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Robust Bipedal Walking with Closed-Loop MPC:
Adios Stabilizers

Antonin Dallard, Mehdi Benallegue, Nicola Scianca, Fumio Kanehiro and Abderrahmane Kheddar, Fellow, IEEE

Abstract—We present a new walking control scheme based on
the extended dynamics of the inverted pendulum. Our scheme
includes re-planning of the steps locations and steps timings, feet
force control, and a walking pattern generation that is closed-
loop thanks to feedback in the state of the real humanoid robot
pendulum (CoM position/speed and ZMP). No additional control
policy is used to maintain static and dynamic balance of the
humanoid. We experimented this framework on five different
humanoid robots over multiple disturbances including sudden
pushes during walking or in a static state and by achieving
locomotion over uneven and compliant grounds.

I. INTRODUCTION

WALKING control strategies and algorithms for bipedal
and humanoid robots have a great amount of variety,

e.g., [1], [2] (see also Sec. II). Indeed, the complexity of this
problem lies in the interlink between different bricks consist-
ing of (i) reactive footstep planning, (ii) whole-body switched
control under tight balance constraints, (iii) stability of the
control itself (as understood in control theory), and finally (iv)
perception to understand the surrounding environment and the
bipedal robot state within it.

In this paper, we are interested in a particular class of
walking control strategies: the use of linear inverted pendulum
mode –or model, acronym LIPM, early introduced in [3]
and popularized by the first Honda humanoids family (see
knowledge reports in [4], [5], [6], [7]). It is still successfully
implemented in many humanoids use-cases, yet it has evolved
in numerous shades and sophistications (see Sec. II).

The common implementation of such centroidal models is
to reason on a simplified dynamic model, i.e., the dynamics
around the center of mass (CoM), to draw fast dynamic
planning and control that usually implies the exploitation of
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Fig. 1: HRP-2KAI and HRP-4 robots walking outdoors. Ex-
periments with the HRP-4 are done without safety ropes.

the zero moment point (ZMP) location for dynamic balancing.
Indeed, the ZMP gives a criterion for maintaining balance on
the surface in contact with the ground; namely, it must be
maintained at all times inside the support polygon of the robot.
In linear cases, the ZMP can be seen either as the causality
output (also known as the Cart Table model [8]) or the input
(the LIP mode) for a linear dynamic system linking it to the
CoM. However, the instability of the model entails that even
if the ZMP is inside the support polygon, the associated CoM
trajectory might still be divergent.

The Intrinsically Stable MPC (IS-MPC) [9] is a walking gait
generator, derived from the LIPM, which incorporate stability
constraint explicitly: the presence of this constraint allows
to prove recursive feasibility. This means that it is always
possible to find a solution satisfying the constraints, and
internal stability, i.e., the CoM trajectory is always bounded
with respect to the ZMP. This stability constraint is also used
for footsteps adaptation (directly in the MPC) or steps timings
adjustments (externally) [10].

However the LIPM being too simplistic, it fails in grasping
the complexity of the whole multi-body dynamics. Therefore,
one may expect to deal with important discrepancies between
the centroidal and the whole-body dynamics. As the inverted
pendulum is derived from the simplified equation of the cen-
troidal dynamics, controlling the pendulum means controlling
the contact forces applied on the robot. Different grounds and
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control methods obviously result in different behaviors (see
Sec. II). To take these discrepancies into account, it is common
to use a correction policy that mitigate the modeling gaps in
using the real robot state and a model of the behavior of the
contact forces, see e.g., [11]. Such a mitigation is commonly
called the stabilizer in the humanoid research jargon. The sta-
bilizer usually has several parameters and tuning it is usually
not trivial, especially when combined with the controller’s
parameters.

Using such a stabilizer, one disconnects the gait generator
from the real robot centroidal state as the contact forces (i.e.,
the ZMP) are updated, which changes the CoM dynamics.
Moreover, this correction policy is short-sighted compared to
the MPC policy which is based on state prediction, and might
invalidate some of the benefits of having such prediction, this
is well detailed in Sec. III.

One might think that MPC should take care of this issue
thanks to its inherent robustness. However, the robustness of
MPC comes from the fact that it is possible to close the loop,
i.e., the predicted trajectory is recomputed at each time starting
from the measured state. Yet, if the contact force model is not
taken into account, the generated walking gait would still be
not feasible; and hence, a stabilizer would still be necessary.

This paper proposes a solution to this issue and present a
humanoid walking control scheme with the following newies:

1) A reformulation of the IS-MPC that allows to completely
and effectively close the loop on the robot state and
does not need external correctional term (the so-called
stabilizer) to enforce and warrant balance, Sec. IV;

2) An horizon-based force distribution scheme to regulate
the contact forces during double-support phases, Sec. V;

3) A pendulum feasibility solver based on a demonstrated
extension of the stability constraint that allows to adapts
the footsteps location and timing using the real state of
the robot, Sec. VI;

4) An assessment of our method in extensive and challeng-
ing scenarios using five different humanoid robots, all
of them controlled with the same software to illustrate
the robustness, the versatility and the portability of our
algorithms, Sec. VII

The control scheme is organized according to Fig 2 on which
for each of the contribution aspect: the order of execution,
the sections and the equation that formulate the optimization
problem is displayed.

II. BACKGROUND

Bipedal and humanoid locomotion is a rich field of research
in the robotics domain. It would be pretentious to claim
covering all its facets in a single section. We invite interested
readers to refer to the excellent reviews in [1], [2], [12], [13],
some of which are recent, and the monographs [14], [8].

We put aside all the work done in passive bipedal locomo-
tion [15] (i.e., non actuated) as we are interested in motorized
humanoid robots that do not content in predefined cycled
locomotions1. Three schools of methodologies emerge in the

1This research is however useful to have insights in motorized gait energy
optimization.

Sec IV
Eq (27)

Sec V
Eq (34)

Sec VI
Eq (50) (53)

Fig. 2: Global control scheme, the ∗ super script represent the
control references for the whole body-control or for the robot.
The swing foot trajectory planning or the force control scheme
is included in the whole-body control box as they are outside
from the article contribution. The blue elements highlight our
adding w.r.t existing approaches.

bipedal locomotion domain: (i) the school of walking using
hybrid-systems control approach; (ii) the school of data-driven
and machine learning walking control, and (iii) the school of
pendulums-based walking control so called abusively ZMP-
based school. Our work lies in the last category that will be
given a more thorough synthesized update.

Hybrid zero dynamics (HZD) based bipedal walking con-
sists in projecting the whole-body humanoid dynamics on its
zero submanifold and designing feedback control based on
virtual constraints, see e.g., [16], [17], [14]. A comparative
analysis between centroidal pendulum-based approaches (we
abusively termed ZMP school) and feedback control design
based on virtual constraints is reported in [12]. Impressive
walking skills have been demonstrated on the biped MABEL
having compliant transmission [18], on the humanoid DURUS
in [19], and on Cassie and the humanoid Digit2 using HZD
and its variants in, e.g., [12]. Compared to the so-called
ZMP school, HZD formalism provides stability proof (with
exponential convergence rate) of the walking controller scaling
from the reduced model up to the whole body dynamics. More-
over, HZD integrates impacts explicitly in the models [20] and
shows possible walks using nearly point contacts.

Data-driven and machine learning bipedal walking origi-
nates in the computer graphics and animation community.
Since the early 2000th ACM SIGGRAPH published noticeable
papers showing high dexterity skills in bipedal walking of
animes from human-captured data, e.g., [21], [22], [23], [24],
to cite a few. Years ago, we have tried to port some of the
promising approaches on our humanoid robots, yet we failed
because computer animation methods often do not consider
hard constraints found in the robotics domain. The major
one is sensors noise and model uncertainties of all kinds.
Others are, for some of the computer graphics and animation
approaches, the lack of torque bounds, tolerance to auto-
collisions and collisions, lack of non-smoothness consider-
ations (such as plausible contact models and impacts), etc.
Nowadays however, the emergence of SimToReal research
(that allow generating millions of reliable simulations includ-
ing dynamics and noise close to real physics), e.g., [25],
new robust techniques in machine learning, deep learning

2Jonathan W. Hurst, Building robots that can go where we go, IEEE
Spectrum, 26 February 2019.
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and learning techniques from few experiences... have allowed
promising transfer of data-driven approaches to real robotic
bipedal implementation. Yet very successful ones are few:
that are the amazing results obtained with Cassie, e.g., [26],
[27] and on quadrupeds, e.g., [28]. It should be noted that the
successful teams, are those that also have a priori very good
grasp in model-based control approaches implemented on real
robotic platforms demonstrating rich dynamic walking behav-
iors3. In our laboratory, recent results in robust locomotion
by means of reinforcement-learning on highly reduced robots
without torque feedback [29].

Yet, in our team, we have been mainly focusing on LIPM
based walking initiated by [30]. The main idea consists in
computing the bounded dynamics of the CoM that is feasible,
i.e., the one that enforces the ZMP to lie in the support
polygon of the current and future contacts in order to guarantee
dynamic balance of the walk. In what follows, we synthesize
the background on which our method is built.

Our work relies on the contribution of [9], therefore we kept
the notations as close as possible to the original one, that is:

- Super-scripts x� refer to indexes in a sequence, when
it designates the power of x there will be no possible
confusion;

- Lower-script x� indices refers to the value type (for ZMP
we use z, for CoM c, for DCM u, for foot f , etc.);

- x and y variables refer to components of a position in
the x and y axis respectively. The axis component can
be specified in some cases on the lower-script without
possible confusion.

A. Inverted Pendulum Mode

The LIP model is derived using the Newton Euler equations
under the assumption that the angular momentum around the
CoM is constant, and that the CoM is at a constant height. It
leads to a relationship between the CoM position pc =(xc,yc)

T

and the ZMP pose pz = (xz,yz)
T such as in the (x,y) plane

(corresponding to the ground):

p̈c = ω
2(pc−pz) (1)

where ω2 = g/z̄c with g the gravitational acceleration magni-
tude and z̄c the constant CoM height.

This model was initially introduced for humanoid locomo-
tion by [30] using a LQ preview control to generate a CoM
trajectory under a pre-generated ZMP objective trajectory. The
reformulation to a Model Preview Control initially done in [31]
allowed to extend the decision variables to the CoM and
the ZMP trajectories including constraints: on the ZMP to
maintain contact stability but also on the steps to keep their
kinematic feasibility [9], [32], [33].

Using the following change of variable:

xu = xc +
1
ω

ẋc (2)

Equation (1) can be rewritten as

ẋu = ω(xu− xz) (3)

3This remark was pointed by Dr Steve Heim in a private discussion.

where xu is the Divergent Component of Motion (DCM),
introduced in [4]; its dynamic is such that, while the CoM
is converging exponentially towards the DCM, this latter is
diverging exponentially from the ZMP. Controlling this 1st

order dynamics between the ZMP and the DCM has been
used extensively in walking gait generation, e.g., [33], [34],
[9], [10], as it simplifies the dynamics and extends the stability
criterion for the gait generation.

Using the DCM, having a non diverging LIP dynamics,
results in finding the ZMP trajectory such that the DCM
remains bounded.

This trajectory exists and must fulfill the following condition
w.r.t the current DCM, see details in [35].

x0
u = x?u(t̃,xz), ω

∫
∞

t̃
xz(τ)e−ω(τ−t̃) dτ (4)

with e being the exponential function, i.e., e(·) , exp(·), then
e1 = e; and xz(τ) = 0 for τ < t̃.

Equation (4) is referred to as the stability condition. Instead
of dealing with the instability of the CoM/ZMP dynamics by
penalizing divergent trajectories inside the cost function (com-
monly minimizing the CoM jerk) which only gives a heuristic
solution, and can be heavily dependent on the duration of the
prediction window of the MPC, using Eq. (4) guarantees the
boundness of the CoM (if the ZMP or its velocity is bounded)
at all time.

Moreover, one can see in this condition more interesting
points:

1) It provides a linear constraint between the current DCM
and the ZMP trajectory to generate;

2) As the ZMP allowed location depends on the future
steps location and the steps timings parameters (i.e., for
both double and single support durations), the stability
condition also captures the feasibility of a walking plan.

This simplified and low-order dynamical system
(DCM/ZMP) makes the LIPM an appropriate candidate
for walking gait generation using MPC either linear or not
(i.e., NMPC), e.g., [36], [37].

However, the LIPM remains a constrained model of the
CoM dynamics. Extensive work has therefore been done to
get rid of those constraints by controlling the full centroidal
model, e.g. [38], or by controlling a variable height pendulum,
e.g., [39], [40], and its angular momentum, e.g. [41].

Once it comes to control a real robot under the LIPM
assumptions, one must guarantee that the robot dynamics will
follow the generated gait. We therefore need to mitigate mod-
eling uncertainties, that are prone to errors, and disturbances.
To do so, a complementary policy based on the DCM tracking
feedback can be added to the control of the ZMP in order
to enforce the DCM to converge exponentially to its planned
reference, e.g., [42], [11]. This DCM feedback control loop
is often named stabilizer as its purpose is to stabilize the
reference walking gait. The addition of such DCM feedback
control concedes the open-loop aspect of the gait generators
we previously mentioned as we must stabilize the generated
gait to keep the motion feasible. However, even if some control
schemes in the literature consider the state of the robot in the
gait generation [9], [31], only part of the state is provided to
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the planning as the ZMP dynamics from the force control is
not considered and the need for such complementary policy is
still needed.

B. Force control

With a position-controlled robot, the forces at the feet are
regulated using an admittance control that tracks a reference
wrench wr

f by displacing the feet in the opposite direction
of the desired force. Robot links are controlled using an
acceleration based tracking law [43],

p̈ f =−Kd(ṗ f − ṗr
f )−Kp(p f −pr

f )+ p̈r
f (5)

where p f is the 6D pose of the robot foot link, Kp and Kd are
respectively the stiffness and damping coefficient. In the case
of force control, we set pr

f , ṗr
f and p̈r

f such that [43]:

ṗr
f = Ka(wm

f −wr
f ) (6)

where wr
f , wm

f are the reference and measured wrench in the
link frame respectively; Ka is the admittance gain.

In order to control the robot ZMP, we must control the
Center of Pressure (CoP) of the currents contacts. This is done
by controlling the moment in the x and y direction in the
frame of the contact and the vertical force. To control the
moments, we use Eq. (6) in two dimensions. However, the
control of the vertical forces during a double support phase is
done using a foot force difference control (FFDC) [44], [45].
Noting (ṗLz, ṗRz) the vertical velocity of the left and right foot
respectively, FFDC with gain Kz updates the reference velocity
( ṗr

Lz, ṗ
r
Rz) [11] as follows:

ṗr
Lz← ṗr

Lz−0.5ṗδ fz (7)

ṗr
Rz← ṗr

Rz +0.5 ṗδ fz (8)

ṗδ fz , Kz
[
( f r

Lz− f r
Rz)− ( f m

Lz− f m
Rz)
]

(9)

When it comes to evaluate the tracking of such a force
control scheme, one must consider the deformation of either
the contact surface of the foot sole or ankle. Moreover, many
of the (our) humanoid robots (e.g., HRP-4CR, HRP-4, HRP-
2KAI) are equipped with a passive compliant shock absorbing
mechanism between the ankle and the feet, with a thin layer
of soft sole to each foot. This flexibility can be seen as
a 2nd order model between the torque at the contact point
and the deformation [46]. Moreover, even in a configuration
without a shock absorbing mechanism, a similar behavior can
be drawn if we consider the floor as a compliant material that
deforms under the contacts (the flexibility at the ankle can
be approximated as a pure spring whereas the floor exhibits
rather a spring damper behavior). As our force control relies on
the position of an end-effector to obtain the desired force, this
2nd order behavior between the torque at the contact point and
the deformation reflect the behavior between the desired CoP
and the references forwarded into the force control scheme. A
simpler model empirically evaluate the behavior between the
CoP and its reference (using a force control defined in Eq. (6))
by means of a 1st order dynamics [44].

0.0 0.5 1.0 1.5 2.0
Time (s)

0.1

0.2

x
(m

)

xu
xc

xz
x∗z

(a) LIPM without ZMP bounds: the DCM can be captured
by placing the ZMP on it.

0.0 0.5 1.0 1.5 2.0
Time (s)

0.1

0.2

x
(m

)

xu
xc

xz
x∗z

(b) When the ZMP dynamics is introduced, the DCM cannot be
captured.

Fig. 3: LIPM behaviors for the toy example.

III. CLOSED-LOOP CONTROL OF THE PENDULUM– A TOY
EXAMPLE

To showcase the use of the DCM feedback control and how
to overcome it, we analyze the dynamics of a perfect pendulum
model in one dimension.

We initialize the pendulum with an arbitrary and distinct
DCM and ZMP position at initial time t = 0 and must choose
the ZMP pose at t = ∆t (here ∆t = 0.5s) to bring the pendulum
to a stop. Since it is a toy example we assume that the
final position of the pendulum does not matter, but the same
reasoning extends to the case where it does.

Using Eq. (4), having xz(∆t) = xu(∆t) stabilizes the pendu-
lum, see Fig. 3a; here, the ZMP jumps instantly to the DCM
pose. This is however unrealistic, because the floor is never
perfectly stiff and the control induces delays, especially for
position-controlled robots. Previous work tends to consider the
ZMP behavior xz(t) to track its reference x∗z with at least a
linear first order model [44], that is, with a parameter λ :

ẋz(t) =−λ (xz(t)− x∗z ) (10)

Introducing these ZMP dynamics inside our LIP model, by
setting x∗z = xu(∆t), leads to instability (see Fig. 3b). This is
because the delays in ZMP results in a deviation of the DCM;
subsequently the pendulum’s dynamics is not captured at its
initial position.

To account for this dynamics, one could correct the ZMP
reference using a DCM feedback policy; which could be a
simple proportional-integral-derivative (PID) control policy (or
at least proportional) on the DCM error. This is a common
strategy leading to an exponential convergence of the measured
DCM towards the reference one (see Fig. 4a) [11]. This policy
has for downside to consider only the current state of the
pendulum. Moreover, as the control references are changing,
the higher-level planning is disconnected from the state of
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(a) Using a DCM feedback control x∗z = xr
u +K(xu− xr

u), (with K > 1), we can correct the ZMP reference to be stable.

(b) If the dynamic of the ZMP is known, the DCM can be captured using Eq. ((4)).

Fig. 4: Linear inverted pendulum models control schemes.

the real robot which could lead to breaches in the planning
constraints.

Our solution relies on using the dynamics of the ZMP
directly and explicitly inside the walking pattern gen-
eration, see Fig. 4b. In our example, this amounts at
solving Eq. (4) and computing the value of the reference
ZMP such that the real ZMP would converge to it at
the same time as the DCM. This captures the combined
dynamics with a single reference ZMP value. To our best
knowledge, this is a novel approach that has never been
considered in previous works.

The difference between the common control scheme in the
literature and the one we use is illustrated in Fig. 4. It can
be noted that in real-case applications, the Fig. 4a’s scheme
can be used with a semi-closed loop component by providing
the DCM state to the pattern generator. However, this still
requires the need of a DCM feedback policy to guarantee a
proper tracking of the pendulum state.

IV. WALKING GAIT GENERATION BY CLOSED LOOP
IS-MPC

The IS-MPC generates a feasible CoM gait. This gait is
computed to follow a footstep plan. This footstep plan is made
of the footsteps print (which includes the location and the
orientation) and the footsteps duration over a preview horizon
longer than the MPC control horizon. We note Tp the horizon
duration of the footstep plan.

The initial description of the IS-MPC uses the LIP mode
by taking ẋz (or equivalently ẏz) as an input term, we can
then define the following dynamics from Eq (1) with the state
(xc, ẋc,xz)ẋc

ẍc
ẋz

=

 0 1 0
ω2 0 −ω2

0 0 0

xc
ẋc
xz

+

0
0
1

 ẋz (11)

However, in order to use this MPC in closed-loop on the robot
pendulum state, in terms of ZMP and DCM, we must model
the relation between the ZMP reference forwarded to the force
control (in our case the admittance control) and the measured
ZMP value. We model this behavior as a first order system
similarly to Eq. (10) with a parameter λ and with a delay δd
such that:

ẋz =−λ (xz(t)− x∗z (t−δd)) (12)

The reason behind adding the delay δd is an empirical ob-
servation resulting from experiments. Indeed, such a delay
takes into account the lag between the instant the command
is computed and the instant it is actually applied. It includes
software latency and joint torque tracking response time. The
dynamics in Eq. (11) can then be rewritten as:ẋc

ẍc
ẋz

=

 0 1 0
ω2 0 −ω2

0 0 −λ

xc
ẋc
xz

+

0
0
λ

x∗z (t−δd) (13)

These dynamics are of course the same for the y-axis.
Let’s consider this system at an instant t0 and analyze its

future dynamics. The reference x∗z (t) is the input to the force
control loop, so let’s consider it piece-wise constant on a
duration ∆t such as ∆t > δd . We define inputs ui

x, on an interval
[t i; t i+1] where t i = t0 + i∆t, as increments added to the ZMP
reference x∗z such that on [t i; t i+1]:

x∗z (t) = x0d
z +

i

∑
k=0

uk
x

x0d
z = x0

z +(x0∗
z − x0

z )(1− e−λδd ),

(14)

with x0
z being the current estimated robot’s ZMP and x0∗

z being
the current commanded ZMP applied to the robot. We note
t0
d = t0 +δd , t i

d = t0 +δd + i∆t. The ZMP dynamics in Eq (12)
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Fig. 5: Chosen 1st order ZMP model with λ = 25, δd = 0.025,
∆t = 0.05. The green dashed line indicates the starting point
of the first arrow.

can then be integrated with Eq (14) to obtain the following
ZMP trajectory for t ∈ [t i

d ; t i+1
d ]:

xz(t) = x0d
z +

i

∑
k=0

uk
x

[
1− e−λ (t−tk

d)
]

(15)

One can see each uk
� as a sequence of first order step delta

input, each being delayed by tk
d . Figure 5 presents the expected

model behavior.
We define the control inputs as uk = (uk

x,u
k
y)

T and the
future contact location as pi

f = (xi
f ,y

i
f )

T where i is the step
number. At each iteration of the proposed closed loop IS-MPC
considers a control horizon of C samples of ∆t duration each
such that this horizon contains Ns steps, and generates the
following values:

1) The reference inputs U = (u0, . . . ,uC−1)T ;
2) The footsteps locations Pf = (p1

f , . . . ,p
Ns
f )T

under their imposed time parameters Ts,ref =[
(t0

ds,ref, t
0
s,ref), . . . ,(t

Ns−1
ds,ref , t

Ns−1
s,ref )

]
which are the time of

the start and end of the single support duration. Figure 6
shows the organization of the time variables. Pf ,ref are
the reference footsteps location. We note p0

f = (x0
f ,y

0
f )

T

the current support foot position and p−1
f the current

swing foot location in double support.
The control horizon time is then Tc = C∆t. Once computed,
the LIP dynamics defined in Eq. (13) is integrated under
the computed input (u0

x ,u
0
y) at a sampling rate δ t ≤ ∆t; δ t

represents the sampling period of the robot whole body control
loop.

The MPC solves a quadratic optimization problem (de-
scribed Eq. (27)) under different linear constraints to enforce
dynamic balance.

A. Constraints

1) ZMP location constraints: At every sample k, i.e.,
t = t0 + k∆t, pk

z = (xk
z ,y

k
z)

T must be enforced to be within a
constraint polygon –being itself a sub-part of the robot support
polygon, located either under the support foot if t is during
a single support phase or in-between both feet if t is during

Fig. 6: Disposition of the planning time variables.

a double support phase. Therefore, for each sample k we can
define Nk = N(t) and Ok = O(t), which are the nk×2 normal
matrix and the nk×1 offset vector respectively. This gives the
following constraint:

Nkpk
z ≤ Ok, (16)

which constrains the ZMP to be within a nk vertices convex
polygon.

Note that since Nk and Ok define an admissible ZMP posi-
tion over the horizon, they depend on the position of the feet
and thus on the decision variable Pf . However having Nk and
Ok define the whole support area, makes the constraint (16)
nonlinear with respect to Pf .

Nevertheless, one important exception is the support phase
at the current time t0. Indeed, at the current double support
and first single support phases, the ZMP constraint polygon is
completely defined by the current robot foot poses and does
not depend on control decision variables. Therefore, the first
double support constraint can be as large as possible, and for
instance be a polygonal approximation of the convex hull of
the full footprint.

To keep the linearity of the the next ZMP constraints in
the horizon, the ZMP allowed regions are simplified as a
rectangle of dimension (dx,dy) sliding from one foot to the
other. Between footstep i−1 and i, O(t) is discretized in time
to define Oi, j = O(t i−1

s + j∆t) which can be expressed in the
interval [t i−1

s , t i
s] as:

Oi, j =
1
2


dx
dy
dx
dy

+Ni j

(
αi j p

i
f +(1−αi j)p

i−1
f

)
(17)

αi, j =
j∆t

t i
ds− t i−1

s
, (18)

with 0 ≤ αi, j ≤ 1 is the weighting variable allowing to the
rectangle to slide from a contact to the other.

The ZMP constraints being set as a rectangle, the normal
matrix of the ZMP constraints are then defined as follows:

Ni, j =


1 0
0 −1
−1 0
0 1

Ri, j (19)

with Ri, j = R(t i−1
s + j∆t) a 2× 2 rotation matrix of a chosen

angle around the vertical axis that sets the orientation of the
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rectangle. This orientation (in double support) is set by a linear
interpolation of the orientation between the planned steps i−1
and i such as Ri,0 is the orientation of the step i−1 and R(t i

ds)
is the orientation of the step i. In single support, the orientation
of the rectangle is the one of support foot i.

2) Footsteps constraints: The footsteps locations should be
kinematically reachable by the robot, therefore the difference
between two consecutive footsteps locations must remain
bounded.

This can be defined by using Nkin and Okin the 4× 2
normal matrix and the 4×1 offset vector of the step kinematic
constraints such that

Nkin(pi
f −pi−1

f )≤ Okin (20)

Okin =
1
2


dx f
dy f
dx f
dy f

 (21)

with Nkin the normal matrix of a rectangle oriented according
to pi−1

f and therefore is defined as in Eq. (19)
3) Stability constraint: As we compute xz(t) until Tc, one

must make an assumption over the ZMP values beyond the
control horizon. They will be referred to as x̃z(t) which are
defined for t > Tc and represent the tail of the trajectory over
the horizon [9]. Then, the stability constraint defined in Eq. (4)
becomes:

x0
u− c̃x− cx,d = ω

∫ t0
d+Tc

t0
d

xz(τ)e−ω(τ−t0) dτ (22)

with

c̃x = ω

∫
∞

t0
d+Tc

x̃z(τ)e−ω(τ−t0) dτ

cx,d = ω

∫ t0
d

t0
x0

z +(x0∗
z − x0

z )
[
1− e−λ (τ−t0)

]
e−ω(τ−t0)dτ

(23)

We can also write equivalently using Eq. (4):

x?u(t
0,xz) = cx,d +ω

∫ t0
d+Tc

t0
d

xz(τ)e−ω(τ−t0) dτ + c̃x (24)

In our case, substituting the behavior of xz(t) inside Eq. (15)
in Eq. (22), this condition becomes:

x0
u− c̃x− cd,x = e−ωδd

[
x0d

z +
λ

λ +ω

C−1

∑
k=0

uk
xe−ωk∆t

]
(25)

4) Tailing: Refers to the behavior of x̃z(t) as this latter can
follow different behaviors depending on the expected future
motion, see [9] for more details.
• Truncated tailing is setting a ZMP to a stop after the

control horizon, therefore:

∀i≥C, ui
x = 0, c̃x = 0.

• Periodic tailing is expecting that the ZMP trajectory
will periodically repeat every Tc, therefore, x̃z(t) follows
inputs ũ j, that is ũ j

x = ui
x, where j is congruent to i modulo

C.

We can then rewrite the stability condition as:

x0
u−cd,x = e−ωδd

[
x0d

z +
λ

(λ +ω)(1− e−ωC∆t)

C−1

∑
k=0

uk
xe−ωk∆t

]
(26)

• Anticipative tailing uses the information about the part of
the footstep plan which is defined over Tc to generate
a reference ZMP path. It allows x̃z(t) to follow the
desired behavior from the walking plan and thus extends
the preview horizon without increasing the number of
decision variables. Beyond that extended horizon the
truncated or periodic approaches remain necessary to
complete the tail. More details are in [9].

In all cases, Eq. (25) defines a linear equality constraint in
terms of the control decision variables.

B. Cost Function

The cost function aims at generating a ZMP trajectory that
satisfies the following weighted objectives:

1) ZMP trajectory objective: The ZMP objective xz,obj in
the cost function is located on the current support foot for each
step. This means for the future steps location in the horizon,
xz,obj is defined by the steps location decision variables of the
MPC. An offset can be added to the value of xz,obj to handle
cases where the modeled ZMP target if not perfectly centered
within the support foot. For example, having a ZMP target
placed closer to the interior of the foot will limit the lateral
variation of the CoM yet will make the balance less robust in
case of disturbances. We also have a component of the ZMP
velocity magnitude with an objective velocity set as zero.

2) DCM trajectory objective: To generate a DCM objective
trajectory, we compute the stable DCM x?u(t

0,xz,obj) corre-
sponding to the objective ZMP trajectory and integrate it under
the LIPM using Eq. 11 in the control horizon with the ZMP
objective trajectory xz,obj as the input. This also allows us to
obtain a DCM velocity objective using the DCM dynamics in
Eq. (3).

3) Steps location objective: This one simply aims to have
the steps location decision variable as close as possible to the
references ones.

——
To summarize, the decision variable in the horizon being:

U = (u0
x ,u

0
y , . . . ,u

C−1
x ,uC−1

y ), Pf = (x1
f ,y

1
f , . . . ,x

Ns
f ,yNs

f )

We use similar notation for the ZMP and DCM position and
velocity sequence. The IS-MPC solves the following quadratic
optimization problem (QP):

U,Pf = argmin βż‖Ṗz‖2 +βz‖Pz−Pz,obj‖2+

β f ‖Pf −Pf ,ref‖2 +βu‖Pu−Pu,obj‖2+

βu̇‖Ṗu− Ṗu,obj‖2
(27)

under the constraints:
• ZMP position constraints in Eq. (16);
• Footsteps kinematics constraints in Eq. (20);
• Stability constraints in Eq. (25).
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V. ROBOT FORCE CONTROL

The pattern generated by the scheme described in Sec. IV is
forwarded to a whole-body task-space controller in which we
regulate the CoM trajectory and the contact forces to achieve
the desired walking dynamics.

A. CoP regulations

As the robot ZMP dynamic pz(t) is modeled as a delayed 1st

order system w.r.t the computed ZMP reference u0 (computed
in the IS-MPC in Sec. IV), the admittance control shall apply
a reference net wrench to obtain the following ZMP behavior
in the interval [t0

d ; t0
d +∆t] according to Eq. (15).

pz(t) = p0d
z +

[
1− e−λ (t−t0d)

]
u0 (28)

During the single support phase, the admittance control can
directly apply a wrench to track a reference of the contact’s
CoP at p0d

z +u0. Thanks to the delays and the ZMP dynamics,
this reference can temporarily be set to be outside the contact
polygon, in order to increase real ZMP velocity.

During the double support phase, one must distribute the
reference wrench along the contacts. We therefore need to
compute for each contact a reference CoP. We assume that
each contact’s reference CoP has its own 1st order dynamic
w.r.t the real contact CoP with parameters λc; ideally λc ' λ .
We note cL,u,cR,u and cL,cR respectively the reference CoP and
the modeled CoP for the left and right contact. This model,
with a constant reference over [t0

d ; t0
d +∆t], can be developed

similarly to (15) to obtain:

cL(t) = cL,u +(c0d
L − cL,u)e−λc(t−(t0+δd))

c0d
L = c∗L +(c0

L− c∗L)e
−λcδd

(29)

Additionally, having the same mode for fL,z and fR,z, the
vertical forces on the left and right foot, gives:

fL,z(t) = fL,u,z +( f 0d
L,z− fL,u,z)e−λ f (t−(t0+δd))

f 0d
L,z = f ∗L,z +( f 0

L,z− f ∗L,z)e
−λ f δd

(30)

And similarly for the right component. We then must set cu
L,cu

R
such that it produces the same overall ZMP, that is:

cL(t0 +∆t) fL,z + cR(t0 +∆t) fR,z

fL,z + fR,z
= pz(t0 +∆t). (31)

This equation gives the relation between the CoPs and the
ZMP. If we assume that the vertical forces are defined in
advance, this relation is linear.

There are usually infinite ways to distribute the vertical
forces and the CoPs in order to get a desired ZMP. To solve
this we chose to minimize the moments at the ankles.

We note pL and pR the location of the left and right ankles
and m the robot mass. To get the values of fL,z and fR,z. We
define r ∈ [0;1] as the normalized projection of the vector
pz(t0 +∆t)−pL over the vector pR−pL and set:

fR,z = rmg

fL,z = (1− r)mg
(32)

Fig. 7: Vertical force distribution depending on the desired
ZMP position at time ti.

Figure 7 shows a visual explanation of how the desired
vertical forces are computed. The reference vertical forces for
each legs are set using Eq. (30) with parameters λ f .

To obtain cL,u,cR,u, one can formulate an optimization prob-
lem to approach quadratically Eq. (31) under the constraints
that the modeled CoP shall remain inside the contact polygon
made of the normals matrix NLc, NRc and the offset vectors
OLc, ORc for the left and right contact respectively. Moreover,
as we have an horizon over the future ZMP location, this
problem can be extended to compute the force distribution
in the entire horizon of the double support phase of length
t0
ds− t0.

We note ci
L and ci

L,u (and respectively ci
R ,ci

R,u) the CoP at
time t i = t0 + i∆t and the piece-wise reference in the interval
[t i; t i+1].

Using recursively the dynamics described in Eq. (29), for
i > 0, we have:

ci
L = c0d

L e−λc(i∆t−δd)+
i

∑
k=2

(1− e−λc(k−1)∆t)e−λcδd ci−k
L,u

+(1− e−λc(∆t−δd))ci−1
L,u .

(33)

Having pi
z, the modeled ZMP at time t i = t0 + i∆t, we can

compute the future vertical force ( f i
L,z, f i

R,z) using the presented
method in Fig. 7. We then solve the following optimization
problem formulated as a QP to compute (ci

L,u,ci
R,u) for i ∈

[0;(t0
ds− t0)/∆t]

argmin
ci

L,u,c
i
Ru

wz‖∑i
ci

L f i
L,z+ci

R f i
R,z

f i
L,z+ f i

R,z
−pi

z‖2+

wd‖∑i RL(ci
L−pL)−RR(ci

R−pR)‖2

s.t. NLcci
L ≤ OLc

NRcci
R ≤ ORc

(34)

with wd � wz; RR and RL are the rotation matrices that
rotate from the world frame to the contact frame (Left or
Right). The first term of the cost function is the ZMP
tracking error minimization (from (31)), and the second term
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‖∑i RL(ci
L−pL)−RR(ci

R−pL)‖2 is added to the cost function
to minimize the moment at the ankles.

B. Robot mass estimation
The previous description of the vertical forces distribution

stands if the mass m of the robot is well known. To have a
measured estimation of the mass, we rely on the force sensors
located at each feet. Using then a low-pass filter with a very
high cut-off period (≥ 10 s), we can have a more accurate
estimation of the robot mass and additionally an estimation
of the vertical acceleration z̈c using the non-filtered values
of the force sensors. This can be useful in case of modeling
errors and when the robot is performing tasks such as carrying
objects.

C. External disturbances
During the transition between the double support phase to

the single support phase, the force applied on the swing foot is
no longer controlled and then not considered in the pendulum
state. However, it is still possible that the swing foot applies
some forces before it leaves the floor and then disturb the
pendulum dynamics. For example, this can be seen in Fig. 13.
One solution to overcome this perturbation is to consider it
explicitly in the dynamics of the pendulum.

Writing the centroidal dynamics and adding the external
disturbance wrench from the swing foot, (fswg,nswg) expressed
at the swing foot, the pendulum dynamics becomes as fol-
lows [47]:

ẍc = ω
2 (xc−κxz +∆x′c

)
(35)

ω
2 =

g+ z̈c

cz− zz
(36)

κ = 1− fswg,z

m(g+ z̈c)
(37)

∆x′c =
1

m(g+ z̈c)
[(pswg,z− zz) fswg,x− pswg,x fswg,z +nswg,y− L̇c,y]

(38)

where L̇c = (L̇c,x, L̇c,y)
T is the derivative of the angular mo-

mentum at the center of mass. The dynamics of the CoM in
the y-axis are similar with an expression of ∆y′c such that:

∆x′c =
1

m(g+ z̈c)
[(pswg,z−zz) fswg,y− pswg,y fswg,z−nswg,x+L̇c,x]

(39)
The DCM Eq. (3) can therefore be rewritten as follows,

ẋu = ω(xu− (κxz−∆x′c)). (40)

An external disturbance is then seen in the pendulum
dynamics as an offset on the ZMP with a proportional co-
efficient on its trajectory. We then control the dynamics of the
pendulum under the new ZMP state κxz−∆x′c. If we know the
duration of this perturbation δp, we can rewrite the stability
condition as follows:

x0
u = ω

∫
∞

t0
(κxz(τ)−∆x′c)e

−ω ′(τ−t0)dτ

−ω

∫
∞

t0+δp

(κxz(τ)−∆x′c)e
−ω ′(τ−(t0+δp)+δp)dτ

+ω

∫
∞

t0+δp

xz(τ)e−ω(τ−(t0+δp)+δp)dτ

(41)

Using the definition in Eq. (4) we have

x0
u = x?u(t

0,κxz−∆x′c)

− e−ω ′δpx?u(t
0 +δp,κxz−∆x′c)

+ e−ωδpx?u(t
0 +δp,xz).

(42)

It is possible to adapt Eq. 23 if we suppose the modeled
ZMP delay δd to be inferior to δp; then we can update Eq. 24
accordingly and use the disturbance inside the IS-MPC.

The MPC stability constraint during single support is there-
fore updated to be aware of measured external perturbations.
The duration of the perturbation δp is set empirically with
experimental results and has a value of 0.1 s.

It is important to note that this method can be used for any
other external perturbation if the perturbation force is known
or planned, similarly to what is done in [47].

VI. STEPS TIMING AND POSITION PRE-OPTIMIZATION

In this section, we describe how it is possible to update the
step planning if this latter is not feasible; now Ns refers to the
number of steps inside the step plan.

Knowing the current constraint (ZMP constraints, kinemat-
ics constraints and stability condition in Eq. (4)), one could
compute the region in which the current DCM lies to have a
solution to the IS-MPC problem. Drawing on this idea we aim
at rewriting the stability condition by combining the equality
condition of Eq. (4) with the ZMP constraint in Eq. (16). To
do so, we assume that the normals N defined in Eq. (19) are
constant over time and we note it N̄. This gives the following
stability criterion:

Theorem 1. If the ZMP constraint is defined as N̄pz(t)<O(t)
for t ∈ [t0;∞], then the stability condition can be satisfied if
and only if:

N̄p0
u ≤ ω

∫
∞

t0
O(τ)e−ω(τ−t0) dτ (43)

The proof of this theorem is given in the Appendix.
This inequality constraint requires the DCM to remain

inside a polygon to ensure that there is a ZMP trajectory
that will keep the DCM trajectory bounded. We call it the
feasibility region. The equation of this region captures, as a
whole, the planned motion of the pendulum, as O(t) represents
the location and the size the ZMP constraint, being itself
dependent on the step location. Finally, as the ZMP constraint
locations are defined with a specific timing, the stability
constraint also captures the steps duration.

Figure 8a shows a comparison between two robots executing
the same walking plan using the IS-MPC gait generation. In
the right case, the robot is being pushed forward. We see
that once the DCM is outside the feasibility region for the
green plan, new steps must be acheived to keep the balance.
Moreover, we show as an example in Fig. 8b how the steps
duration influence the required step length to recover from a
disturbance. If (for a specified step duration) the required step
position to stay balanced is out of a kinematics constraint (i.e,
a step too long), then lowering the step duration allows to
reduce the length of the required step. Hence, the feasibility
region becomes wider.
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Fig. 8: Feasibility region and how it influence the step plan.

We can discretize Eq. (43) using O(t) as Oi, which is
the offset of the ZMP constraint in the interval [t i; t i+1]. The
stability condition becomes:

N̄p0
u ≤

∞

∑
i=0

Oi

[
e−ω(t i−t0)− e−ω(t i+1−t0)

]
(44)

We reduce the ZMP constraint into a rectangle of dimension
(dx,dy) located under the support foot during support phase
and sliding from one foot to the other during the double
support phase in a straight line. Therefore, the path of this
rectangle over the plan connects the support position in a
piece-wise linear fashion. We perform a space-discretization
of this path into Nds +1 positions for each step (for example,
Fig. 9 shows in green the case where Nds = 3). Thus, we
rewrite the stability condition, for the case of a plan of Ns
steps, in the following way:

N̄p0
u ≤ eωt0

(
Õ +

Ns−1

∑
i=0

[
Oi,Nds(µi,Nds −µi+1,0)

+
Nds−1

∑
j=0

Oi, j(µi, j−µi, j+1)

])

Oi, j =
1
2


dx
dy
dx
dy

+ N̄
[
α jpi

f +(1−α j)pi−1
f

]
(45)

where µi, j = e−ωt i, j
and α j = j/Nds with Nds a fixed parame-

ters. t i, j represents either the start of the double/single support
phase or intermediate phases. Figure 6 illustrates how are
organized the indexes w.r.t to the walking phases.

We make one exception on the definition of Oi, j when
i = 0. As the location of the footsteps p−1

f and p0
f are not

decision variables; we set Oi, j as O0 in order to have a ZMP
constraint region that approximates as much as possible the
current support polygon. Figure 9 shows an example of these
definitions and Sec. VI-A gives more detail.

Moreover, there is still the necessity to incorporate a tailing
Õ, similarly to Eq. (23), in order to account for the planning
outside the decision variables. However, only a truncated or
periodic tailing can be used since we are using the whole
footstep plan and we don’t possess more precise information
on the future plan. As our plan is defined long enough in the
horizon (more than three steps), we simply set a truncated

Fig. 9: Computation of the ZMP constraint rectangle shape.
The red rectangle once computed define N̄ and the green
squares are the future ZMP constraints oriented accordingly.

tail having the ZMP constraint to reach the middle of the two
contacts, therefore:

Õ =
Nds−1

∑
j=0

ONs, j(µNs, j−µNs, j+1)+ONs,Nds µNs,Nds

ONs, j =
1
2


dx
dy
dx
dy

+ N̄
[

α j

2
pNs

f +(1− α j

2
)pNs−1

f

] (46)

From Eq. (44), we get a constraint that defines a relationship
between the position of the footsteps and their timing in the
horizon in order to guarantee stability condition. Therefore,
we can formulate an optimization problem that has as decision
variables:

- the steps timing variable µi, j, and
- the footsteps position pi

f .
The actual steps timings can be retrieved as follows:

t i
ds =−

1
ω

ln(µi,Nds)

t i
s =−

1
ω

ln(µi+1,0),
(47)

which gives the timing plan illustrated in Fig. 6.
We add bounds to this optimization problem on: (i) the steps

location, as defined in Sec. IV-A2; and (ii) the steps phase
duration such that:

∆tm
ds ≤ t i

ds− t i−1
s ≤ ∆tM

ds

∆tm
ss ≤ t i

s− t i
ds ≤ ∆tM

ss

∆tm
s ≤ t i

s− t i−1
s ≤ ∆tM

s

(48)

with ∆tm
ds, ∆tm

ss , ∆tm
s the minimum: double support duration,

single support duration, and whole step duration. The super-
script M represent the upper bound of those constraints. Noting
µm

ds = e−ω∆tds and similarly for the other duration bounds. The
timings constraints can be rewritten as:

µ
m
dsµi,0 ≥ µi,Nds ≥ µ

M
ds µi,0

µ
m
ss µi,Nds ≥ µi+1,0 ≥ µ

M
ss µi,Nds

µ
m
s µi,0 ≥ µi+1,0 ≥ µ

M
s µi,0

(49)
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The constraint defined by Eq. (45) is unfortunately noncon-
vex, making the problem complex to solve, and thus cannot
run at the same frequency as our MPC. Nevertheless, we note
that the constraint becomes linear if we take independently the
positions or the timings as decision variables. The solution we
resort to is to solve alternately the problem either with fixed
steps timing or with fixed step locations. This makes it possible
to formulate the entire problem as QP optimization.

Finally, to ensure the feasibility of the problem we add slack
variables s such that if the problem is not feasible, we can still
retrieve the parameters bounded to the activated constraints.
The details of this optimization is described hereafter.

A. ZMP constraint region choice

We set the ZMP constraint as a rectangle of dimension
(dx,dy), however, as N̄ must be constant in the whole horizon,
we must choose an orientation of the rectangle beforehand,
the size of the ZMP constraint can however change. In double
support phase, we set the orientation of the constraint region to
approximate as much as possible the current support polygon
region with a rectangle. Figure 9 showcase the decision of N̄
where the red rectangle covers the largest area in the support
polygon [48]. If the robot is in single support phase, the size
and orientation of the rectangle can be set to fit those of the
support foot.

In the horizon, the size of the rectangle must be set so
that it always fits inside the future support polygon. If the
orientation of the rectangle differs from the planned step one,
a conservative way is then to set the size of the rectangle to a
square of size sy/

√
2, where sy is the width of the robot foot.

This method reduces the area allowed for ZMP; but this
occurs only for supports that happen later in the footstep
plan. Since the contribution on the stability is exponentially
decaying in the horizon, this solution remains suitable. This is
especially true since this optimization is done at the frequency
of the MPC in the control loop.

B. Steps location problem

The problem is defined such as we minimize the error
between the footstep decision variables Pf = (p1

f , . . . ,p
Ns
f )T

and the planned ones P̂f = (p̂1
f , . . . , p̂

Ns
f )T . We therefore solve

the following problem having as decision variables Pf and the
slack variables s.

argmin
Pf ,s

‖P̂f −Pf ‖2 +ws‖s‖2

s.t. N̄p0
u + s≤ eωt0

(
Õ +

Ns−1

∑
i=0

[
Oi,Nds(µi,Nds −µi+1,0)

+
Nds−1

∑
j=0

Oi, j(µi, j−µi, j+1)

])
Kinematic constraint in Eq. (20)

(50)

With ws � 1. The output of this problem provides the
references steps Pf ,ref for the IS-MPC on Sec. IV

C. Steps timings problem

Here, we aim to remain as close as possible to the desired
planned steps timings T̂s =

[
(t̂0

ds, t̂
0
s ), . . . ,(t̂

Ns−1
ds , t̂Ns−1

s )
]
. The

objectives µ̂i j are then computed such that:

µ̂i, j = e−ω

[
t̂ i−1
s + j

Nds
(t̂ i

ds−t̂ i−1
s )

]
(51)

However if the solution from the steps location optimization
produces steps that differ from the reference, we want to plan
shorter steps duration than planned in order to come back
quickly to the actual plan. To achieve this, we add to the cost
function a weight function based on the initial step plan p̂i

f
and the corrected one pi

f ,ref w(p̂i
f ,p

i
f ,ref) such as:

w(p̂i
f ,p

i
f ,ref) = Ks‖p̂i

f −pi
f ,ref‖2 (52)

This weight is used in a step-timing minimization term.
The resulting QP problem is as follows:

argmin
µi, j ,s

‖
Ns−1

∑
i=0

Nds

∑
j=0

(µ̂i, j−µi, j)‖2 +ws‖s‖2

+
Ns−1

∑
i=1

w(p̂i
f ,p

i
f ,ref)‖µi,0−µi−1,0‖2

s.t. N̄p0
u + s≤ eωt0

(
Õ +

Ns−1

∑
i=0

[
Oi,Nds(µi,Nds −µi+1,0)

+
Nds−1

∑
j=0

Oi, j(µi, j−µi, j+1)

])
Timing constraint in Eq. (49)

(53)

With ws � 1. The output timings of this problem will be
considered as the reference steps duration Ts,ref for the IS-MPC
in Sec. IV using Eq. (47).

D. Sequential linear problem solving

As our problem is formulated as two different QP problems,
we alternately solve the steps location problem and then the
steps duration one. The problems’ constraints are created using
the previously computed µ or O. The reference values µ̂ and
P̂f are always the ones coming from an external footstep plan.

This pattern of alternating QPs can be repeated several
times, so we decided to perform it twice to obtain in a short
computation time a compromise between step duration and
step location optimization. It is important to note that after this
sequence is done, the steps location are once more optimized
by the IS-MPC.

E. Stepping recovery while standing

The defined region in Eq. (45) represents a geometric
condition on the DCM which defines the region where the
DCM can be without having to make a step. We can then
use it to trigger a walking plan if necessary and increase the
stability of the robot even if it is not stepping (i.e., standing
in place).
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Moreover, because we are using a rectangular shape con-
straint on the ZMP. This stability region on the DCM is also a
rectangle. Therefore, once the DCM under a disturbance is out
of the region, knowing from which vertices of the rectangle
the DCM violates the stability condition allows to plan which
support foot to use to recover. This is done depending on which
side of the rectangle the DCM is outside of the feasibility
region and how are the feet positioned.

This strategy appears to be effective if the robot is pushed
forward or backward as we show in Sec. VII. In case of lateral
pushing, we choose the support foot to be the furthest one
from the current DCM pose. However, for a better balance,
especially in case of lateral pushing, it remains necessary to
develop more tools to recover such as having non-convex
kinematic constraints (this would allow the left foot to be
placed on the right side of the right foot), anticipating the
disturbance (to increase the support polygon surface) or using
the angular momentum.

VII. EXPERIMENTS

The proposed control scheme is implemented on five differ-
ent humanoid platforms: HRP-2KAI, HRP-4, HRP-4CR, HRP-
5P and RHPS1 (i.e., all the humanoids we possess), see Fig. 10
and on different environments:

- flat floors;
- flat floors with small obstacles (/ 3cm height);
- compliant terrains (not reaching full compression);
- outdoor wild terrains (HRP-4 and HRP-2KAI only).

Disturbance from human pushes are introduced either during
walking or in standing phases.

Fig. 10: All the humanoids used in the experiments. From left
to right, the HRP-2KAI: a modified version of the HRP-2, used
in the DRC; RHPS1: the new humanoid robot from Kawasaki
Heavy Industries co-designed with AIST and CNRS; HRP-5P:
the last prototype of the HRP family designed to be torque con-
trolled and to be used in building and harsh applications [49];
the HRP-4: the sample present in France and used for the
Airbus joint project [50]; and finally, the HRP-4CR used in
the ANA Avatar Xprize contest [51].

All the humanoids are controlled in high-gains position,
i.e., kinematics control. The whole-body control for all our
humanoids is made using the mc_rtc task-space optimization
control framework4. The reason behind this effort is our aim
to offer the community a ‘plug-and-play’ walking controller,

4https://jrl-umi3218.github.io/mc rtc/

or in other words, a plug-and-walk software that can be further
improved and tried on several humanoid platforms. It is a well-
recognized fact that most of the existing walking algorithms
are highly tuned for a given humanoid or bipedal platform.
Such a tuning never appear clearly specified in almost all
existing papers in the field. Most of existing algorithms require
parameters to tune for each robot and often this knowledge
is not highlighted in academic papers. The so-called ‘magic
numbers’ is what prohibits robustness in porting the same
algorithm to other humanoid platforms. This is the reason why
we decided to implement our approach in all the platforms
we possess (we hope that the openness of the code would
encourage the readers to do so on their own humanoid and
provide any criticisms and feedback on how it can be further
improved).

For each robots, we can adjust experimentally the model
parameters, which are:

- The MPC’s ZMP model first-order parameters λ and δd ;
- The force distribution first-order parameters λc and λ f ;
- The admittances gains Ka for the CoP tasks and the foot

force difference control (FFDC) gain Kz.
These parameters are set by fitting the modeled CoP, vertical
forces or ZMP to the measured ones. It is important to notice
the correlation between the parameters. As λ represents the
model’s 1st order response, the higher the admittance gains
are, the faster the wrench is applied and therefore the higher
λ is. This is similar for the control of the contacts vertical
forces. As an admittance task is more compliant with a lower
gain, we set the λ parameters by trying to set the admittance
gains as low as possible.

Alas, for the time being the tuning process for these param-
eters remains empirical; yet, for the sake of transparency in the
choice of the control parameters, we provide ad-hoc guideline
for the tuning procedure (or at least the key elements) we did
to conduct our experiments.

1) Set Ka = 0.01 , Kz = 10−4 , λ = λ f = λc = 40.
2) Make the robot step in place.
3) δd can be identified from the transition into walking

phase, see Fig. 11.
4) Adjust λ such that the model-ZMP fits well the mea-

sured one in single supports.
5) The feet in single support should not vibrate, if it is

the case with an appropriate value of λ , Ka should be
increased (and so is λ ).

6) Adjust λz such that the model vertical force fits the
measured one in double support.

7) Vibration in double support are often due to vertical
forces control, Kz and λ f should be set to have a smooth
and complete transition of the ZMP on the future support
foot.

8) λc should be at λ and adjusted to improve the ZMP
trajectory w.r.t the model once in double support.

9) Finer tuning can be done by making the robot steps
forward and backward.

The chosen parameters for each humanoid we used are listed
in Table I whereas the common parameters to all robots are
displayed on Table II. We also list the sampling period δ at
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Fig. 11: Delay between the real ZMP and the sent reference
on HRP-2KAI.

TABLE I: Chosen parameters for each robot

ZMP model FD model FFDC CoP

Parameters λ δd λ f λc Kz Ka δ

Unit [s−1] [s] [s−1] [s−1] [N.s.m−1] [N.s.m−1] [ms]

HRP-2KAI 20 0.025 20 20 0.0001 0.02 4

HRP-4CR 5 0.025 10 5 0.0001 0.01 5

HRP-4 7 0.035 15 15 0.0001 0.01 5

HRP-5P 15 0.025 15 15 0.0001 0.01 5

RHPS1 8 0.025 8 10 0.0001 0.01 2

which the logged data and the computed joints angles are sent.
The IS-MPC weights that handles the DCM trajectory βu and
DCM velocity βu̇ are set to a non-zero value only when the
robot is in standing phase and to zero once the robot switches
to a walking phase. This is done as those weights reduces the
compliance of the robot during disturbances and make it less
likely to trigger steps.

In addition to those parameters, the whole-body control
computes the reference joints angles by solving a quadratic
optimization problem where the cost function is made of a set
of weighted tasks having as decision variables the acceleration
of the joint angles and of the floating base. We use the
following tasks as QP-control objectives:

- Control the position, velocity and acceleration of the
CoM;

- Control the contact forces (CoP Task);
- Control the chest to a defined orientation w.r.t the

orientations of the feet;
- Control the swing foot position speed and acceleration

during single support phases;
- Reach a defined joint configuration to account for redun-

dancy and singularities (Posture Task), with low task-
gains.

TABLE II: Chosen parameters for the MPC

∆t βz βż βu βu̇ β f Tc Tp

0.05 s 10 0.001 50 2 1000 1.5 s 10 s

Each of these tasks is formulated to set the acceleration of
a body, CoM or joints as in the form of the one defined in
Eq. (5). Those parameters (common to all robots) are listed in
Table III.

TABLE III: Tasks parameters

Tasks CoM CoP
Swing

Foot
Chest Posture

Weight 10000 106 5000 200 10

Kp 100 1 200 50 1

Kd 2
√

Kp 150 2
√

Kp 2
√

Kp 2
√

Kp

The experiments show the robustness of the proposed
method by making the robot walk on long distances, uneven
terrain (without any specific knowledge of it) and under
external disturbances provided by operator pushes. We finally
tested perturbations during a standing phase to trigger stepping
recovery.

All the plots are displayed in a frame linked to the robot
floating base such as: z is the vertical axis, the plane (z,y) is
the coronal plane and the plane (z,x) is the sagittal plane

At first, we tried to achieve the same walking conditions
for each humanoid robot. Nevertheless, due to some practical
aspects, this was not always possible. Most of the robots we
have are a bit old and we took care to not push them too
harshly. Also the HRP-4 is located in France whereas the
remaining are in Japan, where experiments in the campus are
more strictly regulated. For example, experiments on HRP-
4CR were only indoor and on rigid flat floor due to mechanical
weaknesses, all data for this robot are reported in [51] as it
served the ANA Avatar XPrize purpose exclusively. It was
possible to run experiments on the HRP-4 outdoor without
safety ropes, which is not yet technically possible in Japan.
Not all data are reported for each robot, we made a choice
that could have been different, yet the multimedia material
accompanying the paper is thorough enough to complement
the data.

A. Force control and model evaluation

Force control model evaluation is assessed on all the listed
humanoids. Figure 12 shows that the first order dynamic of the
ZMP with a delay is an appropriate estimation of the real ZMP
dynamics. To emphasize on the fact that we aim at modeling
the ZMP behavior, in order to make the robot HRP-2KAI,
HRP-5P and RHPS1 walk on a very compliant material (here a
mattress), we adjusted the 1st order response λ . For instancce,
even if the model response timing is very slow, we can keep the
control stable and the robots well balanced to execute dynamic
walks (see Sec. VII-D).

We also show in Fig. 13 how the measured disturbance from
the swing foot is used to enhance the pendulum trajectory
planning. The figure only shows the measured κ (defined in
Sec V-C) as it captures the vertical component of the distur-
bance which is the core component in our case. Moreover, the
value of ∆y′c depends on the absolute position of the robot in
the world frame.
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Fig. 12: ZMP model compared with robots’ measured ZMP when walking on rigid flat floors; model state is updated at a
sampling rate ∆t.
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Fig. 13: Measured disturbances during contact release. Around
100 N are still observed once the swing foot force control is
deactivated, resulting in a change of the pendulum dynamics.
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Fig. 14: Vertical force model compared with the real robots
measured one (left foot) while walking on a rigid flat ground.
Model state is updated at sampling rate ∆t.

Finally, we show in Fig. 14 that the vertical forces during
double support also matches the expected model, when the
model on the Fig. 14 is a constant value, the robot is in single
support so the vertical force is no longer controlled.

It must be noted that the measure on the HRP-4 force sensor
were imprecise due to a cross-talk between measured torque
and vertical forces impacting the ZMP measure in double
support. This coupling has been properly identified in single
support only and is countered by a corrective plug-in on the
sensor data.

B. Footsteps and steps timing adaptation

The Footsteps and steps timing adaptation is also assessed
on all the humanoid robots. We show in Fig. 15a, which
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(a) Forward (similarly observed for backward) push.

(b) Lateral (similarly observed for right or left) push.

Fig. 15: Depending on the disturbance direction, the step
duration plan is updated differently (these behaviors extend
to all grounds).

illustrates a recovery after a front push, how the planning
is updated in case of disturbances. In most cases, increasing
the step frequency and/or stepping in the direction of the
disturbance helps to recover. However, in some configurations,
the best solution is to increase the current or the next step
duration as there are no proper steps to help the balance as it
can be seen in Fig. 15b where a lateral disturbance induces a
slower double support duration to provide time to the DCM
to reach the next support foot.

C. Static push recovery

Among all listed humanoids robots, we created by hand
disturbances in a standing phase and used the condition defined
in Sec. VI-E to trigger a recovery step. To add safety margins,
the size of the allowed ZMP region is set to be smaller
than the real size of the robot foot, therefore a recovery
step can be triggered even if the robot can remain balanced
without stepping. The decision of the support foot is made
manually depending on the position of the DCM and the
contact configuration at the instant of the pushes. If the
disturbance is frontal, we choose the support foot which is
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the closest from the DCM. However if the disturbance is
lateral, the support foot is the one the furthest from DCM.
We defined a perturbation to be lateral or frontal depending
on which sides of the stability region has been broken. Recall
that once the necessity of stepping has been detected, we do
not forward any specific recovery footstep plan. The recovery
steps are completely decided w.r.t the feasibility region. The
limitation of this push recovery scheme depends mostly on the
intensity of the perturbation. Once a disturbance occurs, a step
is triggered, however, if the required steps to recover becomes
unfeasible because it they are too long or if their duration is too
short, the robot will certainly fall. In those cases, it becomes
necessary to introduce a variation of the angular momentum
in addition to the previous strategy or change the height of the
CoM (i.e, add vertical CoM acceleration). This comes down
to remove the hypothesis on the LIP mode to make the robot
dynamics closer to the complete centroidal model.

D. Walking on soft ground

This test has been conducted on HRP-2KAI, HRP-5P and
RHPS1. Walking on compliant terrain for bipedal robot is a
challenging task that showcases the need for the knowledge
of how the force are behaving w.r.t the controls inputs.

As an example, without our control scheme being active,
HRP-2KAI could not stand on the mattress by itself, even
when the robot was controlled to be rigid with the CoM
initially over the support area. For instance, a successful loco-
motion in such conditions has been already demonstrated using
a torque-controlled humanoid robot [52] on which the contact
compliance and feedforward force control is a considerable
plus in this kind of environment. Since our control method
is modeling the contact forces responses, in order to make
our robots walk on compliant terrain, one must adapt the
parameters that models the forces behavior. In our case, it
came down to adapt the 1st order parameter λ . The mattress
we chose is compliant, yet we made sure its deformation never
reaches a full compression once in double or single support,
this is to avoid a support meeting rigid ground conditions at
full compression.

The ZMP model is evaluated in Fig 16. As mentioned in
Sec. VII-A, walking on compliant floor mostly required to
adapt the ZMP model parameter λ . However we also needed
to adapt the FFDC Kz gain to have a more reactive vertical
force control. This update of Kz was done only for the HRP-
2KAI robot; it was changed from 0.0001 to 0.0002. Among
the available robots we experimented over a compliant ground,
all of them were position-controlled. However the HRP-2KAI
is equipped with an absorbing mechanism made of a rubber
bush between the foot and the ankle actuation. This difference
in mechanical design seems to have an effect on the foot
motion to control the desired force. HRP-2KAI feet motion
is much smoother in single support than the one on RHPS1
(that has a rigid link between its ankles and feet). This can
be seen at the joint level in Fig. 17 where we see that in
similar condition (environnement, stepping frequency, step
length, ZMP trajectory profile), RHPS1 feet oscillate whereas
HRP-2KAI ones is moving relatively smoothly.
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Fig. 16: ZMP model compared with robots’ measured ZMP
when walking on soft grounds, model state is updated at
sampling rate ∆t.

E. Walking outdoors

Outdoor experiments are made with HRP-4 and HRP-2KAI
as it can be seen on Fig. 1. Walking on outdoors terrains
showcases the necessity of compliance for the force control.
This is because even for outdoor terrains that are nearly flat,
they have non negligible local roughness. Additionally, some
terrains on which the robots walked have a pseudo-compliant
behavior due to the grass or the dirt. This allows us to display
the capability to adapt the force behavior model to various
conditions. The ZMP model evaluation on such terrain is
displayed in Fig 18. The multimedia material attached to this
paper shows the compliance of the contact feet on the terrain.
Moreover, this kind of terrain are uneven with various local
slopes. When this slope has a positive angle, the walking
control is not much affected as the early contact can be
detected with the forces measurement. However, in the case
of a downward slope, the lack of knowledge of the contact
location can lead to enable the force control of the landing
foot in the air inducing potentially a disturbance. In our used
force control scheme, FFDC can accommodate for this kind
of false positive contact, as it will keep moving the feet down
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Fig. 17: On similar compliant ground with similar walking,
feet spring damper reduces oscillation in single support.

until force is measured. In that objective, the FFDC Kz gain
is increased on the HRP-4 for this experiment from 0.0001 to
0.00015. This works if the real contact remains close from the
feet. In practice, poor contact detection is the main reason of
few outdoor experiments failure.

It should be noted that in both case, the wind was very
strong and added non-negligible perturbations. This is notice-
able from the multimedia for the HRP-2KAI. For the HRP-4,
between the starting and ending experiments, the grass was
cut and sometime strong perturbations occur when steeping
on apparent thick roots.

VIII. CONCLUSION

In this paper, we presented a new walking control scheme
for bipedal robots that can adjust steps location and duration.
This novel aspect of this control scheme is in the use of a
LIPM’s model MPC in closed-loop on the real robot pendulum
state (CoM, CoM velocity and ZMP) and does not necessitate
a side stabilizer module. Finally, we presented a method to
control the feet contact forces accordingly to the expected
MPC computation. This scheme has been tested on five
different humanoid robots on various grounds and scenarios
to showcase its versatility and robustness.
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Fig. 18: ZMP model compared with the real robots ZMP
walking outdoors, model state is updated at a sampling rate
∆t.

We aimed to have as few parameters as possible and to
provide a guideline to tune them. However, even if these
parameters are mainly robot-dependent, they also depend on
the mechanics nature of the ground the robot is walking on.
In fact, our experiments revealed that it could be possible to
enhance further the robustness and the plug-and-walk aspect
of such a control scheme to estimate some of the parameter
online or at least autonomously during a calibration process,
this is part of our shortcoming future work. This seems to
be possible as some of the parameters represent a model
we try to fit and we can observe. Moreover, the 1st order
model for ZMP dynamics can be retrieved by modeling
the floor with a spring damping dynamics under the force
control scheme we detailed in Eq. (6), however the general
dynamics reflects rather a 2nd order behavior which require an
appropriate estimation of the ZMP velocity. We have also tried
to make the HRP-4 robot to walk on river pebbles outdoors,
but the controller failed in all trials. One of the cause is the
flatness and rigidity of the soles; the other is clearly the lack
of proper handling of the momentum. As future work, we
are currently investigating enhancing our controller with full
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centroidal dynamics and redesigning the soles, as extensions
of [53] with compliant material to better cast the grounds
at contacts. All these aspects are somewhat interconnected,
understanding such dependencies is paramount to reach the
plug-and-walk initiative we are aiming for. As stated in Sec. II,
our team is also working toward a pure machine-learning
approach for walking, we are convinced that robust walking
would emerge from a neat hybridization that takes full benefit
of both approaches.

APPENDIX
PROOF OF THE THEOREM

We suppose here that N̄ and O(t) is respectively a Nv× 2
matrix and a Nv×1 row vector such that the ZMP constraints
∀t ∈ [t0;∞] is a Nv vertices convex polygon (with possibly
multiple vertices at the same position). Without loss of gen-
erality we can assume that the normals N̄ are all distinct and
that N̄ and O(t) are such that, at any time t, two consecutive
constraints intersect at one vertex of the polygon (the first
constraint is considered as the successor of the last one).

To prove the necessity, we note n̄x,i and n̄y,i respectively the
1st and 2nd element of the ith row of N̄ and oi(t) the value
of the ith row of O(t). Therefore, the ZMP constraint can be
written for each row i and gives:

n̄x,ixz(t)+ n̄y,iyz(t)≤ oi(t) (54)

multiplying each side by e−ω(t−t0) and integrating on [t0;∞]:

n̄x,i
∫

∞

t0 xz(τ)e−ω(τ−t0)dτ + n̄y,i
∫

∞

t0 yz(τ)e−ω(τ−t0)dτ ≤ ∫ ∞

t0 oi(τ)e−ω(τ−t0)dτ

(55)
using the definition of the stability condition of Eq. (4):

n̄x,ix0
u + n̄y,iy0

u ≤
∫

∞

t0
oi(τ)e−ω(τ−t0)dτ (56)

This result holding for each row i, the last equation can be
summarized as in Eq. (43) which proves the necessity.

We note vz, j(t) the 2D coordinate of the jth vertex of the
ZMP constraint polygon ∀t ∈ [t0;∞] and j∈ [1;Nv]. We note N̄ j
and Oz, j(t) respectively the 2×2 square matrix and the 2×1
row vector that represent 2 consecutive constraints crossing
vz, j(t). N̄ j is then a matrix made out of two rows of N̄ and
Oz, j(t) is made out of two terms of O(t). We can then write:

vz, j(t) = N̄−1
j Oz, j(t) (57)

Let Ou be (from Eq. (43)):

Ou = ω

∫
∞

t0
O(τ)e−ω(τ−t0) dτ (58)

and let E be the convex set of initial DCM positions p0
u such

that Eq. (43) is true, i.e., N̄p0
u ≤Ou and Z the set of the ZMP

trajectories such that ∀t ∈ [t0;∞], N̄pz(t)≤ O(t)

Lemma. Z is a convex set

Proof. let pz,1 and pz,2 two elements of Z and γ ∈ [0;1].

∀t ∈ [t0;∞], N̄(γpz,1(t)+(1− γ)pz,2(t))≤ γO(t)+(1− γ)O(t)
(59)

Any convex combination of pz,1 and pz,2 then belongs to Z
hence the convexity.

We extract Ou, j from Ou similarly to the definition of
Oz, j and we compute vu, j the vertices of the convex polygon
representing E.

vu, j = N̄−1
j Ou, j (60)

vu, j = ω

∫
∞

t0
N̄−1

j Oz, j(τ)e−ω(τ−t0) dτ (61)

vu, j = ω

∫
∞

t0
vz, j(τ)e−ω(τ−t0) dτ (62)

To prove the sufficiency, let p0
u ∈ E. E being convex, we

can write p0
u as a convex combination of the feasibility region

vertices such as:

p0
u =

Nv

∑
j=1

γ jvu, j (63)

where ∀ j ∈ [[1;Nv]], γ j ∈ [0,1] and ∑
Nv
j=1 γ j = 1. We must now

find one ZMP trajectory pz(t) ∈ Z such that the initial DCM
that respect the stability condition in Eq. (4) is p0

u.
We consider the particular following ZMP trajectory
∀t ∈ [t0;∞]

pz(t) =
Nv

∑
j=1

γ jvz, j(t) (64)

This trajectory satisfies the ZMP constraints as it is a
convex combination of the extreme trajectories made out of
the vertices of each ZMP constraint polygon. To check if p0

u
satisfies the stability condition with the ZMP trajectory pz(t),
we use Eq. (4) with Eq. (64):

ω

∫
∞

t0
eω(τ−t0)

Nv

∑
j=1

γ jvz, j(τ)dτ = ω

Nv

∑
j=1

γ j

∫
∞

t0
eω(τ−t0)vz, j(τ)dτ

(65)
Using now Eq. (62) and Eq. (63):

Nv

∑
j=1

γ jω

∫
∞

t0
eω(τ−t0)vz, j(τ)dτ =

Nv

∑
j=1

γ jvu, j = p0
u (66)

Which proves sufficiency, hence the equivalence. Q.E.D.
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“Dynamic walking on compliant and uneven terrain using dcm and
passivity-based whole-body control,” in IEEE-RAS International Con-
ference on Humanoid Robots, 2019, pp. 25–32.

[53] A. Pajon, S. Caron, G. De Magistri, S. Miossec, and A. Kheddar,
“Walking on gravel with soft soles using linear inverted pendulum
tracking and reaction force distribution,” in IEEE-RAS 17th International
Conference on Humanoid Robotics, 2017, pp. 432–437.


