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Robust Bipedal Walking with Closed-Loop MPC–
Adios Stabilizers

Antonin Dallard, Mehdi Benallegue, Nicola Scianca, Fumio Kanehiro and Abderrahmane Kheddar, Fellow, IEEE

Abstract—We present a new walking control scheme based on
the dynamics of the inverted pendulum. Our scheme includes re-
planning the step locations and step timings, feet force control,
and a walking pattern generation that is closed-loop thanks to
feedback in the state of the real humanoid robot pendulum
(CoM position/speed and ZMP). No additional control policy
is used to maintain the static and dynamic balance of the
humanoid. We experimented this framework on five different
humanoid robots over multiple disturbances including sudden
pushes during walking or in a static state and by achieving
locomotion over uneven and compliant grounds.

I. INTRODUCTION

WALKING control strategies and algorithms for bipedal
and humanoid robots are various (see Sec. II). The

complexity of this problem lies in the interlink between
different bricks consisting of (i) reactive footstep planning, (ii)
whole-body switched control under balance constraints, (iii)
stability (as understood in control theory) of the entire control,
and finally (iv) perception to understand the surrounding
environment and relative bipedal robot state.

In this paper, we are interested in a particular class of
walking control strategies: the use of linear inverted pendulum
mode –or model, acronym LIPM, early introduced in [1]
and popularized by the first Honda humanoids family (see
knowledge reports in [2], [3], [4], [5]). It is still successfully
implemented in many humanoid use cases, yet it has evolved
in numerous shades and sophistication (Sec. II).

The common implementation of such models is to reason
only on the center of mass (CoM) dynamics in order to
draw fast planning and control. The latter usually implies
the exploitation of the zero moment point (ZMP) location for
dynamic balancing. Indeed, the ZMP gives a limitation on the
contact forces that can be applied; namely, the ZMP always
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Fig. 1: HRP-2KAI and HRP-4 robots walking outdoors. Ex-
periments with the HRP-4 are done without safety ropes.

resides inside the support polygon of the robot. In linear cases,
the ZMP can be seen either as the causality output (also known
as the Cart Table model [6]) or as input (the LIPM) for a linear
dynamic system linking it to the CoM. However, the instability
of the model entails that for a generic ZMP trajectory, the
associated CoM trajectory might be divergent.

The Intrinsically Stable Model Preview Control (IS-
MPC) [7] is a walking gait generator, derived from the
LIPM, which incorporates a stability constraint explicitly: The
presence of this constraint proves recursive feasibility. This
means that it is always possible to find a solution satisfying
the constraints and controller stability, i.e., the CoM trajectory
is always bounded with respect to the ZMP. The IS-MPC can
update the footsteps location and has recently improved to
adapt also the next step duration [8].

However, in essence, reduced models cannot grasp the
complexity of the whole multi-body dynamics. Therefore, be-
havioral discrepancies are expected to occur between reduced
models and the whole-body dynamics. Also, the inverted
pendulum is a model derived from the constrained equation
of the centroidal dynamics; controlling the pendulum means
controlling the contact forces applied to the robot. Different
grounds lead to different behaviors for the same controller
(see Sec. II). To deal with these discrepancies, one shall
devise a correction policy that mitigates the modeling gaps
in using the real robot state, and a model of the contact forces

0000–0000/00$00.00 © 2024 IEEE
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Fig. 2: Global control scheme, the ∗ superscript represents the
control references for the whole body control or the robot. The
swing foot trajectory planning or the force control scheme is
included in the whole-body control box as they are outside the
article’s contribution. The blue elements highlight our adding
w.r.t existing approaches.

behavior, see e.g., [9]. Such mitigation is commonly referred
to as the stabilizer in the humanoid research jargon (yet not
all papers name it so). The stabilizer usually comes with
several parameters. Tuning it is not trivial, especially when
combined with the controller’s parameters. This correction
policy is short-sighted compared to the MPC policy which is
based on state prediction, and might invalidate some benefits
of having such prediction, this is well detailed in Sec. III-A.

One might think that MPC should take care of this issue
thanks to its inherent robustness. However, as in any controller,
the robustness of MPC comes from its closed-loop, i.e., the
predicted trajectory is recomputed at each time starting from
the measured state. Hence, if the contact force model is not
taken into account, the generated walking gait would still be
not feasible; hence, a stabilizer would still be necessary. This
paper proposes a solution to this issue and presents a humanoid
walking control scheme with the following newies:
1) A reformulation of the IS-MPC with a model of the contact
forces dynamics that closes the loop effectively on the robot
state (CoM, CoM velocity and ZMP); which does not need an
external correctional policy (the so-called stabilizer) to enforce
and warrant balance, Sec. III. This is the main contribution;
2) A LIPM feasibility solver based on extended stability
constraint to adapt any plan of footsteps location and timing
on the entire horizon using the state of the robot, Sec. IV;
3) A force distribution scheme to plan the contact forces
during double-support phases, Sec. V;
4) Extensive and challenging scenarios using five different
humanoid robots, all of them controlled with the same soft-
ware to assess and illustrate the robustness, versatility and
portability of our algorithms, Secs. VI and VII.

Figure 2 highlights our contributions, the order of execution,
sections and main equations formulating each subproblem.

II. BACKGROUND

Bipedal and humanoid locomotion is a rich field of research
in the robotics domain. We invite interested readers to refer to
the excellent reviews (most of which are recent) in [10], [11],
[12], [13], and the monographs [14], [6].

We put aside all the work done in passive bipedal locomo-
tion [15], as we are interested in motorized humanoid robots

that do not content in predefined cycled locomotions1. We also
do not cover research in quadruped or hexapods locomotion;
even if there are similarities in some fundamental aspects,
see e.g., [16], [17], multiple legs have richer locomotion gait
patterns and specificities (e.g., in terms of balance and mass
distribution...) that are not found in humanoids and vice-
versa. In the computer graphics and animation field, there
are noticeable papers showing high dexterity skills in bipedal
walking of animes from human-captured data, e.g., [18],
[19], [20], [21], to cite a few. Yet porting such methods on
humanoid robots is not straightforward. This is because they
do not account for sensors noise and uncertainties of all kinds,
physical bounds, hard auto-collision avoidance, etc.

Walking gait generation using full dynamics and kinematic
constraints of the robot, implying non-linear trajectory opti-
mization in most cases, has been proposed in different ways.
For example, using full semi-infinite optimization (not real-
time) in [22], differential dynamic programming (DDP) [23],
hybrid zero-dynamics (HZD) [24], [25], [26], [27], [28], [12]
or learning based method [29], [30], [31].

Yet, other persistent approaches rely mainly on centroidal
gait generation, which consists of computing a trajectory of
the CoM that is feasible. This kind of strategy started with
the Linear Inverted Pendulum (LIP) model [32], where the
dynamics of the center of mass is constrained both vertically
and in terms of angular momentum. Control strategies of the
centroidal dynamics have evolved to account for the vertical
height variation, e.g., [33], [34], or the angular momentum
around the center of mass [35], [36]. The complete centroidal
dynamics can now be captured [37], [38], but it requires non-
linear solvers if one must account for all the constraints simul-
taneously. The LIPM still represents an interesting approach
because its assumptions can be enforced on a real humanoid,
and it is linear; it also allows reasoning relatively easily on
the stability of such a model.

Our work uses the LIPM and builds on the contribution
of [7]. Hence, we kept the notations as close as possible to
the original ones. The overall notation has the following rules:

- Super-scripts x� refer to indexes in a sequence, when
it designates the power of x there will be no possible
confusion;

- The super-script �∗ refers to all the current references
applied to the robot

- Lower-script x� indices refers to the value type (for ZMP
we use z, for CoM c, for DCM u, for foot f , etc.);

- x, y, z as variables refer to components of a position in
the x, y, z axis respectively.
The axis component can also be specified in some
cases on the lower script without possible confusion
such as a vector b� would be read in a 3D case as:
b� =

(
b�,x b�,z b�,z

)T .

A. Inverted Pendulum Mode

The LIPM is derived from the Newton-Euler equations
under the assumption that the angular momentum around

1Research in passive walkers is however useful to have insights in motorized
gait energy optimization.
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the CoM is constant, and that the CoM is at a constant
height. It leads to a relationship between the CoM projection
pc =

(
xc yc

)T and the ZMP pz =
(
xz yz

)T on the (x,y)
plane (corresponding to the ground):

p̈c = ω
2(pc−pz) (1)

where ω2 = g/ẑc with g the gravitational acceleration magni-
tude and ẑc the constant difference between the CoM and the
ZMP height; with the ZMP set at the stance foot height.

This model was initially introduced for humanoid locomo-
tion by [32] formulated as an LQ preview controller. The
latter generates a CoM trajectory under a pre-generated ZMP
objective trajectory. An extension of this model in [39] allows
having both the CoM and the ZMP as decision variables.
Generated trajectories are enforced by constraints on the ZMP,
to sustain contact balance, and on the steps to keep their
kinematic feasibility, see e.g., [7], [40], [41].

Using the following change of variable:

xu = xc +
1
ω

ẋc, (2)

equation (1) can be rewritten as

ẋu = ω(xu− xz) (3)

where xu is the Divergent Component of Motion (DCM),
introduced in [2]; its dynamic is such that, while the CoM
is converging exponentially towards the DCM, this latter is
diverging exponentially from the ZMP. Controlling this first-
order dynamics between the ZMP and the DCM is used
extensively in walking gait generation, e.g., [41], [42], [7], [8],
as it simplifies the dynamics and extends the balance stability
criterion to the gait generation.

Using the DCM dynamics, for a bounded ZMP trajectory
xz(t) in an interval t ∈ [t̃,∞], The CoM dynamics is bounded
if and only if the initial DCM xu(t̃) fulfills the following
condition, see details in [43]:

xu(t̃) = x?u(t̃,xz), ω

∫
∞

t̃
xz(τ)e−ω(τ−t̃) dτ (4)

with e being the exponential function, i.e., e(···) , exp(···).
Equation (4) is the stability condition. Using (4) guarantees

the boundness of the CoM (if the ZMP or its velocity is
bounded) at all times.

This stability condition brings interesting features:
1) It provides a linear constraint between the current DCM

and the ZMP trajectory to generate;
2) As the ZMP-allowed location depends on the future step

positions and step durations parameters (i.e., for both
double and single support durations), the feasibility of
a walking plan is also captured.

This feasibility condition is an alternative to penalizing
divergent trajectories as part of the cost function (commonly
minimizing the CoM jerk), a heuristic solution that can be
dependent on the duration of the prediction window of the
MPC. It is the basis of the IS-MPC proposed in [7], In [8],
this condition is linearized w.r.t the step durations in the case
of forward walking (where the constraints are decoupled for
the axes). It allows a change in the incoming step duration.

Similarly, [42] uses the dynamics of the DCM (in point contact
feet), which simplifies the derivation of a boundness condition
to compute the next step timing and the next step location
simultaneously.

Note that the DCM is used as a baseline to relax the
constraints on the pendulum height and creates a variable
height pendulum model in [33], [44].

When it comes to controlling a humanoid under LIPM
assumptions, one must guarantee that the robot’s dynamics
follow the generated gait. In order to mitigate modeling
uncertainties that are prone to errors and disturbances, a
complementary policy based on the DCM tracking feedback
can be added to the control of the ZMP to enforce the DCM
to converge exponentially to its planned reference, e.g., [45],
[9]. This DCM feedback control loop is often named stabilizer
as its purpose is to ‘stabilize’ the reference walking gait. This
concedes the open-loop aspect of the gait generators previously
mentioned, as one must stabilize the generated gait to keep
the motion feasible. However, even if some control schemes
in the literature consider the state of the robot in the gait
generation [7], [39], only part of the state is provided to the
planning as the ZMP dynamics is not considered. Therefore,
such a complementary policy is still needed.

B. Disturbed Pendulum

The ZMP in the LIPM represents the contact forces one can
control. Yet, supplementary contact forces can be added to our
system and should be considered.

Writing the centroidal dynamics and adding an external dis-
turbance wrench, (n, f) =

(
nx ny nz fx fy fz

)T applied
at a contact point p=

(
px py pz

)T , the pendulum dynamics
become as follows (see equations (1) to (4) from [46] for the
derivation):

ẍc = ω
2 (xc−κxz +∆x′c

)
(5)

ω
2 =

g+ z̈c

zc− zz
(6)

κ = 1− fz

m(g+ z̈c)
(7)

∆x′c =
1

m(g+ z̈c)
[(pz− zz) fx− px fz +ny− L̇c,y] (8)

L̇c =
(
L̇c,x L̇c,y

)T is the derivative of the angular momentum
at the center of mass; zc and zz are the vertical components of
the CoM and the ZMP, respectively; m represents the mass of
the robot. For y axis, ∆y′c is similar to ∆x′c such that:

∆y′c =
1

m(g+ z̈c)
[(pz− zz) fy− py fz−nx + L̇c,x] (9)

Using (3), (2) and (5) with a constant pendulum frequency
ω , the DCM dynamics can therefore be rewritten as follows,

ẋu = ω(xu− (κxz−∆x′c)). (10)

An external disturbance is then seen in the pendulum dy-
namics as an offset on the ZMP with a proportional coefficient
on its trajectory.
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C. Force control

With a high-gain kinematic-controlled robot, the forces at
the feet are regulated using an admittance control. The latter
tracks a reference wrench wr by displacing the feet in the
opposite direction of the desired force.

Having the 6D spatial velocity motion vector of a robot link(
ωωωT vT )T , we use an acceleration-based tracking law [47]

with only a reference spatial velocity.(
ω̇ωω

v̇

)
=−Kd

[(
ωωω

v

)
−
(

ωωωr
vr

)]
(11)

Kd is the damping coefficient. In the case of force control, we
set the reference spatial velocity such that [47]:(

ωωωT
r vT

r
)T

= Ka(wm−wr) (12)

where wr, wm are the reference and measured 6D wrench
in the link frame respectively; Ka is the admittance gain. To
control the robot ZMP, we must control the Center of Pressure
(CoP) of the current contacts. This is done by controlling the
moment in the x and y direction in the contact frame and the
vertical force. To control the moments, we use (12) in two
dimensions. However, the control of the vertical forces during
a double support phase is done using a foot force difference
control (FFDC) [48], [49]. Noting (vL,vR) the vertical velocity
of the left and right foot respectively, FFDC with gain Kz
updates the reference velocity (vL,r,vR,r) [9] as follows:

vL,r← vL,r−0.5vδ f (13)

vR,r← vR,r +0.5vδ f (14)

vδ f , Kz [( fL,r− fR,r)− ( fL,m− fR,m)] (15)

When it comes to evaluating the tracking of such a force
control scheme, one must consider the deformation of either
the contact surface of the foot sole or ankle. Moreover, many
of the (our) humanoid robots (e.g., HRP-4CR, HRP-4, HRP-
2KAI) are equipped with a passive-compliant shock absorbing
mechanism between the ankle and the feet, with a thin layer
of soft sole to each foot. This flexibility can be seen as
a 2nd order model between the torque at the contact point
and the deformation [50]. Moreover, even in a configuration
without a shock-absorbing mechanism, similar behavior can
be drawn if we consider the floor as a compliant material that
deforms under the contacts (the flexibility at the ankle can
be approximated as a pure spring whereas the floor exhibits
rather a spring damper behavior). As our force control relies on
the position of an end-effector to obtain the desired force, this
2nd order behavior between the torque at the contact point and
the deformation reflects the behavior between the desired CoP
and the references forwarded into the force control scheme. A
simpler model empirically evaluates the behavior between the
CoP and its reference (using a force control defined in (12))
using first-order dynamics [48].

0.0 0.5 1.0 1.5 2.0
Time (s)

0.1

0.2

x
(m

)

xu
xc

xz
xz,r

(a) LIPM without ZMP bounds: the DCM can be captured
by placing the ZMP on it.

0.0 0.5 1.0 1.5 2.0
Time (s)

0.1

0.2

x
(m

)

xu
xc

xz
xz,r

(b) Once the ZMP dynamics is introduced, the real DCM cannot be
captured.

Fig. 3: LIPM behaviors for the toy example.

III. WALKING GAIT USING CLOSED-LOOP IS-MPC

A. Closed-loop control of the pendulum– A toy example

To showcase the use of the DCM feedback control and
how to overcome it, we analyze the analytical and simulated
dynamics of a perfect pendulum model in one dimension.
We initialize the pendulum with an arbitrary and distinct
DCM and ZMP at initial time t0 = 0 and choose the ZMP at
t = t0 +∆t (here ∆t = 0.5 s) to bring the pendulum to a stop.
Since it is a toy example, the final position of the pendulum
does not matter; yet the same reasoning extends to the case
where it does. From (4), having xz(∆t) = xu(∆t) stabilizes the
pendulum, see Fig. 3a. In this case, the ZMP jumps instantly to
the DCM. But this is impossible because of physics causality.
Previous works suggest considering a ZMP behavior xz(t) to
track its reference xz,r with at least a linear first-order model,
e.g., [48], that is, with a parameter λ :

ẋz(t) =−λ (xz(t)− xz,r) (16)

Integrating such ZMP dynamics to the LIPM, by setting
xz,r = xu(∆t), leads to instability (see Fig. 3b). Indeed, a
delay in getting the ZMP induces a deviation of the DCM;
subsequently, the pendulum’s dynamics is not anticipated at
its initial pose.

One could then correct the ZMP reference using a DCM
feedback control policy; which could be a simple proportional-
integral-derivative (PID) on the DCM error. This is a com-
mon strategy leading to an exponential convergence of the
measured DCM towards the reference one (see Fig. 4a) [9].
The downside of this policy is to consider only the current
state of the pendulum. Moreover, as the control references are
changing, the higher-level planning is disconnected from the
state of the real robot, which could lead to violations of the
planning constraints. Figure 4 shows a gait generated using
the IS-MPC in [7] where the corrective ZMP is out of the
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(a) Using a DCM feedback control x∗z = xz,r +PID(x0
u− xu,r), we can correct the ZMP reference to be stable.

(b) If the dynamic of the ZMP is known, the DCM can be captured using (4).

Fig. 4: Linear inverted pendulum models (toy example) control schemes, highlighting our proposed approach.

predefined constraints. Finally, it can be seen from [46] that
if λ < ω , this DCM feedback policy becomes unstable.

Our solution uses the dynamics of the ZMP directly and
explicitly as part of the walking pattern generation, see
Fig. 4b. In our example, this amounts to solving (4)
and computing the value of the reference ZMP such that
the real ZMP would converge to it at the same time as
the DCM. This captures the combined dynamics with
a single reference ZMP value. To our best knowledge,
this is a novel approach that has never been considered
in previous works.

The difference between the common control scheme in the
literature and ours is illustrated in Fig. 4. Note that in real-case
applications, Fig. 4a’s scheme can be used with a semi-closed-
loop component by providing the DCM state to the pattern
generator. However, this still requires a DCM feedback policy
to guarantee proper tracking of the pendulum state.

B. IS-MPC

The IS-MPC generates a feasible CoM gait to achieve a
footstep plan. This footstep plan consists of footstep prints
(both location and orientation) and footstep durations over a
preview horizon (Tp) longer than the MPC control one.

If we want the robot to stand still, the generated gait from
an empty footstep plan. We can then dissociate the walking
phase from the standing phase. Transitions can be triggered
manually by the user or automatically (see Sec. IV-F)

The initial description of the IS-MPC uses the LIPM by
taking ẋz (or equivalently ẏz) as the input term, we define the
following dynamics from (1) with the state

(
xc ẋc xz

)Tẋc
ẍc
ẋz

=

 0 1 0
ω2 0 −ω2

0 0 0

xc
ẋc
xz

+

0
0
1

 ẋz (17)

However, in order to use this MPC in closed-loop on the
robot pendulum full state (i.e., including also the ZMP and
the DCM), one shall model the relation between the ZMP
reference forwarded to the force controller (e.g., admittance)
and the measured ZMP value. We model this behavior as a
first-order system, similarly to (16), with a parameter λ and a
delay δd such that:

ẋz =−λ (xz(t)− xz,r(t−δd)) (18)

The reason behind adding δd is an empirical observation
resulting from experiments. Indeed, such a delay takes into
account the lag between the instant the command is computed
and the instant it is applied. It includes software latency and
joint torque tracking response time. The dynamics in (17) can
then be rewritten as follows (that also apply to the y-axis):ẋc

ẍc
ẋz

=

 0 1 0
ω2 0 −ω2

0 0 −λ

xc
ẋc
xz

+

0
0
λ

xz,r(t−δd) (19)

Let’s consider this system at instant t0 and δd constant,

xz(t) = x0
z +(x∗z − x0

z )(1− e−λ (t−t0)) for t ∈ [t0; t0 +δd ] (20)

with x0
z the current ZMP estimate, and x∗z the current com-

manded ZMP; we set x̄0
z = xz(t0 +δd).

The reference xz,r(t) is the input to the force control loop.
Let’s consider it piece-wise constant on a duration ∆t > δd . We
define inputs uk

x on [tk; tk+1] where tk = t0+k∆t, as increments
added to the ZMP reference xz,r such that on [tk; tk+1]:

xz,r(t) = x̄0
z +

k

∑
l=0

ul
x

x̄0
z = x0

z +(x∗z − x0
z )(1− e−λδd ),

(21)
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Fig. 5: Chosen 1st order ZMP model with λ = 25. The green
dashed line indicates the starting point of the first arrow.

Fig. 6: Disposition of the planning time variables.

The ZMP dynamics in (18) can then be integrated with (21)
to obtain the following ZMP trajectory for
t ∈ [tk +δd ; tk+1 +δd ]:

xz(t) = x̄0
z +

k

∑
l=0

ul
x

[
1− e−λ (t−t l−δd)

]
(22)

One can see each ul
� as a sequence of first-order step delta

input, each being delayed by tk
d . Figure 5 presents the expected

model behavior.
We define the control inputs as uk =

(
uk

x uk
y
)T and the

future contact location as pi
f where i is the step number. At

each iteration, the proposed closed-loop IS-MPC considers a
control horizon of C samples of ∆t duration each. The provided
footstep plan defines the number of steps Ns in the control
horizon. We then generate the following values:

1) The reference inputs U =
(

u0T
. . . uC−1T

)T
;

2) The footsteps locations Pf =
(

p1
f
T

. . . pNs
f

T
)T

. We

note p0
f and p−1

f respectively the current and previous
support foot location at time t0.

The fixed time parameters are Ts =
[
(t0

ds, t
0
s ), . . . ,(t

Ns−1
ds , tNs−1

s )
]

which are the times of the start and end of the single support
duration. Figure 6 shows the organization of the time variables.
P̂f are the reference footsteps location. The control horizon
time is Tc =C∆t. Once computed, the LIP dynamics defined in
(19) is integrated using (21) under computed input (u0

x ,u
0
y) at

sampling rate δ t ≤ ∆t; δ t is the sampling period of the whole-
body control loop. The MPC solves a quadratic optimization
problem (described in (37)) under different linear constraints
enforcing dynamic balance.

C. Constraints

1) ZMP constraints: At time tk, pz(tk) =
(
xk

z yk
z
)T
, pk

z
is constrained to be within a convex polygon, located either
under the support foot or in-between both feet, depending on
t. Let N(t) and O(t) be the normal matrix and the offset vector
respectively, we have:

N(tk)pk
z ≤ O(tk), (23)

therefore there are C ZMP constraints in the form of (23).
For each computation of the MPC, at the current walking

phase (single or double support), the ZMP constraint polygon
is completely defined by the current robot foot positions and
does not depend on any decision variables; therefore the
constraints can be set at will. Otherwise, N(t) and O(t) define
an admissible ZMP position over the entire horizon, they
depend on Pf . Hence, if we set N and O to define the whole
support area, the constraint (23) is not linear w.r.t. Pf .

To keep the linearity between the next ZMP constraints
and Pf , the ZMP-allowed region is a rectangle of dimension
(dx,dy) sliding from one foot to the other. For each sample
taken after t0

s , we rewrite its timing as a function of the step-
index i≥ 1 and an index j ≥ 0 such that:

tk = t i−1
s + j∆t. (24)

As a consequence, N(tk = t i−1
s + j∆t). The ZMP constraints

being a rectangle, its normal matrix is:

N(tk = t i−1
s + j∆t) =

(
1 0 −1 0
0 −1 0 1

)T

R(tk) (25)

R(tk = t i−1
s + j∆t) is a 2× 2 orientation of the rectangle. In

double support, the orientation is set by a linear interpolation
between steps i− 1 and i orientations. In single support, the
orientation of the rectangle is that of support foot i.

Offset O(t) is expressed in the interval [t i−1
s , t i

s] as:

O(tk = t i−1
s + j∆t) = 1

2


dx
dy
dx
dy

+N(tk)
(

α i, jpi
f +(1−α i, j)pi−1

f

)
(26)

α
i, j =

j∆t
t i
ds− t i−1

s
, (27)

where α i, j ∈ [0;1], is the weighting variable allowing the
rectangle to slide from one contact to the other.

2) Footsteps constraints: Within the leg’s reachable space,
the difference between two consecutive footsteps must be
bounded.

This can be achieved using Ni
kin and Okin a 4× 2 normal

matrix and the 4× 1 offset vector of the step kinematic
constraints such that for 1≤ i≤ Ns

Ni−1
kin (pi

f −pi−1
f )≤ Oi

kin (28)

Oi
kin =

1
2
(
dx f dy f − li dx f dy f + li)T (29)

where li is an offset, positive if pi−1
f is a step from the right

foot and negative otherwise. Matrix Ni−1
kin are the normals of a
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rectangle oriented according to pi−1
f ; subsequently it is defined

as in (25),

Ni−1
kin =

(
1 0 −1 0
0 −1 0 1

)T

R(t i−1
s ) (30)

3) Stability constraint: Using (4) to bound the CoM trajec-
tory, the generated ZMP trajectory xz(t) and the current DCM
position x0

u are constrained by:

x0
u = x?u(t

0,xz) and

x?u(t
0,xz) =ω

∫ t0+δd

t0
xz(τ)e−ω(τ−t0) dτ︸ ︷︷ ︸

x̄φ

+ω

∫ t0+δd+Tc

t0+δd

xz(τ)e−ω(τ−t0) dτ

+ω

∫
∞

t0+δd+Tc

xz(τ)e−ω(τ−t0) dτ

(31)

x?u(t
0,xz) can be split as the sum of three integrals:

- The part of the ZMP trajectory delayed and that cannot
be controlled (interval [t0; t0 +δd ]); we note it x̄φ ;

- The controlled part of the ZMP trajectory in the interval
[t0 +δd ; t0 +δd +Tc];

- The imposed ZMP trajectory in the interval [t0 + δd +
Tc;∞] that are set and noted x̃z(t); it is the tail of the
trajectory beyond the horizon defined in [7].

The stability constraint (31) becomes:

x0
u− x̄φ = ω

∫
∞

t0+δd

xz(τ)e−ω(τ−t0) dτ (32)

And using the value of xz(t) in (20)

x̄φ =ω

∫ t0+δd

t0
x0

z +(x∗z −x0
z )
[
1− e−λ (τ−t0)

]
e−ω(τ−t0)dτ (33)

We set xz(t) from (22). We note ũk
x the control inputs beyond

the horizon (i.e, k ≥C). Equation (32) writes:

x0
u− x̄φ = ω

∫
∞

t0+δd

x̄0
z e−ω(τ−t0) dτ

+
C−1

∑
k=0

ω

∫
∞

t0+δd+k∆t
uk

x(1− e−λ (τ−tk−δd))e−ω(τ−t0) dτ

+
∞

∑
k=C

ω

∫
∞

t0+δd+k∆t
ũk

x(1− e−λ (τ−tk−δd))e−ω(τ−t0) dτ︸ ︷︷ ︸
x̃φ

(34)
To finally have:

x0
u− x̃φ − x̄φ = e−ωδd

[
x̄0

z +
λ

λ +ω

C−1

∑
k=0

uk
xe−ωk∆t

]
(35)

4) Tailing: Refers to the behavior of x̃z(t) that can be
different depending on the expected future motion (see [7]
for more details):
• Truncated tailing sets the ZMP to a stop beyond the

control horizon, that is:

∀i≥C, ũi
x = 0, x̃φ = 0.

• Periodic tailing expects the ZMP trajectory to periodically
repeat every Tc. Therefore, x̃z(t) follows inputs ũ j

x, that is
ũ j

x = ui
x, where j is congruent to i modulo C.

The stability condition is rewritten as:

x0
u− x̄φ = e−ωδd

[
x̄0

z +
λ

(λ +ω)(1− e−ωC∆t)

C−1

∑
k=0

uk
xe−ωk∆t

]
(36)

• Anticipative tailing uses the part of the footstep plan
defined beyond the control horizon to generate a reference
ZMP path. It allows x̃z(t) to track the desired behavior
from the walking plan. After that, the truncated or peri-
odic policy is added to complete the tail, see [7].

D. Cost Function

The cost function aims at generating a ZMP trajectory that
satisfies the following weighted objectives:

1) a predefined ZMP trajectory objective xz,obj. It is also pos-
sible to set a component of the ZMP velocity magnitude
with an objective velocity set as zero;

2) a DCM trajectory objective. The latter is obtained from
computing the stable DCM x?u(t

0,xz,obj) and integrate it
over the LIPM using (17) with xz,obj as input. One can
also obtain a DCM velocity objective using (3).

3) step locations objective aiming to have them as close as
possible to the references ones.

——
To summarize, the decision variables on the horizon are:

U =
(

u0T
. . . uC−1T

)T
, Pf =

(
p1

f
T

. . . pNs
f

T
)T

We use a similar notation for the ZMP and DCM position and
velocity sequence. The IS-MPC solves the following quadratic
optimization problem (QP):

U,Pf = argmin
U,Pf

βż‖Ṗz‖2 +βz‖Pz−Pz,obj‖2+

β f ‖Pf − P̂f ‖2 +βu‖Pu−Pu,obj‖2+

βu̇‖Ṗu− Ṗu,obj‖2

(37)

under the constraints:
• ZMP, (23);
• Footsteps, (28);
• Stability, (35).

E. External forces

From (10), if the humanoid is under expected or unexpected
external forces, one must control the dynamics of the pendu-
lum under a new state κxz−∆x′c. If we know the duration
δp > δd for how long these forces are active, we can rewrite
the stability condition, (4), as follows:

x?u(t
0,xz) = ω

∫
∞

t0
(κxz(τ)−∆x′c)e

−ω(τ−t0)dτ

−ω

∫
∞

t0+δp

(κxz(τ)−∆x′c)e
−ω(τ−(t0+δp)+δp)dτ

+ω

∫
∞

t0+δp

xz(τ)e−ω(τ−(t0+δp)+δp)dτ

(38)
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Fig. 7: Top view of the foot and footprints with the feasibility
region as colored rectangles for three cases of step target and
step frequency. The current phase at t0 is single support.

Using the definition in (4) we have

x0
u = x?u(t

0,κxz−∆x′c)− e−ωδpx?u(t
0 +δp,κxz−∆x′c)

+ e−ωδpx?u(t
0 +δp,xz).

(39)

The stability condition is updated to account for these forces
in the dynamic model.

IV. STEPS TIMING AND POSITION PRE-OPTIMIZATION

We describe how to update the step planning if not feasible.
Let Ns be the number of planned steps. Knowing all the current
constraints in (37), the current DCM’s feasible region can be
computed. We rewrite the stability condition by combining (4)
with (23). To do so, we assume that the normals N defined
in (25) are constant; they are noted N̄.

Theorem 1. If the ZMP constraint is defined as N̄pz(t)≤O(t)
for t ∈ [t0;∞], then the stability condition can be satisfied iff:

N̄p0
u ≤ ω

∫
∞

t0
O(τ)e−ω(τ−t0) dτ (40)

The proof of this theorem is given in the Appendix.
This condition (resulting from the IS-MPC constraints) re-
quires the current DCM to be inside a polygon (called feasibil-
ity region and generated by (40)) to have a ZMP trajectory that
keeps the DCM trajectory bounded and guarantees a solution
for the IS-MPC. The feasibility region captures the planned
motion of the pendulum, as O(t) represents the location and
the size of the ZMP constraint, which in turn depends on
the step location. Finally, as the ZMP constraint locations are
timed, the stability constraint also depends on step durations.

For example, Fig. 7 shows three different step plans where
the target step is the dashed rectangles with their respective
stepping frequency. The plain colored rectangles are the result-
ing feasibility region. In cases (a) and (b), if the DCM position
in the x-axis is outside the feasibility region (say because of a
push in +x direction), the planned step is not feasible, a step
forward must be done (as in case (c)). Moreover, in case (b),
if the DCM in the y-axis is outside the pink region because

of a push in the −y direction, changing the footstep location
can be tricky as it might lead to a collision between the feet.
However, reducing the step frequency (case (a)) allows us
to have a feasible solution. Therefore, being able to update
the footstep plan in terms of footstep position or/and footstep
timings helps improve the humanoid balance capabilities.

A. Problem formulation

We discretize (40) and define the kth ZMP constraint at time
tk
c such that ∀t ∈ [tk

c ; tk+1
c ], N̄pz(t) ≤ O(t = tk

c ). Note that the
duration tk+1

c − tk
c is not necessarily constant for all k.

The stability condition in (40) becomes:

N̄p0
u ≤

∞

∑
k=0

O(t = tk
c )
[
e−ω(tk

c−t0)− e−ω(tk+1
c −t0)

]
(41)

We set the ZMP constraint as a rectangle of dimension
(dx,dy) inside the support foot during the single support phase
and slide it (in a straight line) to the other foot during the
double support phase. We discretize this path into a fixed
number of positions Nds + 1 for each step (Fig. 8 shows in
green the case where Nds = 3). We rewrite tk

c as a function of
the ith step and the jth ZMP constraint, that is t i, j, as follows:

t i, j = t i(Nds+1)+ j
c

t i,0 = t i−1
s for i≥ 1

t i,Nds = t i
ds for i≥ 0

(42)

Figure 6 illustrates how the indexes are set w.r.t to the walking
phases. We split the sum in (41) between three intervals:
• Single supports phases (intervals [t i,Nds ; t i+1,0]);
• Double support phases (intervals [t i, j; t i, j+1]);
• Intervals beyond the footsteps plan horizon.
We note µ i, j = e−ωt i, j

, Oi, j =O(t i, j) and rewrite the stability
condition, for a plan of Ns steps as follows:

e−ωt0
N̄p0

u ≤
Ns−1

∑
i=0

[
Oi,Nds(µ i,Nds −µ

i+1,0)

+
Nds−1

∑
j=0

Oi, j(µ i, j−µ
i, j+1)

]
+Õ

(43)

Oi, j =
1
2


dx
dy
dx
dy

+ N̄
[
α jpi

f +(1−α j)pi−1
f

]
(44)

where α j = j/Nds.
If the current walking phase is in a single support, then:

∀ j ∈ [0,Nds], µ
0, j = e−ωt0

. We can identify in the inequality (43) three parts:
• The first sum: as µ i,Nds = e−ωt i

ds and µ i+1,0 = e−ωt i
s , this

part denotes the single support phases and Oi,Nds =Oi+1,0.
It is the ZMP constraint under the foot pi

f ;
• The inner sum: representing the double support phase,

where the ZMP constraint slides from pi−1
f to pi

f .
• Õ representing the tailing: that is to say, how the ZMP

constraints are defined after the footstep plan horizon.
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Fig. 8: View of the foot and footprints with the computation of
the ZMP constraint rectangle shape. The red rectangle, once
computed, defines N̄ and the green squares are the future ZMP
constraints oriented accordingly.

Except for i= 0, the Oi, j in (44) are similar to those in (26);
yet they differ in terms of numbers during the double support
phases. Indeed, here their number is constant Nds; whereas in
Sec. III their number is varying, it is the double support phase
duration divided by the sampling rate ∆t.

For the case i = 0, the location of the footsteps p−1
f and

p0
f are fixed. We set O0, j constant for all j so that the ZMP

constraint, in the current walking phase, best approximates
the current support polygon. Figure 8 shows an example and
Sec. IV-B gives more details.

As in (35), the tailing Õ accounts for the planning outside
the horizon. Only a truncated or periodic tailing can be used
because there are no more steps planned beyond this horizon.
Our plan being defined with a long enough horizon (more than
three steps), we set a truncated tail having the ZMP constraint
to reach the middle of the two last contacts as follows:

Õ =
Nds−1

∑
j=0

ONs, j(µNs, j−µ
Ns, j+1)+ONs,Nds µ

Ns,Nds

ONs, j =
1
2


dx
dy
dx
dy

+ N̄
[

α j

2
pNs

f +(1− α j

2
)pNs−1

f

] (45)

From (41), we get a constraint between the position of the
footsteps and their timing to guarantee the stability condition.
Therefore, we can formulate an optimization problem with,

- the steps timing µ i, j and
- the footsteps position pi

f ,

as decision variables. The steps timings can be retrieved as,

t i
ds =−

1
ω

ln(µ i,Nds)

t i
s =−

1
ω

ln(µ i+1,0)
(46)

which gives the timing plan illustrated in Fig. 6.
We add constraints to this optimization problem on: (i) the

step locations, as defined in Sec. III-C2; and (ii) the steps

phase duration such that:

∆tds,m ≤ t i
ds− t i−1

s ≤ ∆tds,M

∆tss,m ≤ t i
s− t i

ds ≤ ∆tss,M

∆ts,m ≤ t i
s− t i−1

s ≤ ∆ts,M

(47)

with ∆tds,m, ∆tss,m, ∆ts,m being the minimum: double support
duration, single support duration, and whole step duration
respectively. The super-script M represents the upper bound
of these constraints. Noting µds,m = e−ω∆tds,m and similarly for
the other duration bounds. The timing constraints are:

µds,mµ
i,0 ≥ µ

i,Nds ≥ µds,Mµ
i,0

µss,mµ
i,Nds ≥ µ

i+1,0 ≥ µss,Mµ
i,Nds

µs,mµ
i,0 ≥ µ

i+1,0 ≥ µs,Mµ
i,0

(48)

The constraint defined by (43) is quadratic and noncon-
vex, making the problem complex to solve and more time-
consuming w.r.t our MPC. Nevertheless, this constraint be-
comes linear if we take independently the positions or the
timings as decision variables. The solution we adopted is to
solve alternately the problem either with fixed step timings or
with fixed step locations. This makes it possible to formulate
the entire problem as two QP optimizations.

Finally, to have always a solution and avoid the QP solvers
to fail, we add slack variables s to (43) to retrieve the
parameters bound to the activated constraints.

B. ZMP constraint region choice
The normals N̄ being constant, the size of the ZMP con-

straints can vary, however, their orientations are similar.
The 1st ZMP constraint, i.e., the red rectangle in Fig. 8,

covers the largest area of the current support polygon [51].
Recall that the remaining constraints are set as illustrated by
the green ones in Fig. 8.

The size of the rectangle is set to always fit inside the
upcoming support polygon. To meet the latter, a conservative
way is to set the rectangle as a square of size sy√

2
, where sy is

the width of the robot foot.
By doing so, the area allowed for ZMP is reduced in the

horizon but the ZMP constraint covers the largest area in the
current walking phase. Since the contribution of the ZMP
trajectory to the stability condition is exponentially decaying
as we get further into the horizon (because of the time-
decreasing exponential term in (4)), this solution keeps a
suitable approximation of the feasibility region. This is all
the more true as optimization is done at the frequency of the
MPC in the control loop.

C. Steps location problem

Having the decision variables Pf =
(

p1
f
T

. . . pNs
f

T
)T

and

the planned steps P̂f =
(

p̂1
f

T
. . . p̂Ns

f
T
)T

. We solve (with
ws� 1 and given steps timing):

Pf ,s = argmin
Pf ,s

‖P̂f −Pf ‖2 +ws‖s‖2

s.t. Stability, (43)
Kinematics, (28)

(49)
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D. Steps timing problem

Starting from the desired step timings obtained from a
planner T̂s =

[
(t̂0

ds, t̂
0
s ), . . . ,(t̂

Ns−1
ds , t̂Ns−1

s )
]
. The objectives µ̂ i, j

are computed such that:

µ̂
i, j = e−ω

[
t̂ i−1
s + j

Nds
(t̂ i

ds−t̂ i−1
s )

]
(50)

If (49) produces steps that differ from the reference, we
favor relatively (to the difference) faster steps. Therefore, we
create a weight function w(p̂i

f ,p
i
f ) such that:

w(p̂i
f ,p

i
f ) = Ks‖p̂i

f −pi
f ‖2 (51)

The resulting QP problem is:

µ,s = argmin
µ i, j ,s

‖
Ns−1

∑
i=0

Nds

∑
j=0

µ̂
i, j−µ

i, j‖2 +ws‖s‖2

+
Ns−1

∑
i=1

w(p̂i
f ,p

i
f )‖µ i,0−µ

i−1,0‖2

s.t. Stability, (43)
Timing, (48)

µ
i, j ≤ e−ωt0

(52)

with ws� 1 and µ =
(

µi, j i∈J0;Ns−1K, j∈J0;NdsK

)T
.

The output timings are the reference steps duration Ts for
the IS-MPC in Sec. III.

E. Sequential linear problem solving

As our problem is formulated as two sequential and inter-
dependent QPs, we alternately solve the step location prob-
lem (49) and then the step duration one (52), in this order.
The reason behind the latter order is that without having slack
variables, kinematics and step duration constraints, QP (49)
always has a solution whereas QP (52) might not. Therefore,
the step location problem is more likely to provide a feasible
initial solution. Finally, as the IS-MPC updates the footstep
locations once again, it is more advantageous to finish the
alternate problem-solving by the QP (52).

This pattern of alternating two optimization problems is also
found in other research, e.g., [52] for another problem. It can
be repeated at will until a satisfactory solution is found. Each
of the two QPs’ constraint (43) is created using the previously
computed µ and Pf respectively. We end up performing this
alternate pattern twice (i.e., solving 4 QP only) to obtain in
a short time a compromise between step duration and step
location optimization. The footsteps plan is optimized before
each iteration of the IS-MPC.

Note that if the initial walking plan is feasible, the output
is unchanged by construction. Otherwise, the main goal is
not to guarantee a global convergence but to have a new
feasible walking plan. Therefore, our method only contributes
to improving the balance of the humanoid.

F. Stepping recovery while standing

When the humanoid is standing in place, the defined region
in (43) is a geometric condition on where the DCM can
be without having to make a step. Because we are using a
rectangular shape constraint on the ZMP, the DCM stability
region is also a rectangle. Knowing from which vertices the
DCM violates the stability condition allows planning which
supports foot to use to recover. This is done depending on how
are the feet positioned. This strategy appears to be effective
if the robot is pushed forward or backward, see Sec. VII. For
lateral pushes, we choose the support foot to be the furthest
one from the current DCM pose. Nevertheless, for a better
balance, especially in the case of lateral pushes, it remains
necessary to develop more tools to recover such as in [53]),
using the angular momentum, etc.

V. ROBOT FORCE CONTROL

The gait generated in Sec. III is forwarded to a whole-body
task-space controller in which we regulate the CoM trajectory
and the contact forces to achieve the walking behavior.

A. CoP regulation

The ZMP dynamics pz(t) =
(
xz(t) yz(t)

)T is modeled as
a delayed 1st order system w.r.t the reference ZMP pz,r =(
xz,r(t) yz,r(t)

)T computed in the IS-MPC in Sec. III. The
admittance control shall apply a reference net wrench leading
to the ZMP behavior expressed in (22). During single-support
phases, the admittance control applies a wrench to track
the contact’s CoP reference at pz,r. The delay in the ZMP
dynamics allows this reference to be temporarily outside the
contact polygon resulting in a faster ZMP. During the double
support phase, the reference wrench is distributed among the
contacts and a reference CoP is computed for each of them.
We assume each contacts to have their own 1st order dynamic
w.r.t the real CoP with parameters λc; ideally λc ' λ . We note
cL,r,cR,r and cL,cR respectively the reference and the modeled
CoP for the left and right foot. This model, with a piece-wise
constant reference, has similar dynamics as in (18):

ċL(t) =−λc(cL(t)− cL,r(t−δd)), (53)

which can be integrated over [t0 +δd ; t0 +δd +∆t] leading to:

cL(t) = cL,r(t0)+(c̄0
L− cL,r(t0))e−λc(t−(t0+δd))

c̄0
L = c∗L +(c0

L− c∗L)e
−λcδd

(54)

Recall that super-script �∗ refers to the current references
applied to the robot. Additionally, having the same mode for
fL and fR, the vertical forces on the left and right foot gives:

fL(t) = fL,r +( f̄ 0
L − fL,r)e−λ f (t−(t0+δd))

f̄ 0
L = f ∗L +( f 0

L − f ∗L )e
−λ f δd

(55)

And similarly for the right component. Then, we set cL,r,cR,r
to have the same overall ZMP, that is:

fL(t)cL(t)+ fR(t)cR(t)
fL(t)+ fR(t)

= pz(t) (56)
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Fig. 9: Vertical force distribution depending on the desired
ZMP position at time t i. We have γ = lL/l.

This equation gives the relation between the CoPs and the
ZMP. If we assume that the vertical forces are defined in
advance, this relation is linear.

There is not a single way to distribute the vertical forces
and the CoPs to get the desired ZMP; we chose to minimize
the moments at the ankles.

We note pL and pR the location of the left and right ankles
and m the mass of the humanoid. To get the values of fL(t)
and fR(t), we define γ(t) ∈ [0;1] as the normalized projection
of the vector pz(t)−pL over the vector pR−pL and set:

fR(t) = mgγ(t)

fL(t) = mg(1− γ(t))
(57)

Figure 9 illustrates how fL(t) and fR(t) are computed. The
reference vertical forces are set by (55) with parameters λ f . To
obtain cL,r,cR,r, one can formulate an optimization problem to
approach quadratically (56). Also, as we have a ZMP horizon,
we extend the force distribution computation on the entire
double support phase of length t0

ds− t0.
Let ci

L,ci
L,r (and similarly for the right side) be the CoP

location at time t i = t0 + i∆t and the piece-wise constant refe-
rence in the interval [t i; t i+1], respectively. The same notation
is used for fL as f i

L = fL(t i). Using (54) and (53), we have
recursively:

ci
L =

{
ci−2

L,r (e
λδd −1)e−λ∆t + ci−1

L,r (1− e−λ (∆t−δd))+ ci−1
L e−λ∆t if i≥ 2

c∗L(eλδd −1)e−λ∆t + c0
L,r(1− e−λ (∆t−δd))+ c0

Le−λ∆t if i = 1
(58)

Having pi
z = pz(t i) the modeled ZMP at t i = t0 + i∆t, we

compute the future vertical force ( f i
L, f i

R) using (57), see Fig. 9.

We then compute (ci
L,r,ci

R,r) for i∈
[

0;b t0
ds−t0

∆t c
]

as follows:

argmin
ci

L,r ,c
i
R,r

wz‖∑i
ci

L f i
L+ci

R f i
R

f i
L+ f i

R
−pi

z‖2+

wd‖∑i RL(ci
L−pL)−RR(ci

R−pR)‖2

s.t. ci
L,ci

R ∈ their contact polygon

(59)

with wd�wz; RR and RL are the rotation matrices to the right
and left contact frame. The first term of the cost function is the
ZMP tracking error minimization (from (56)), and the second
term minimizes the moment at the ankles.

B. Contact transition
When feet contacts is released, deactivating force control

often leads to residual forces on the released feet. This residual
force is not considered in the pendulum state and could
disturb the pendulum dynamics, see Fig. 10. One solution to
overcome this is to consider it explicitly in the dynamics of
the pendulum. We can update the IS-MPC stability constraint
using (39) to account for a disturbance of duration δp set
empirically to 0.1 s from experimental data.

0.0 0.1 0.2 0.3
Time (s)

0

25

50

75

100

V
er

ti
ca

l
F

or
ce

(N
)

Measured Force

Double/Single Support transition

0.85

0.90

0.95

1.00

D
is

tu
rb

an
ce

Measured κ

Fig. 10: Measured disturbances during contact release. Around
100 N are still observed once the swing foot force control is
deactivated, resulting in a change of the pendulum dynamics.

To have a measured estimation of the mass, we rely on the
force sensors located at each foot and a low-pass filter with a
very high cut-off period (≥ 10 s). More accurate estimation of
the robot mass and the vertical acceleration z̈c can be obtained
using the non-filtered values of the force sensors. This can be
useful in case of model updates, e.g., holding objects.

VI. SIMULATIONS

Real experiments would not be possible prior to intensive
simulations of all the humanoid robots described later in
Sec. VII. In this section, we introduce our simulation envi-
ronment and relate in particular a comparative study between
our closed-loop version of the IS-MPC and its original imple-
mentation without. A more thorough data analysis is left to
real experiments in Sec. VII.

A. Simulation environment
The rigid body simulation of our humanoids and their

environment is using the Choreonoid framework combined
with the OpenHRP3 physical engine [54]. The computed joint
commands from the whole-body control (same as the one in
Sec. VII) are directly sent to the simulator which includes
the low-level joint control dynamics. Hence, one can simply
switch to direct control once satisfied with the simulation
runs. Choreonoid also includes simulation of IMUs, force/-
torque sensors and possibly other ones. Robots-embedded state
observers and estimators are implemented similarly in the
simulation. The simulated environments include flat terrains,
uneven terrain and slopes (see Fig 11). Alas, it is not yet
possible to simulate soft terrains reliably.
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Fig. 11: Choreonoid simulation environment for uneven terrain
and slope with RHPS1 robot

B. Stabilizer and closed-loop comparison

Besides the theoretical advantages of our method, we per-
formed a set of comparative studies in simulation without
noise and on flat terrain (ideal cases). As an example, we
instructed our robots to start walking with high-frequency
steps without footsteps adaptation. The reason is that by
imposing a short double support duration, the robot ZMP must
lie quickly under the support foot highlighting the weakness
of the original stabilizer policy. We considered three walking
control schemes:

1) Open-loop IS-MPC with stabilizer;
2) DCM closed-loop IS-MPC with stabilizer;
3) Closed-loop IS-MPC (our proposed scheme).
We report results obtained with walking parameters set to

arbitrary step duration of 0.8 s and double support durations
of 0.2 s and 0.15 s. The step length is set to 25 cm (usual).
The open-loop scheme failed for the double support duration
of 0.2 s and the DCM closed-loop one failed for the double
support duration of 0.15 s. Our proposed scheme never failed
in these conditions. Pushing further the limits, there are condi-
tions where the three methods fail. Yet, in all the simulations
we made, our approach never failed where one of the two
others succeeded. Figure 12 illustrates the measured DCM and
ZMP and the reference ZMP for the two closed-loop cases.
Notice that the ZMP reference computed by the stabilizer
does not consider the ZMP dynamics; thus it cannot provide
references outside the support polygon. Moreover, notice in
Fig 12b that the delay δd is nil, and in Fig 12 that the measured
ZMP can leave the constraint. This is because the defined
support polygon is slightly smaller than the real one to have
additional safety margins during the experiments.

VII. EXPERIMENTS

The proposed control scheme is implemented on five differ-
ent humanoid platforms: HRP-2KAI, HRP-4, HRP-4CR, HRP-
5P and RHPS1 (i.e., all the humanoids we possess), see Fig. 13
and on different environments:

- flat floors;
- flat floors with small obstacles (/ 3cm height);
- compliant terrains (not reaching compression limits);
- outdoor terrains (HRP-4 and HRP-2KAI only).
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(a) DCM closed-loop IS-MPC.
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Fig. 12: Simulation comparative between DCM closed-loop
IS-MPC and closed-loop IS-MPC.

Fig. 13: All the humanoids used in the experiments. From left
to right, the HRP-2KAI: a modified version of the HRP-2, used
in the DRC; RHPS1: the new humanoid robot from Kawasaki
Robotics co-designed with AIST and CNRS; HRP-5P: the last
prototype of the HRP family designed to be torque controlled
and to be used in building and harsh applications [55]; the
HRP-4: the sample present in France and used for the Airbus
joint project [56]; and finally, the HRP-4CR used in the ANA
Avatar Xprize contest [57].

Human pushes (i.e., disturbances) are introduced either during
walking or in standing phases.

All the humanoids are controlled in kinematics (high-gains
position). The whole-body control is achieved by mc_rtc
task-space QP control framework2. It computes the floating
base and joints acceleration, which, once integrated twice are
forwarded as joints command. The reason for such extensive
experiments is our aim to achieve a ‘plug-and-play’ walking
controller, or in other words, a plug-and-walk software that can
be further improved and tried on several humanoid platforms.
It is a well-recognized fact that most of the existing walking
algorithms are highly tuned for a given humanoid or bipedal
platform. Such a tuning never appears clearly specified in
almost all existing academic papers in the field.

For each robot, we can adjust experimentally the model
parameters, which are:

- The MPC’s ZMP model first-order parameters λ and δd ;
- The force distribution first-order parameters λc and λ f ;
- The admittances gain Ka for the CoP tasks and the foot

force difference control (FFDC) gain Kz.
These parameters are interlinked and set by fitting the modeled
CoP, vertical forces or ZMP to the measured ones. Indeed, λ

2https://jrl-umi3218.github.io/mc rtc/

https://jrl-umi3218.github.io/mc_rtc/
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Fig. 14: Delay between the real ZMP and the sent reference
on HRP-2KAI.

represents the model’s 1st order response, the higher Ka is,
the faster the wrench is applied and therefore the higher λ is.
This is similar for the control of the contacts vertical forces.
We set Ka as low as possible to estimate λ .

For the time being the tuning process for these parameters
remains empirical; yet, for the sake of transparency, we
provide ad-hoc guideline for the tuning procedure we did to
conduct our experiments.

1) Set Ka = 0.01 , Kz = 10−4 , λ = λ f = λc = 40 and make
the robot step in place.

2) δd can be identified from the transition into the walking
phase, see Fig. 14.

3) Adjust λ such that the model-ZMP fits well the measured
one in single supports.

4) The feet in single support should not vibrate, otherwise
Ka should be increased (and so is λ ).

5) Adjust λz such that the model vertical force fits the
measured one in double support.

6) Vibration in double support is often due to vertical forces
control; Kz and λ f should be set up to a smooth and a
complete transition of the ZMP on the future support foot.

7) λc should be at λ and adjusted to improve the ZMP
trajectory w.r.t the model once in double support.

8) Finer tuning can be done by making the robot step
forward and backward.

The parameters for each humanoid are listed in Table I. It
includes the sampling period of the whole-body control δ at
which the logged data and the computed joint angles are sent.

The other parts of the control scheme are updated at a
sampling period ∆t for all robots, Parameters common to all
humanoids are displayed in Table II.

The IS-MPC weights that handle the DCM trajectory, βu,
and DCM velocity, βu̇, are set to a non-zero value only when
the robot is in standing phase and to zero once the robot
switches to a walking phase. This is because those weights
reduce the compliance of the robot during disturbances and
make it less likely to trigger steps. The computation perfor-

TABLE I: Chosen parameters for each robot

ZMP model FD model FFDC CoP

Parameters λ δd λ f λc Kz Ka δ

Unit [s−1] [s] [s−1] [s−1] [N.s.m−1] [N.s.m−1] [ms]

HRP-2KAI 20 0.025 20 20 0.0001 0.02 4

HRP-4CR 5 0.025 10 5 0.0001 0.01 5

HRP-4 7 0.035 15 15 0.0001 0.01 5

HRP-5P 15 0.025 15 15 0.0001 0.01 5

RHPS1 8 0.025 8 10 0.0001 0.01 2

TABLE II: Chosen parameters for the MPC

∆t βz βż βu βu̇ β f Tc Tp

0.05 s 10 0.001 50 2 1000 1.5 s 10 s

mances on one robot are shown in Table III, they may slightly
fluctuate depending on the onboard hardware.

TABLE III: Computation time for each module on RHPS1

Feasibility Solver IS-MPC Force Distribution Whole-Body Control

0.5 ms 1.5 ms 0.2 ms 0.4 ms

In addition to those parameters, the whole-body QP cost
function is made of a set of weighted tasks having as decision
variables the acceleration of the joint angles and of the floating
base [58]. We use the following tasks as QP-control objectives:

- The position, velocity and acceleration of the CoM;
- The contact forces (CoP Task);
- The chest orientation w.r.t the orientations of the feet;
- The swing foot position speed and acceleration during

single support phases;
- A low-gains posture task (defined joints) to mitigate

redundancy and singularities.
These parameters (common to all robots) are listed in

Table IV. Transition from a swing foot task to a CoP Task
is done once the measured force on the swing foot is over
a defined threshold. The experiments show the robustness

TABLE IV: Tasks parameters

Tasks CoM CoP
Swing

Foot
Chest Posture

Weight 10000 106 5000 200 10

Kp 100 1 200 50 1

Kd 2
√

Kp 150 2
√

Kp 2
√

Kp 2
√

Kp

of the proposed method by making the robot walk on long
distances, uneven terrains, and under external disturbances
provided by operator pushes. We finally tested perturbations
during a standing phase to trigger stepping recovery.

All the plots are displayed in a frame linked to the robot
floating base such as: z is the vertical axis, the plane (z,y) is
the coronal plane and the plane (z,x) is the sagittal plane

We tried to achieve the same walking conditions for each
humanoid robot; yet, due to some practical aspects, this was
not always possible. Most of the robots we have are a bit
old and we took care to not push them too harshly. Also, the
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Fig. 15: ZMP model compared with robots’ measured ZMP when walking on rigid flat floors; model state is updated at a
sampling rate ∆t.

HRP-4 is located in France whereas the remaining ones are
in Japan, where experiments in the campus are more strictly
regulated. For example, experiments on HRP-4CR were indoor
and on rigid flat floor due to mechanical weaknesses, they are
reported in [57].The multimedia material accompanying the
paper is thorough enough to complement the data.

A. Force control and model evaluation

Force control model evaluation is assessed on all the listed
humanoids. Figure 15 shows that the first-order dynamic of
the ZMP with a delay is an appropriate estimation of the
real ZMP dynamics. To emphasize the fact that we aim
at modeling the ZMP behavior, to make the robot HRP-
2KAI, HRP-5P and RHPS1 walk on a compliant mattress, we
adjusted λ . Even if the model response timing is very slow, the
control is still stable and the robots well balanced to execute
dynamic walks (see Sec. VII-D). Figure 10 illustrates how the
measured disturbance from the swing foot is used to improve
the pendulum trajectory planning. The figure shows only the
measured κ (defined in Sec V-B) as it captures the vertical
(core) component of the disturbance.

Finally, we show in Fig. 16 that the vertical forces during
double support also match the expected model; when the
model value is constant, the robot is in single support (the
vertical force is no longer controlled).

The measure on the HRP-4 force sensor is imprecise due
to a cross-talk between measured torque and vertical forces
impacting the ZMP measure in double support. This coupling
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Fig. 16: Vertical force model compared with the real robots
measured one (left foot) while walking on a rigid flat ground.
Model state is updated at sampling rate ∆t.
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Fig. 17: Depending on the disturbance direction, the step
duration plan is updated differently (these behaviors extend
to all grounds).

has been properly identified in single support only and is
countered by a corrective plug-in.

B. Footsteps and steps timing adaptation

The Footsteps and steps timing adaptation is also assessed
on all the humanoid robots. Figure 17a illustrates a recovery
after a front push and how the planning is updated. In most
cases, increasing the step frequency and/or stepping in the
direction of the disturbance helps to recover. However, in some
configurations, the best solution is to increase the current or
the next step duration as there are no proper steps to help the
balance. This is seen in Fig. 17b where a lateral disturbance
induces a slower double support duration to allow the DCM
to reach the next support foot.

C. Static push recovery

We pushed each humanoid in a standing phase to infer the
condition defined in Sec. IV-F and trigger a recovery step. The
size of the ZMP region is set smaller than the allowed one
such that a recovery step is triggered even if the robot is well-
balanced. The supporting foot is set depending on the position
of the DCM and the contact configuration at the instant of
the pushes. Depending on which side of the balance region
is broken, if the disturbance is frontal, the support foot is
the one closest to the DCM; otherwise, the support foot is
the one furthest from DCM. If a stepping is triggered, we do
not provide any specific recovery footstep plan. The recovery
steps are completely decided w.r.t the feasibility region. The
limitation of this push recovery scheme depends mostly on
the intensity of the perturbation. If the required recovery steps
are unfeasible the robot will certainly fall. In such cases, it
becomes necessary to introduce a variation of the angular
momentum in addition to the previous strategy or change the
height of the CoM (i.e, add vertical CoM acceleration). In both
cases, LIPM hypotheses are not valid anymore.

D. Walking on soft ground

This case is conducted on HRP-2KAI, HRP-5P and RHPS1.
Walking on compliant terrains for bipedal robots is a challeng-
ing task that showcases the need for knowledge of how the
forces are behaving w.r.t the control inputs.
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Fig. 18: On similar compliant ground with similar walking,
feet spring damper reduces oscillation in single support.

As an example, without our control scheme being active,
HRP-2KAI could not stand on the mattress by itself with the
CoM initially over the support area. For instance, a successful
locomotion in such conditions has been already demonstrated
using a torque-controlled humanoid robot [59] on which the
contact compliance and feedforward force control is a con-
siderable plus in this kind of environment. Since our control
method is modeling the contact forces responses, one must
adapt the parameters that model the forces’ behavior to make
our robots walk on compliant terrains. We made sure that the
deformation of the mattress we chose never reaches its limit
once in double or single support, this is to avoid a support
meeting rigid ground conditions at full compression.

The ZMP model is evaluated in Fig 19. As mentioned in
Sec. VII-A, walking on a compliant floor required to adapt
the ZMP model parameter λ . It might be necessary to adapt
also the FFDC Kz gain to have a more reactive vertical force
control. This update of Kz was done only for the HRP-
2KAI robot (it was changed from 0.0001 to 0.0002). All
the humanoids we experimented over a compliant ground are
position-controlled. However, the HRP-2KAI is equipped with
a shock-absorbing mechanism made of a rubber bush between
the foot and the ankle actuation. This difference in mechanical
design affects the foot motion to control the desired force.
HRP-2KAI feet motion is much smoother in single support
than the one on RHPS1 (that has a rigid link between its ankles
and feet). This can be seen at the joint level in Fig. 18 where,
in similar conditions (environment, stepping frequency, step
length, ZMP trajectory profile), RHPS1 feet oscillate whereas
HRP-2KAI ones is relatively smoother.

E. Walking outdoors

Outdoor experiments highlight the benefit of compliance
with force control; they are made with HRP-4 and HRP-
2KAI, see Fig. 1. Indeed, even outdoor terrains that are nearly
flat have non-negligible local roughness. Additionally, some
terrains on which the robots walked have pseudo-compliant
behavior due to the grass or ground. This allows us to assess
the capability to adapt the force behavior model to various
conditions. The ZMP model evaluation on such terrains is
shown in Fig 20. The accompanying multimedia material
shows the compliance of the contact feet on the terrain.
Moreover, such terrains are uneven with various local slopes.
When this slope is upward, the walking is not much affected
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Fig. 19: ZMP model compared with robots’ measured ZMP
when walking on soft grounds, model state is updated at
sampling rate ∆t.

as early contacts can be detected with forces’ measurement.
In downward slopes, the lack of knowledge of the contact
location dictates keeping on lowering the leg until contact is
detected, inducing potentially a disturbance. Our force control
scheme can accommodate this situation, as it keeps moving the
feet down until force is measured. One can also directly use
the FFDC if the real contact remains close to the feet. In that
objective, the FFDC Kz gain is increased on the HRP-4 for this
experiment from 0.0001 to 0.00015. In practice, poor contact
detection is the main reason for few failures we experienced.

In the experiments with HRP-2KAI, the wind was very
strong and added non-negligible perturbations. For the HRP-4,
strong perturbations occur when steeping on thick roots.

VIII. CONCLUSION

In this paper, we presented a new walking control scheme
for bipedal robots that can adjust step location and duration.
This novel aspect of this control scheme is in the use of
a LIPM’s model MPC in a closed-loop on the real robot
pendulum state (CoM, CoM velocity and ZMP) and does
not necessitate a side stabilizer module. Finally, we presented
a method to distribute the contact wrench resulting from
the MPC computation. This scheme has been tested on five
different humanoid robots on various grounds and scenarios
to showcase its versatility and robustness.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time (s)

−0.1

0.0

0.1

y
(m

)

Modeled ZMP

Real ZMP

ZMP control reference

Support limits

λ : 12.0

(a) On HRP-2KAI, λ = 12.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time (s)

−0.1

0.0

0.1

0.2

y
(m

)

Modeled ZMP

Real ZMP

ZMP control reference

Support limits

λ : 11.0

(b) On HRP-4, λ = 11.

Fig. 20: ZMP model compared to the real robots ZMP walking
outdoors, the model state is updated at a sampling rate ∆t.

We aimed to have as few parameters as possible and to
provide a guideline to tune them. However, even if these
parameters are mainly robot-dependent, they also depend on
the mechanics of the ground. In fact, our experiments revealed
that it could be possible to enhance further the robustness and
the plug-and-walk aspect of such a control scheme to estimate
some of the parameter online or at least autonomously during
a calibration process, this is part of our shortcoming future
work. This is likely possible as some of the parameters are
observable. Moreover, the 1st order model for ZMP dynamics
can be retrieved by modeling the floor with spring damping
dynamics under the force control scheme we detailed in (12),
however, the general dynamics reflect rather a 2nd order
behavior which requires an appropriate estimation of the ZMP
velocity. We have also tried to make the HRP-4 robot walk
on river pebbles outdoors, but the controller failed in all
trials. One of the causes is the flatness and rigidity of the
soles; the other is clearly the lack of proper handling of the
momentum. As future work, we aim to extend our control
policy with full centroidal dynamics (variable CoM height
and Angular momentum) [44], [36]. Moreover, we are also
working on redesigning the soles, as extensions of [60] with
compliant material to better cast the grounds at contacts.
All these aspects are somewhat interconnected, understanding
such dependencies is paramount to reaching the plug-and-
walk goal we are aiming for. As stated in Sec. II, we are
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also working toward a pure machine-learning approach for
walking, convinced that robust walking would emerge from a
neat hybridization that takes full benefit of both approaches.

APPENDIX
PROOF OF THE THEOREM

We suppose that N̄ and O(t) are Nv×2 matrix and Nv×1
row vector, respectively, such that the ZMP constraints is a Nv
vertices convex polygon (with possibly multiple vertices at the
same position) ∀t ∈ [t0;∞]. Let’s assume that N̄ and O(t) are
ordered such that, at any time t, two consecutive constraints
intersect at one vertex of the polygon (the first constraint is
considered as the successor of the last one).

To prove the necessity, let n̄i
x and n̄i

y be the 1st and 2nd

element of the ith row of N̄ respectively, and oi(t) the value
of the ith row of O(t). The ZMP constraint can be written for
each row i as:

n̄i
xxz(t)+ n̄i

yyz(t)≤ oi(t); (60)

multiplying each side by e−ω(t−t0) and integrating on [t0;∞]:

n̄i
x
∫

∞

t0 xz(τ)e−ω(τ−t0)dτ + n̄i
y
∫

∞

t0 yz(τ)e−ω(τ−t0)dτ ≤ ∫ ∞

t0 oi(τ)e−ω(τ−t0)dτ

(61)
using the definition of the stability condition (4):

n̄i
xx0

u + n̄i
yy0

u ≤
∫

∞

t0
oi(τ)e−ω(τ−t0)dτ (62)

This result holding for each row i, the last equation can be
turned as in (40) which proves the necessity.

Let v j
z(t) be the 2D coordinate of the jth vertex of the ZMP

polygon. Let N̄ j and O j
z(t) be the 2× 2 square matrix and

the 2× 1 row vector representing 2 consecutive constraints
crossing v j

z(t). N̄ j originates from two rows of N̄ and O j
z(t)

from two terms of O(t). We can write:

v j
z(t) = (N̄ j)−1O j

z(t) (63)

Let Ou be (from (40)):

Ou = ω

∫
∞

t0
O(τ)e−ω(τ−t0) dτ (64)

and let E be the convex set of initial DCM positions p0
u such

that (40) is true, i.e., N̄p0
u ≤ Ou, and Z the set of the ZMP

trajectories such that ∀t ∈ [t0;∞], N̄pz(t)≤ O(t)

Lemma. Z is a convex set

Proof. let pz,1 and pz,2 two elements of Z and γ ∈ [0;1].

∀t ∈ [t0;∞], N̄(γpz,1(t)+(1− γ)pz,2(t))≤ γO(t)+(1− γ)O(t)
(65)

Any convex combination of pz,1 and pz,2 belongs to Z hence
the convexity.

We extract O j
u from Ou similarly to the definition of O j

z and
compute v j

u the vertices of the convex polygon representing E.

v j
u = (N̄ j)−1Ou, j (66)

v j
u = ω

∫
∞

t0
N̄−1

j O j
z(τ)e

−ω(τ−t0) dτ (67)

v j
u = ω

∫
∞

t0
v j

z(τ)e
−ω(τ−t0) dτ (68)

To prove sufficiency, let p0
u ∈ E. E being convex, p0

u is a
convex combination of the feasibility region vertices such that:

p0
u =

Nv

∑
j=1

γ
jv j

u (69)

where ∀ j ∈ [[1;Nv]], γ j ∈ [0,1] and ∑
Nv
j=1 γ j = 1. We must find

a ZMP trajectory pz(t) ∈ Z such that the initial DCM that
respect the stability condition in (4) is p0

u.
Consider the particular following ZMP trajectory ∀t ∈ [t0;∞]

pz(t) =
Nv

∑
j=1

γ
jv j

z(t) (70)

This trajectory satisfies the ZMP constraints as it is a convex
combination of the vertices of each ZMP constraint polygon.
To check if p0

u satisfies the stability condition with the ZMP
trajectory pz(t), we use (4) with (70):

ω

∫
∞

t0
eω(τ−t0)

Nv

∑
j=1

γ
jv j

z(τ)dτ = ω

Nv

∑
j=1

γ
j
∫

∞

t0
eω(τ−t0)v j

z(τ)dτ

(71)
Using now (68) and (69):

Nv

∑
j=1

γ
j
ω

∫
∞

t0
eω(τ−t0)v j

z(τ)dτ =
Nv

∑
j=1

γ
jv j

u = p0
u (72)

Which proves sufficiency, hence the equivalence. Q.E.D.
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“Dynamic walking on compliant and uneven terrain using dcm and
passivity-based whole-body control,” in IEEE-RAS International Con-
ference on Humanoid Robots, 2019, pp. 25–32.

[60] A. Pajon, S. Caron, G. De Magistri, S. Miossec, and A. Kheddar,
“Walking on gravel with soft soles using linear inverted pendulum
tracking and reaction force distribution,” in IEEE-RAS 17th International
Conference on Humanoid Robotics, 2017, pp. 432–437.

Antonin Dallard received an Engineering Master
degree in mechanical and Industrial from Arts Et
Métiers Institute of Technology. In 2020, he started
a Ph.D on the topic of Humanoid robot teleoperation
and locomotion at the CNRS-University of Montpel-
lier, LIRMM in France and at the CNRS-AIST Joint
Robotics Laboratory, Tsukuba in Japan.

Mehdi Benallegue holds an engineering degree
from the National Institute of Computer Science
(INI) in Algeria, obtained in 2007. He earned a
masters degree from the University of Paris 7,
France, in 2008, and a Ph.D. from the University
of Montpellier, France, in 2011. His research took
him to the Franco-Japanese Robotics Laboratory in
Tsukuba, Japan, and to INRIA Grenoble, France.
He also worked as a postdoctoral researcher at the
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