replaced with |p,| — co. Therefore, choosing a bijection Z — N, j — n;,
one can use the sequence {/i,, } ez and the basis {e,; }jcz. O

Since Proposition 5.1 follows from Lemma 5.6, it remains to show (5.7) and
s; = 0(72/3) as j — o0, (5.10)
where s; is given by (5.9). However, (5.7) follows immediately from the following

Lemma 5.7. Assume that R, (j, k) is given by (5.6) and s; by (5.9). Then there exists a positive
constant C' such that

Ry (. + k)| < C(L+ k(L +]51) 2
holds for all j, k € Z.
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Proof. In order to simplify the expression of

1 (™ -
R0 = 5= [ £, (TaFo) e
we denote
Py (&) = ei<‘h>¢’(€)*iaw(q>(€))(]_ + 2g cos 5)71/2.
Then, -
Fri(€) = 7 p, (€)

and we can express

R,(j.k) = / PITRO) (6 (7,5, )(€) d.

—T

In order to apply van der Corput Lemma 5.5 we observe that R(j,j + k) = ._7};1;‘]9 (j) holds with
(&) = 2(&) — (Tx2)(),
ho1,(€) = €O p, (€) (T ) (6).
It remains to check the condition (5.5). For this purpose we observe that
v(e) = V1-4g2 /1 -4g2 |
1+2gcosé 1 —2gcosé
hence ¥'(£) = 0 <= cos& = 0, and

1= 402 T 452
cossz:>\I/”(§):<29 119 + 29v1 4gz>sin§::t4g\/1—4927$0. O

(14+2gcos&)? (1 —2gcosé)
In order to prove (5.10) we first observe that

YOIRG AR =D W Tnfrgs frmd = 1Tt

kEZ mEZ

=1 (5.11)

holds due to Parseval’s equality. Next we observe that using (5.11) we can estimate
D RTR G+ R < TR IR G+ k)P = O(15172)
|k|>j1/3 kEZ
and using Lemma 5.7 we get the estimate
Yo TR GRS Y HTPCA+ KD+ )T = 051,
1<|k|<51/3 1<[k|< 172

5.3. About the asymptotics conjecture. We will show that the improved estimate (1.7)
implies the validity of the three-term asymptotics (1.6). This estimate actually implies

Ne(2) = Me(J9) + OR (K, k) + O(k™") as k — oo. (5.12)
In Section 3.2 we proved that
By, =n+ 20050 + O™ (5.13)

holds with v(u) = & + 2. Therefore, combining (5.12) and (5.13) we get

A
+ —
Byt = ES;HM + §Rv(u)(k’7 k) +O(k~")
and observe that the stationary phase formula allows us to express

Ry (k, k) = % cos(ak + 0) + O(k™L),
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where w, a, and 6 are constants depending on v and g. Indeed, we observe that { = £5 are
non-degenerated critical points of U,

T2\ /1—4g2 [T+2
U(vm/2) = V/ VT 4¢ = 4y arctan < + g) ,
—xj2 L+ 2gcos&’ 1—-2¢

V(v /2) = 4gvr/1 — 4g2.
Moreover ¢, (®(£)) = (27 — 1)g(1 — 4g%)~1/2sin ¢ gives
0 =G, (®(/2)) — 3, (P(—7/2)) = 2g(27 — 1)(1 — 4g%) 1/
and the stationary phase formula gives
i(k+(gy)) ¥ (vr/2)+ivB+ivn /4
Ry(kk) =Y © _ +O(k™)
v—t1 2km |0 (vrr/2)]
1 2cos((k + (g,))¥(7/2) + 0 + 7 /4)
TVE T 202rg) 21— dgh)ift

with (g,) = (’y - %) (1— (1 — 4¢%)~1/?) according to (4.13).

and

+0(k™)

6. END OF THE PROOF OF THEOREM 1.1

6.1. Proof of Proposition 3.1. Due to Lemma 3.2, to prove Theorem 1.1 it suffices to prove
Proposition 3.1, that is, estimate (3.2) for /\n(Jff). We will use the following consequence of
[22, Theorem 1.2]:

Theorem 6.1 (Rozenbljum [22]). Let Lo be a self-adjoint operator with discrete spectrum. We
assume that 0 ¢ o(Lg), info(Ly) = —oo, and supo(Lg) = co. We denote by {\;j(Lo)} ez a
nondecreasing complete eigenvalue sequence of Ly. Let R be a bounded symmetric operator and
denote L := Lo + R.

If R|Lo|” is bounded for a certain p > 0, then L has discrete spectrum and one can order a
complete eigenvalue sequence {\;(L)};ez so that

Aj(L) = Aj(Lo) + O(4177)  as |j] — oo
Let 69 > 0 be an arbitrary fixed positive real number. Further on we assume that § € [—dg, do].
By the min-max principle, inf O'(Jg) > —[0] + o(J9). We choose pg > 0 large enough so that
—po < inf O’(Jg) for 6 € [—0do, do)-
Further on ¢(Z \ N) denotes the orthogonal complement of ¢?(N) in ¢2(Z). Then for ng € N we
denote by j’ino the self-adjoint operator in £?(Z \ N) satisfying
J2 om = di° (M)&m, + b0 (m)& 41 + b2 (m — 1)1 for m € Z, m < 0,

with

47 (1m) = m+ (=16 if m < —ng,
J o —pPo if —ng<m<Q0,

b;“’ (m) = (m+7v)g %f m < —ny,
0 if —ng<m<0.
Then it is clear that we can fix ng large enough to ensure

supo(JS, ) = —po for & € [—do, do].

Ym0
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Let J° . be the self-adjoint operator in ¢2(Z) defined as the direct sum

Ym0
76 ) 76
I g =Gy B

v,1o 1o

and let {Aj(jg,no)}jeZ be a nondecreasing complete eigenvalue sequence of .J¢ Since all

Y,mo*
cigenvalues of J9 , = are smaller than inf o(J3) we can order the sequence {/\j(Jf?,no)}jeZ so that

An( TS ) = An(J3) for n € N. (6.1)

vsno

Next we observe that R = jg — jg’no is given by a finite block matrix. Thus, Theorem 6.1 can

be applied for any p > 0. Therefore there exists . (d) € Z such that
M () = A0y (L) + O(I5]77) as |j| = oo. (6.2)

v,no

However, using (6.1) and (5.3) in (6.2) we obtain
)\n(jg) = (n+4 £y (8) + (gy))V/1 — 4% + O(n~/3) as n — oco. (6.3)

Therefore we can express

£, (6) = Tim (1= 4g?) 720 (J3) = n ~ (a))

n—oo

and we claim that the function § — k., (9) is continuous. Indeed,
An(J34) = An(J22)] < |61 — 62

holds due to the min-max principle. Using the fact that the function k,: [—dg,d0] — Z is
continuous, we deduce that the function k., is constant. Since we have proved that in the case
9 = 0 the formula (6.3) holds with . (0) = 0, we conclude that (6.3) holds with x-(J) = 0 for
every § € R.

6.2. Proof of (1.5). In the case A = 0 the two-photon Rabi Hamiltonian Hgrap; is unitary
equivalent to

Hfopi =a'a+go. ® (&2 + (aT)Q) .

The decomposition Brap = B1 UB_;1 with B, = {e, ® e, }>_, shows that flﬁabi is unitary
equivalent to the direct sum H, ® H’ , where

ﬁ;[g =a'a£g(a®+ (ah)?).

Ifo<g< %7 then ﬁ’ig is self-adjoint in Hgelq = £2(N) and its spectrum is discrete and bounded

from below. Let {/\n(f[;g)}ffzo be the eigenvalue sequence of I:[’iq It remains to prove

N 1 1
An(HYy) = (n + 5) Vi—ig - (6.4)
The proof is based on the following result.
Lemma 6.2 (Emary and Bishop [10]). Denote o := (1 — /1 — 4¢?)/(£2g) and define

o at + aa s a+ aal (6.5)
V12 CV1-a? '

Then [2,21] =1 and
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To complete the proof of (6.4) it suffices to check that

M(Heg) =nt o (6.6)

where
Hig =(1- 4g2)_1/2 (H'L_Lg + %)
The idea is well known, but we present the details below.

For simplicity let H := H,. We first observe that (Hz,z) > 1||z||? implies o(H) C [3,00).
We denote by D(H) the domain of H equipped with the graph norm. Let 2! and z denote
bounded operators D(H) — Hgela acting on {e,, }men according to (6.5). Since H2T — 2TH = 21
holds on the subspace generated by {e,, }>°_,, we deduce zf H~! — H=12f = H=12TH~1. Assume
now that A\ € o(H). Then H !'Azx = z holds for a certain z € D(H) \ {0} and the equality
AH e — H 2t e = H 12V H-"\z implies H '2fAz = zfa — H=12T2. We conclude that
iz € D(H) and (\+1)H 2Tz = 2Tz, hence A +1 € o(H) if 2z # 0. However, if zfz = 0, then
for every y in the subspace generated by {en, }o5_ one has (z'z, 2Ty) = (z, 22Ty) = (z, (3 +H)y) =
((3 4+ H)z,y) =0, and (3 + H)z = 0 is in contradiction with  # 0. Thus A € o(H) implies
A+1e€o(H).

Assume now that A > % Using HZ — ZH = —Z in similar computations we find that Hx = Az
implies (A — 1)H 22 = zx, hence A — 1 € o(H) or zx = 0. However, if zz = 0, then for
every y in the subspace generated by {e,,}5°_, one has (zz, 2y) = (x,272y) = (z,(H — })y) =
(H-1%)z,y) =0and (H — 1)z =0 implies A = 1. Thus A — 1 € o(H) holds if A > 1.

Assume now that there is k € N such that k+1 < A <k+2 and A € o(H). Then \—m € o(H)
holds for m = 1,...,k + 1. In particular we obtain A\ —k —1 € og(H) and A\ —k —1 < % is in
contradiction with o(H) C [, 00).

To complete the proof of (6.6) we take A € o(H) and observe that there exists k € N, such
that A =k + % Then we have A\ —m € o(H) for m = 1,...,k, hence % € o(H) and consequently
% +m € o(H) for every m € N. It remains to show that each eigenvalue of H has multiplicity
1. However the family g — H,, is analytic in the sense of Kato, hence the multiplicity of each
AEZ+ % is constant. Thus the multiplicity is 1 as in the case g = 0.
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