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Abstract
When two Bose–Einstein condensates—labelled 1 and 2—overlap spatially, the equilibrium state of
the system depends on the miscibility criterion for the two fluids. Here, we theoretically focus on
the non-miscible regime in two spatial dimensions and explore the properties of the localized wave
packet formed by the minority component 2 when immersed in an infinite bath formed by
component 1. We address the zero-temperature regime and describe the two-fluid system by
coupled classical field equations. We show that such a wave packet exists only for an atom number
N2 above a threshold value corresponding to the Townes soliton state. We identify the regimes
where this localized state can be described by an effective single-field equation up to the droplet
case, where component 2 behaves like an incompressible fluid. We study the near-equilibrium
dynamics of the coupled fluids, which reveals specific parameter ranges for the existence of
localized excitation modes.

1. Introduction

Mixtures of quantum fluids display novel phenomenology as compared to the single-component case,
through the emergence of collective degrees-of-freedom [1, 2]. In this perspective, ultracold atomic gases
have opened a new path for the investigation of such many-body problems, especially thanks to the precise
control of interactions [3–9]. In the case of miscible Bose mixtures with two spin components, the dispersion
relations of density and spin linear excitations have been studied experimentally [10, 11], as well as the
nonlinear excitations known as magnetic solitons [12, 13]. The superfluid character of the spin degree of
freedom was also demonstrated by observing undamped spin-dipole oscillations [14] and by moving a
magnetic obstacle [15] in such a mixture. Moreover, it has been shown that a coherent coupling between the
two components—with or without momentum transfer—can modify the bare dispersion relations in a
controlled manner [11], induce spin–orbit coupling to produce a variety of quantum phases [16], and trigger
dynamical instabilities [17].

Even when each isolated component is stable, an instability can occur in a binary mixture when the
interaction between the two components is attractive and set above a certain threshold. Close to this
threshold, the balance between the dominant energy contributions can lead to subtle phases. For instance, it
was predicted in [18] that a mixture of repulsive quantum gases in three dimensions (3D) with finely-tuned
mutual attraction may lead to self-bound states stabilized by quantum fluctuations. This novel state of
matter, known as a quantum droplet, was realized experimentally in [19, 20], and the link between these 3D
droplets and 1D solitons was clarified in [21]. Interestingly, the role of quantum fluctuations is known to be
enhanced in low dimensions, resulting in quantum droplet states with properties distinct from the 3D case,
both at equilibrium [22] and close to equilibrium [23].

In a different range of parameters, mutually repulsive fluids may experience phase separation, similarly to
solutions of Helium 3 in Helium 4 at low temperatures [24] or, more prosaically, in a combination of oil and
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Figure 1. Equilibrium state of a 2D minority superfluid component immersed in a bath. (a) Sketch of the interactions in the
mixture, with the intra-component couplings g11, g22 and the inter-component coupling g12. Here, we consider the immiscible
regime g12 >

√
g11g22. (b) Two-dimensional density profile of the minority component form1 = m2, g11 = g22 and N/NT = 1.5,

where NT ≡ 5.85/|ge| is the atom number at which the Townes soliton exists and ge = g22 − g212/g11. (c) Density cuts through the
centre of both components for the same parameters as in (b). At a large distance from the centre, the bath density takes the
asymptotic value n∞.

water. This demixing dynamical instability was also characterized using Bose mixtures [25, 26]. In the regime
of strong population imbalance, it was realized early that the dynamics of immiscible mixtures may mimic
that of a single closed equation for the minority component [27, 28]. Recently, this mapping was leveraged
for the deterministic realization of Townes solitons in a 2D Bose mixture [29], by making judicious use of the
almost coincidence of the various interaction strengths (see also [30] for another preparation protocol of the
Townes soliton with matter waves and [31] for a general review). This approach was also put forward for the
realization of other exotic nonlinear excitations, such as Peregrine solitons [32] or dark–bright soliton trains
[33].

In this work, we consider a two-component Bose gas and study localized wave packets of one (minority)
component surrounded by a 2D bath of atoms in the other component, see figure 1. In section 2, we focus on
the stationary states of the system. We show that when the atom number in the minority component
increases above a threshold value NT, a cross-over transition occurs from a steady-state with a solitonic
character (the Townes soliton) to a droplet-like state. Then, in section 3, we explore the excitation spectrum
of these localized states throughout the crossover. In particular, we show the existence of a given range of
atom numbers (1.45≲ N/NT ≲ 3.5) where no localized excitation exist. Finally, we discuss in section 4 some
possible extensions of this work.

2. Phase diagram

2.1. The two-component system
We consider the ground state of a 2D Bose mixture made of two components, labelled |1⟩ and |2⟩ with mass
m1,2, and with short-ranged interactions. We use a classical field description of the two components with the
two order parameters ψ1,2(r, t). Both intra-species and inter-species interactions are assumed to be repulsive,
gij > 0 where i, j= 1,2. In practice, a planar gas is obtained using a strong confinement along z. We consider
here the quasi-2D situation where the thickness ℓz is larger than the scattering lengths aij. In such a situation,
the classical field approach is valid when (n3Da3ij)

1/2 ≪ 1, where n3D is the maximal 3D density of the gas.
This hypothesis of negligible beyond-mean-field (BMF) contributions was well satisfied in the experiment
reported in [29].

The evolution of ψ1,2 is given by the set of coupled nonlinear Schrödinger equations (NLSEs){
i∂tψ1 =− 1

2m1
∇2ψ1 +

(
g11|ψ1|2 + g12|ψ2|2

)
ψ1

i∂tψ2 =− 1
2m2

∇2ψ2 +
(
g22|ψ2|2 + g12|ψ1|2

)
ψ2,

(1)

where |ψi|2 ≡ ni is the 2D atomic density in component |i⟩ (we set ℏ= 1). In this work, we look for
configurations such that component |2⟩—theminority component—contains a finite number of atoms,
N=
´
|ψ2|2 d2r, and is localized within the other component |1⟩—the bath—which extends to infinity with

the asymptotic density n∞.
The steady-state of the two-component system is obtained by solving numerically the set of equations (1)

for ψi(r, t) = e−iµitϕi(r), where µ1,2 are the chemical potentials of each component. Away from the region
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Figure 2. (a) Phase diagram of localized states of the minority component. From light to dark blue, one goes from the
weak-depletion regime (in which the minority component profile is close to a Townes soliton) to the strong-depletion regime (the
central density of the minority component approaches n∞). (b) Radial density profiles n2(r) = |ψ2(r)|2 for selected values of
N/NT = 1.01 (α), 1.5 (β), 10 (γ), corresponding to µ/µ1 ≡ (µ2 − g12n∞)/µ1 =−7.15× 10−5,−2.48× 10−3,−7.62× 10−3,
respectively. Distances are given in units of the interpenetration length of the immiscible mixture ξs. (c) Central density as a
function of N/NT (inset: same axes with a different range). (d) RMS size σ as a function of N/NT. In (b)–(d), blue solid lines are
obtained from the coupled two-component equations (see equation (1)) with g12 = 1.01

√
g11g22 , the green lines correspond to

the weak-depletion model of equation (5) and the red lines refer to the effective single-component model of equation (7). All
profiles are calculated form1 = m2 and g11 = g22.

where the minority component is localized, the density of the bath brings the energy scale µ1 = g11n∞ and
the corresponding length scale (healing length) ξ = 1/

√
2m1g11n∞. In practice, we perform an imaginary

time evolution for given n∞ and N2, from which we determine µ2. The resulting phase diagram and a few
examples of steady-state density profiles are given in figures 2(a) and (b). Before commenting on them, we
discuss hereafter various approaches that allow to draw simple physical pictures for this binary mixture.

2.2. The Townes soliton thresholdNT
When the bath energy scale µ1 largely exceeds all energy scales governing the minority component dynamics,
it is possible to derive a closed equation for the minority component only. This situation is realized when the
density of the minority component n2 is everywhere much smaller than the bath density n1, corresponding
to a weak depletion of the bath. Under these conditions, atoms in the minority component get dressed by the
bath, which induces an additional effective interaction between atoms in state |2⟩ [34]. Using Bogoliubov’s
approach in 2D and form2 ≫m1, we show in appendix A that this mediated interaction is described by the
potential

U(r) =− 2

π
g 212n∞K0

(
r√
2ξ

)
, (2)

where K0 is the zeroth-order modified Bessel function of the first kind, with asymptotic behaviour
K0(r)∼ e−r/

√
r when r→+∞. This expression is analogous to the Yukawa potential which arises in a 3D

geometry [1, 35, 36]. Remarkably, these mediated interactions are always attractive—whatever the sign of
g12—and their range is given by the bath healing length ξ. The same conclusion holds when the massesm1,2

are comparable, although the mediated interaction has a more complicated structure in this case (see
appendix A and [37, 38]).

When any characteristic length of the minority component is much larger than ξ, we can adopt a
zero-range description for the mediated interactions. The effective coupling strength, obtained by summing
the bare interaction coupling strength g and the mediated one, is then independent of the ratiom2/m1 and is
given by (see appendix A)

ge = g22 −
g212
g11
. (3)

In this limit, the minority component time evolution can thus be approximated—at least for short times—by
the following single-component NLSE (up to a constant energy contribution)

i∂tψ2 =− 1

2m2
∇2ψ2 + ge|ψ2|2ψ2. (4)

We deduce that, in this weak-depletion regime, the existence of stationary localized states for component |2⟩
requires effective attractive interactions, i.e. ge < 0. This last condition is equivalent to the criterion for the
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immiscibility g12 > g≡√
g11g22 of the binary mixture. The weakly-depleted state is thus a precursor to an

actual phase separation situation.
Equation (4) is known to host the so-called Townes soliton [31, 39, 40]. Mathematically, this soliton is

the unique radially symmetric, real and node-less solution of the stationary version of equation (4). It exists
only when the atom number in the minority component N equals the critical value NT ≡ GT/|ge| with
GT ≃ 5.85. When this condition is satisfied, the Townes soliton can be formed with any size, a direct
consequence of the scale invariance of equation (4) which does not feature any explicit length scale [41].
Formally, the soliton size is set by an effective chemical potential µ< 0 associated to the stationary solution
ψ2(r, t) = e−iµtϕ2(r) of equation (4) with µ= µ2 − g12n∞. The upper limit µ= 0 is obtained in the case of
small depletion, i.e. n2 ≪ n1 ≈ n∞ everywhere. The validity of the single-component description of
equation (4) was demonstrated experimentally in [29] in this limit.

2.3. The weak-depletion limit
The scale invariance of equation (4) results from the assumption that the size ℓ of the minority component is
large compared to the bath healing length ξ, which provides the range of the mediated interaction. The
first-order correction to this assumption adds a weak nonlocal nonlinearity to equation (4), which explicitly
breaks scale invariance and leads to the modified NLSE (see appendix B)

i∂tψ2 =− 1

2m2
∇2ψ2 + ge|ψ2|2ψ2 +β

(
∇2|ψ2|2

)
ψ2, (5)

with β =−(g12/g11)2/(4m1n∞). This correction remains small in front of the two dominant terms as long as
m2|β|n2 ≪ 1 and ℓ≫ ξs where ξs = (g12/g11)/

√
2m1|ge|n∞ represents the interpenetration length—or ‘spin’

healing length—of the immiscible mixture.
Equation (5) was studied extensively in [42]. The steady state associated with this equation results from

the balance between three energetic contributions: (a) the kinetic energy per particle 1/m2ℓ
2, (b) the main

part of the interaction energy−N/(NTm2ℓ
2) that balances kinetic energy irrespective of ℓ for N= NT, and

(c) the correction−βN/ℓ4 originating from the extra term in equation (5) in comparison with equation (4).
For 0< ϵ≡ (N−NT)/NT ≪ 1, this balance is achieved for ℓ2 ∼m2|β|N/ϵ and |µ| ∼ 1/m2ℓ

2. The extension
of these states thus becomes very large when ε→ 0, i.e. N→ N+

T , and their density profile approaches the
Townes soliton solution of equation (4). More quantitatively, it is shown in [42] that

N≈ NT

(
1+ 5.43m2ξ

2
s |µ|

)
. (6)

Localized states of equation (5) exist for any N> NT, by contrast to equation (4) that requires N= NT.
When N is close to NT, we recover with this simple approach the phase diagram of figure 2(a) as well as the
density profiles calculated numerically using equation (1) (figure 2, case α). For larger N/NT (figure 2, cases
β and γ), the validity condition ℓ≫ ξs breaks down, the solution of equation (5) is notably different from
the result derived from equation (1), and is therefore not relevant for our problem.

2.4. The strong-depletion limit
When the atom number of the minority component N becomes much larger than NT, the central density of
this component grows to n̄2 = n∞

√
g11/g22 and the bath is locally fully depleted, see figure 2(b), case γ, and

figure 2(c). In this phase-separated regime, the pressures giin2i /2 in the two components are equal [1, 2], and
component |2⟩ fills approximately uniformly a disk of radius R such that N≃ πR2n̄2. It thus forms an
effective droplet similar to an incompressible fluid of fixed density, although this density is not intrinsic but
imposed by the surrounding medium. In the general case, no simple approach is available to describe this
regime and one should solve equation (1). Nevertheless, we show in the next paragraph that, close to the
SU(2)-symmetry point, the system’s equilibrium state can still be described by a single-component equation.

2.5. The vicinity of SU(2) symmetry
We assume in this paragraph equal massesm1 =m2 ≡m. The interactions are said to be SU(2) symmetric
when all interaction parameters g ij are equal. Close to this point, i.e. when g12 → g+, the stationary state of
the mixture in the N> NT case can be determined by solving the single-component effective equation [29]

µψ2 =− 1

2m
∇2ψ2 + ge|ψ2|2ψ2 +

1

2m

∇2
√

n∞ − |ψ2|2√
n∞ − |ψ2|2

ψ2. (7)

The data in figures 2(b) and (c) have been calculated for this regime of nearby coupling constants
(g12 = 1.01g). They show that the predictions derived from equation (7) accurately describe the equilibrium
profiles, from the weak to the full depletion regime.
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The comparison of the validity ranges for equation (7) and for the stationary version of equation (5) is
instructive: both equations coincide when |ψ2|2 ≪ n∞ and g12 ≈ g (figure 2(b), case α). Beyond this
common validity domain, equation (5) allows one to address the case where g12 differs notably from g,
whereas equation (7) is valid for arbitrary depletions, hence arbitrary values of N/NT. Finally we note that
one should refrain from using in the general case a time-dependent version of equation (7), which would be
obtained by replacing the left-hand-side µψ2 by i∂tψ2. Indeed, in the strong-depletion regime, there is no
hierarchy between the time scales for the minority component and for the bath. Therefore, it is not possible
to eliminate the bath dynamics and obtain a time-dependent equation for ψ2 involving only a first-order
time derivative.

Another remarkable situation which occurs in this SU(2) limit is the 1D dark–bright soliton, introduced
by Manakov [43] and transposed by Busch and Anglin for a binary mixture of Bose gases [44]. There, the
majority component wavefunction exhibits a phase jump, akin to a dark soliton around which the minority
component accumulates. The first observations of such solitons with cold atoms were reported in [45, 46]. In
a 2D configuration, the equivalent situation would correspond to a vortex texture in the majority component
with its core filled by the minority one. This ‘vortex-bright’ soliton [47, 48] is notably different from the
stationary states explored in this article where each component exhibits a uniform phase.

3. Excitation spectrum

We now turn to the dynamics of the localized component, restricting for simplicity to close-to-equilibrium
phenomena. This problem goes by essence beyond the Townes soliton physics. Indeed it is known that the
Townes soliton associated to equation (4) does not possess any localized mode with non-zero frequency [49].
More dramatically, some arbitrarily small deformations, such as the multiplication by a phase factor eiαr

2

with α→ 0, may lead to a collapse of the soliton.
For the two-component system of interest here, a natural approach to determine its excitation spectrum

is provided by the Bogoliubov method applied to the coupled equations (1). This procedure is outlined in
appendix C and the results are indicated with full lines in figures 3(a) and (b). Note that we focus here on
localized modes, i.e. Bogoliubov modal functions ui(r),vi(r) that decay exponentially to zero for r→∞. We
show in appendix C that this constraint corresponds to a mode frequency ω smaller than the continuum set
by |µ|, where µ is the effective chemical potential introduced above. We now discuss the results for the
various relevant regimes. We consider simple approaches for the limiting cases of weak and strong depletion
of the bath and also investigate the intermediate regime of self-evaporation, corresponding to the absence of
localized excitations. For simplicity, we restrict in this section to the case of equal massesm1 =m2 ≡m and
equal intracoupling constants g11 = g22 = g.

3.1. Weak-depletion regime and breathing mode
In the weak-depletion regime, we expect from the results of the previous section that the dynamics of the
minority component is well captured by equation (5), which takes into account the first-order corrections
originating from the two-component nature of our system. Quite remarkably, the instability inherent to
equation (4) does not occur for equation (5). Indeed, it was shown in [42] that the stationary solutions of
equation (5) are dynamically stable. Moreover, these solutions can sustain a breathing mode, i.e. an
oscillation of the system’s overall size, for any N/NT > 1. This breathing mode is the only localized mode
present for equation (5). It may slowly decay (in a non-exponential way) because of nonlinear couplings with
excitations in the continuum [50]. Its frequency ω0 can be obtained through perturbation theory for small
|µ|’s [42]

ω0 = 0.95ω∗ (N/NT − 1)3/2 , (8)

with ω∗ = (g/g12)2|ge|n∞. This prediction is shown in figure 3(a) (dotted line). In the limit of small
depletion (typically up to N/NT < 1.05), it matches well the results of the Bogoliubov analysis. For larger
depletions, equation (8) fails reproducing our results. This was expected since the stationary density profile
predicted by equation (5) differs significantly from the exact one in this case.

An upper bound for the breathing mode frequency can be obtained via sum rules [2]. This general
approach is known to provide accurate estimates of the excitation spectrum for superfluid binary mixtures
[5]. As detailed in appendix D, a relevant sum rule is obtained by looking at the static response of the
minority component to a loose harmonic potential (energy weighted sum rule). We also show the result
obtained by this method in figure 3(a).
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Figure 3. Frequencies of localized modes with azimuthal number s, form1 = m2 and for nearby interaction parameters, here
g12 = 1.01g. The solid lines in (a), (b) show the predictions of the Bogoliubov approach for the two coupled equations (1).
(a) Breathing mode s= 0. The dotted blue line gives the perturbative limit of equation (8). The inset (same axis) shows that this
limit is approached as N→ N+

T . (b) Surface modes s ⩾ 2. The dotted lines show the hydrodynamic prediction of equation (9), see
(c) for the colour code. In (a) (resp.(b)) the dash-dotted line shows the sum-rule prediction for s= 0 (resp. s= 2), while the
dashed grey line indicates the limit for localized excitations ωs = |µ|. There are no localized modes in the grey-shaded regions of
(a) and (b).

3.2. Strong-depletion regime and surface modes
For sufficiently large atom numbers, i.e. in the droplet regime corresponding to an almost full depletion of
the bath, the two-component Bogoliubov analysis shows that there exist localized modes different from the
breathing mode (solid lines in figure 3(b)). More precisely, a quadrupole mode (azimuthal number s= 2)
detaches from the continuum for N/NT ≳ 3.5, see figure 3(b), and other modes with larger values of s
emerge for even larger values of N/NT. We find that the localization for a mode of azimuthal number s ∈ N
(see figure 3(c)) approximately occurs when the perimeter of the domain equals s times the spin healing
length ξs, which suggests an interpretation in terms of surface deformations, also called ripplons.

Such ripplons are well known from 3D incompressible hydrodynamics [51]. For a two-dimensional
system, surface excitations of an incompressible circular bubble of radius R oscillate with an angular
frequency ωs given by (see e.g. [52])

ωs =

√
T

(m1 +m2)n∞R3
s(s− 1)(s+ 1). (9)

Equation (9) features a linear tension coefficient T , which has a simple expression in the limit of nearby
interaction parameters and equal massesm1 =m2 ≡m (see e.g. [53, 54])

T ≃ 1

2
√
m

√
|ge| n3/2∞ . (10)

In the short-wavelength limit, one retrieves the dispersion relation∝ k3/2 with wave number k= s/R
expected for a linear (not-curved) interface subject to capillary waves [54]. In figure 3(b), we show that the
surface mode frequencies estimated using equation (9) asymptotically approach the frequencies obtained for
large N/NT from the two-component Bogoliubov approach.

3.3. The intermediate regime: self-evaporation
For our choice of nearby interaction parameters, we found that the steady-states comprised in the range
1.45≲ N/NT ≲ 3.5 do not possess any localized excitation mode. Therefore, in this regime, any perturbation
from equilibrium leads to the emission of mass to infinity, a dissipation mechanism known as
self-evaporation. This situation is reminiscent of the spectrum of quantum droplets stabilized by BMF effects
[18, 55, 56], as well as of giant resonances observed in nuclear physics [57].

As discussed in [55], self-evaporation is not the dominant dissipation mechanism for BMF droplets,
because of the prevalence of three-body losses in these large density systems. In contrast, for the
two-component mixture considered here, the density of the localized component and thus the three-body
loss rate can be tuned through the bath density. For a low-enough density, self-evaporation can then play a
relevant role in the damping of the excitations of the system. It could be evaluated either solving explicitly the
time-dependent NLSE (1) or the extended RPA-Bogoliubov approach accounting for the coupling to the
continuum (see e.g. [58]).

6
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4. Conclusions and perspectives

We have presented in this article a mean-field study of the crossover from a solitonic to a droplet-like
behaviour in a 2D immiscible Bose mixture. We have determined both the steady-state of the system and its
dynamics resulting from a small deviation from equilibrium. We have also proposed simple models that have
allowed us to interpret the results obtained in the different limiting regimes.

Regarding the weak-depletion regime, we have shown in equations (5) and (8) that the interaction
mediated by the bath leads to a breaking of the scale invariance of the Townes soliton when its finite range is
taken into account. The experimental observation of this emergent length scale should provide a way to
discriminate between the scenario studied here and BMF effects, i.e. quantum fluctuations, that also provide
a mechanism for the stabilization of the minority component wave packet.

The study of the excitation spectrum of the system has revealed the existence of an interval for atom
number (1.45≲ N/NT ≲ 3.5) over which no localized mode exists. This opens the possibility to study the
intriguing phenomenon of self-evaporation, in a low-density regime for which other decay mechanisms may
be minimized.

Other future directions of study include the setting in motion of the localized component [59, 60], its
link to superfluidity, and the emergence of a roton mode due to a capillary instability [61]. Further
clarification on the role of quantum fluctuations close to the miscibility threshold and its influence on the
soliton formation may also provide additional interest, as recently discussed for immiscible mixtures in other
configurations [62].
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Appendix A. The two-body problem inside a BEC

We consider here two impurity atoms immersed in a 3D or 2D uniform BEC (see figure A1), and we derive at
the lowest relevant order the expression of their effective interaction due to their coupling to the bath. The
study of the coupling between one impurity and a bath formed by a BEC, the so-called Bose polaron, is a
well-documented problem, see [64] and references in. The interaction between two Bose polarons was
recently addressed in [36–38]. We will thus keep our treatment quite brief, and focus on the specificity of the
problem addressed in this article.

A.1. Yukawa potential for fixed impurities
We first consider two impurities of infinite mass located in Ra and Rb. They interact with the N1 atoms of the
bath by the contact interaction V= g12

∑N1

i=1

∑
j=a,b δ(ri −Rj). Using the second-quantized formalism for

the bath variables, this interaction reads V= Va +Vb with

Vj =
g12
Ω

∑
k,k ′

a†k ′ak e
i(k−k ′)·Rj . (11)

Here ak annihilates a particle of the bath with momentum k and Ω denotes the volume (resp. area) of the
bath in the 3D (resp. 2D) case.

We assume that the bath is prepared in the T= 0, fully condensed state of density n∞ = N1/Ω, denoted
hereafter |Φ0⟩ with energy E0, and that its excitations can be described by the Bogoliubov approach. More
precisely, we introduce for each momentum k ̸= 0 the Bogoliubov operators bk, b

†
k which diagonalize the

bath Hamiltonian such that

ak = ukbk+ vkb
†
−k, (12)

7
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Figure A1.Model studied in appendix A. Two impurities located inside a bath formed by a Bose–Einstein condensate interact
by a potential U(r) created by the emission and the absorption of virtual quasi-particles in the bath.

where uk, vk are given by [1, 2]

uk,vk =±

(
k2 + 2m1g11

2k
√

k2 + 4m1g11
± 1

2

)1/2

(13)

(as in the main text, we set ℏ= 1). We can then rewrite the operators V j introduced above as
Vj ≈ g12n∞ +V ′

j with

V ′
j =

g12
√
n∞√
Ω

∑
k ̸=0

(uk + vk)
(
b†k + b−k

)
e−ik·Rj , (14)

which is the Fröhlich Hamiltonian in a BEC [64].
We are interested here in the energy shift of the system that depends on the distance Rab between the

particles, and that we will interpret as an effective potential energy between the two impurities. Treating V by
perturbation theory, the shift of the ground state energy originating from the V ′

j ’s is up to second order in g12
(see [38] for a systematic expansion starting from equation (11)):

∆E= 2g12n∞ −
∑
α ̸=0

|⟨Φα|V ′
a +V ′

b|Φ0⟩|2

Eα − E0
. (15)

The first contribution is simply the mean-field interaction of each impurity with the BEC. In the second
contribution, the sum runs over all excited states |Φα⟩ of the bath. Here, only states with a single excitation k
contribute and we find for the Rab dependent part of∆E:

U(Rab) =−2g212n∞
Ω

∑
k ̸=0

(uk + vk)2

ωk
eik·(Ra−Rb). (16)

where ωk = [ϵk (ϵk + 2g11n∞)]
1/2 stands for the Bogoliubov dispersion relation of the bath. Note that there

are also contributions to∆E that do not depend on Rab and that correspond to the self-energy of each
polaron [64].

We now turn the discrete sum over k into a D-dimensional integral (the fact that the k= 0 contribution
is missing in the sum of equation (16) does not play any role for our discussion). We find

U(Rab) =−2g212n∞
(2π)D

ˆ
eik·(Ra−Rb)

ϵk + 2g11n∞
dDk, (17)

i.e. the Fourier transform of a Lorentzian function. It is equal to a Yukawa potential in 3D and to the
potential given at equation (2) in the main text in 2D, with in both cases a range of the order of the bath
healing length ξ = 1/

√
2m1g11n∞. In practice, a quasi-2D gas is obtained by starting with a 3D gas and

adding a strong confinement along the third direction, with a residual thickness ℓz of the gas. The 2D version
of equation (17) then holds when the distance Rab is large compared to ℓz.

A.2. Effective interaction for finite-mass impurities
When the mass of the impuritiesm2 is comparable to the mass of the bath particlesm1, the kinetic energy of
the impurities has to be taken into account in the calculation of the energy shift∆E. Suppose for example

8
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that the two impurities are prepared in a state of well-defined momenta |pa,pb⟩. For bosonic impurities, a
calculation similar to the one given above leads to the second-order energy shift [38]

U(pa,pb) =−g212n∞
Ω

(
1

ωk +∆
+

1

ωk −∆

)
(uk + vk)

2 (18)

where we have set k= |pa − pb| and∆= (p2b − p2a)/2m2. Note that as in equation (16), we omitted the
self-energy terms which do not play any role in the present work. We recover the Lorentzian momentum
dependence of equations (16) and (17) either if we take the limitm2 →∞ or, for an arbitrary value of
m2/m1, in the case of a zero centre-of-mass momentum pb =−pa [38]. An equivalent, alternative approach
consists in calculating at second order in g12 the scattering amplitude for the collision of two impurities with
momenta pa,pb in the presence of the bath [37].

A.3. Born approximation for the mediated interaction
For low-temperature gases, it is common to replace the ‘true’ interaction by a (regularized) contact
interaction gmed δ(R), where gmed is obtained by taking the zero-energy limit of the scattering amplitude. In
this limit, the contribution∆ in equation (18), which is quadratic with respect to momenta pa,b, is negligible
in front of ωk which varies linearly with k. We can then use the result (17) obtained for fixed impurities and
get:

gmed =

ˆ
U(R) dDR=−g212

g11
, (19)

which is the result used in equation (3).
In the 3D case or for the quasi-2D situation where ℓz ≫ aij, the validity of the Born approximation used

here requires the scattering length amed associated to the mediated interaction to be much smaller than its

range (here ξ). Away from a scattering resonance and for g12 ∼ g11, the scattering length for− g212
g11
δ(r) is

comparable to the van der Waals length, which is indeed much smaller than ξ for a weakly interacting gas.

Appendix B. Adiabatic elimination of the bath field

Here we consider the two coupled equations (1) for the classical fields ψ1,2 and we explain how they can be
simplified into equation (5) involving only the minority component, when the density n2 = |ψ2|2 is
everywhere small compared to the asymptotic bath density n∞.

We recall that the stationary solution of the equation for the bath field ψ1 in the absence of the minority
component (ψ2 = 0) reads ψ1(r, t) =

√
n∞ e−iµ1t with µ1 = g11n∞. Here, we treat the field ψ2 in

equation (1) as a perturbation and we write the field ψ1 as

ψ1(r, t) = [
√
n∞ + δψ1(r, t)] e

−iµ1t, (20)

where δψ1 is supposed to be a small correction, meaning that the bath is everywhere only weakly depleted
(n1(r, t)≈ n∞ everywhere). We now detail how to reduce the initial system of equations to a single closed
equation for ψ2:

• First, by keeping all the terms in the first equation of system (1) up to order 2 in δψ1, we are left with:

g12
√
n∞n2 + g11n∞ (δψ1 + δψ∗

1 ) = i∂tδψ1 − g12n2δψ1 − g11
√
n∞
(
2|δψ1|2 + δψ2

1

)
+

1

2m1
∇2δψ1. (21)

• Second, we note that the characteristic time scale for the evolution associated with the minority component
is expected to be much longer than the intrinsic time scale µ−1

1 of the bath. Therefore we assume in the
following that the state of the bath follows adiabatically the slow motion of the minority component, which
amounts to fully neglecting the term ∂tδψ1 in equation (21). This approximation will be justified a posteriori
at the end of this appendix.

• Third, we assume that we can perturbatively expand δψ1/
√
n∞ in terms of two small parameters. The first

one is n2/n∞ and is associated with the weak-depletion hypothesis mentioned above. The second small
parameter is ξ2∇2 and originates from the fact that the spatial variations of the fields (δψ1,ψ2) occur on a
scale much larger than the bath healing length ξ. For clarity, we now introduce the following combinations:

{
S = (δψ1 + δψ∗

1 )/
√
n∞

D = (δψ1 − δψ∗
1 )/

√
n∞.

(22)

9
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We obtain the first-order contribution S(1) to S by keeping only the terms gathered in the first line of
equation (21) (except the time derivative that we dropped):

S(1) =−g12
g11

n2
n∞

. (23)

To determineD(1), we consider the difference between equation (21) and its complex conjugate:

− ξ2∇2D+
g12
g11

n2
n∞

D+SD = 0. (24)

In this equation valid up to order 2, we can replace S by its first-order approximation (23), since it is multi-
plied byD which is itself at least of order 1. We therefore obtain at the second order in the small parameters

− ξ2∇2D = 0 (25)

which implies that D(1) = 0 since we consider only localized perturbations. Using the fact that

δψ
(1)
1 /

√
n∞ = (S(1) +D(1))/2= S(1)/2, we can then extract the second-order contribution to S from

equation (21):

S(2) =−
(

g12
2g11

n2
n∞

)2

− g12
2g11

ξ2∇2

(
n2
n∞

)
. (26)

• Finally, we inject the previous results into the equation giving the time evolution of ψ2. More precisely, we
expand the density field n1 up to second-order:

n1 = |
√
n∞ + δψ1|

2
(27)

≃ n∞ + n∞
(
S(1) +S(2)

)
+ |δψ(1)

1 |2. (28)

This leads to equation (5), up to the contribution of the constant energy shift g12n∞. Note that the first
term of the right-hand side of equation (26) that could give rise to a quadratic dependence in n2 (quintic

nonlinearity) eventually cancels with the contribution of |δψ(1)
1 |2 in equation (28).

One may wonder if it is legitimate to fully neglect the time evolution operator ∂t in equation (21), while
keeping the Laplacian operator in the perturbative expansion. This can be justified a posteriori using the
dependence of the breathing frequency ω0 with the small parameter ϵ= N/NT − 1. This frequency varies as
ϵ3/2 (see equation (8)), whereas the wave packet size is∝ 1/

√
ϵ. The Laplacian term∇2δψ1 ∼ ϵδψ1 is thus

large compared to ∂t
(
δψ1 eiµ1t

)
∼ ϵ3/2

(
δψ1 eiµ1t

)
and the procedure outlined here is legitimate close to the

Townes threshold. However, one should expect significant corrections due to the non-adiabatic following of
the bath variables as soon as N deviates significantly from NT (see also the discussion after equation (7)).

Appendix C. Excitations of the two-component system

We consider the two coupled equations (1) that give the evolution of the two classical fields ψ1,2, choosing for
simplicitym1 =m2 ≡m. We assume that the minority component contains N> NT atoms, so that there
exists a stable localized state for this component. The steady-state of the system is thus characterized by the
real radial wave functions R1,2(r). We look for perturbations around this steady-state by setting{

ψ1(r, t) = [R1(r)+α1(r, t)+ iβ1(r, t)]e−iµ1t

ψ2(r, t) = [R2(r)+α2(r, t)+ iβ2(r, t)]e−iµ2t,
(29)

where the small perturbations α1,β1,α2,β2 are by construction real functions.
The evolution of the αj and βj is given by the linear system

∂t


α1

β1
α2

β2

=


0 L(1)0 0 0

−L(1)1 0 −L12 0

0 0 0 L(2)0

−L12 0 −L(2)1 0



α1

β1
α2

β2

 , (30)
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with the following differential operators

L(1)0 =−µ1 −
1

2m
∇2 + g11R

2
1 + g12R

2
2 (31)

L(1)1 =−µ1 −
1

2m
∇2 + 3g11R

2
1 + g12R

2
2. (32)

The operators (L(2)0 ,L(2)1 ) are deduced from (L(1)0 ,L(1)1 ) by exchanging the indices 1 and 2 in these last
equations. We also introduced the operator L12 coupling the two components

L12 = 2g12R1R2. (33)

For r large compared to the extension of the localized component, L12 vanishes and one can check that a
localized excitation of component |2⟩, varying as e−κr/

√
r for large r, will have a frequency

ω = g12n∞ −µ2 −κ2/2m= |µ| −κ2/2m, with µ= µ2 − g12n∞ < 0, whereas a delocalized excitation
varying as e±ikr/

√
r will correspond to ω = |µ|+ k2/2m. This means that the condition ω < |µ| is a

necessary condition for the excitation of component |2⟩ to be localized. Numerically, the localized excitations
as shown in figure 3 are identified by noticing that their frequency and functional form do not depend on the
extension of the calculation grid.

Appendix D. Sum-rules

D.1. Monopole mode
The general formalism of sum rules provides sharp upper bounds for the excitation spectrum of many-body
systems [2]. We can estimate the frequency of the monopole breathing mode by calculating the ratio
M1/M−1 between the energy-weighted and the inverse-energy-weighted sum rules relative to the operator
F0 ≡ x2 + y2 of the minority component. The energy-weighted sum rule is easily calculated using basic
commutator rules:

M1 =−2⟨x2 + y2⟩, (34)

where the average should be taken by integrating the density of the minority component using the ground
state wave function of the mixture. The inverse-energy-weighted sum rule requires the calculation of the
static response of the system δ⟨x2 + y2⟩ to a perturbation of the formm2λ0(x2 + y2) (again applied only to
the minority component). One then obtains

M−1 =− 1

2λ0
δ⟨x2 + y2⟩. (35)

In conclusion, a rigorous upper bound to the frequency of the lowest monopole mode is given by

ω2
0 ⩽

M1

M−1
= 4λ0

⟨x2 + y2⟩
δ⟨x2 + y2⟩

. (36)

D.2. Surface modes
The same approach can be employed to estimate the surface mode frequencies. For example, the
quadrupole mode can be usefully described using the excitation operator F2 ≡ x2 − y2. In this case, the
energy-weighted sum rule is still given by equation (34) holding for the monopole excitation, while the
inverse-energy-weighted moment requires a calculation based on a perturbation of the typem2λ2(x2 − y2)
applied only to the minority component. The result for the quadrupole frequency is then given by

ω2
2 ⩽−4λ2

⟨x2 + y2⟩
δ⟨x2 − y2⟩

. (37)

It is easy to check that, when applied to a harmonically-trapped 2D single-component BEC with repulsive
interactions, the monopole and quadrupole frequencies estimated above coincide exactly with the
hydrodynamic values ω0 = 2ωho and ω2 =

√
2ωho, the latter result holding in the Thomas–Fermi limit. In the

calculation of the quadrupole static response, one should pay attention to the fact that the addition of the
perturbationm2λ2(x2 − y2)may induce a collapse of the system at large distances, where the potential

11
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becomes deeply attractive along x (or y, depending on the sign of λ2). The simplest way to evaluate the
quadrupole response function while avoiding the risk of collapse is to add a perturbation of the form

2mλx2 =mλ(x2 + y2)+mλ(x2 − y2), (38)

with λ small and positive. In this way, there is no collapse at large distances and one can simultaneously
calculate both the monopole δ⟨x2 + y2⟩/λ and quadrupole δ⟨x2 − y2⟩/λ responses, thereby giving access to
both ω0 and ω2 with the same simulation.
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