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At zero temperature, a Galilean-invariant Bose fluid is expected to be fully superfluid. Here we
investigate theoretically and experimentally the quenching of the superfluid density of a dilute Bose-
Einstein condensate due to the breaking of translational (and thus Galilean) invariance by an external 1D
periodic potential. Both Leggett’s bound fixed by the knowledge of the total density and the anisotropy of
the sound velocity provide a consistent determination of the superfluid fraction. The use of a large-period
lattice emphasizes the important role of two-body interactions on superfluidity.

DOI: 10.1103/PhysRevLett.130.226003

Superfluidity is a unique state of matter exhibited by
quantum many-body systems in special conditions of
temperature and interactions. It is characterized by the
absence of viscosity and by many other peculiar phenom-
ena, like the occurrence of quantized vortices, the reduction
of the moment of inertia, the propagation of second sound
at finite temperature, and Josephson effects. Superfluidity
was first discovered in liquid helium [1,2]. More recently,
an impressive amount of scientific activity has concerned
the superfluid behavior of ultracold atomic gases (for a
review, see Refs. [3–5]).
A key quantity characterizing superfluidity is the fraction

of the total density, the so-called superfluid fraction, which
determines superfluid transport phenomena. According to
Landau’s theory of superfluidity [6], at nonzero tempera-
ture the superfluid density does not coincide with the total
density. The thermal occupation of elementary excitations
provides the normal (nonsuperfluid) component respon-
sible, for example, for the nonvanishing moment of inertia
and the propagation of second sound [3]. The measurement
of second sound velocity provides unique information on
the temperature dependence of the superfluid density, in
both liquid helium [7] and quantum gases [8,9].
At zero temperature, superfluid and total densities still do

not always coincide, as illustrated by the celebrated super-
fluid to Mott-insulator transition [10–12]. Even in the
mean-field regime relevant for the present work, consistent
with the applicability of Gross-Pitaevskii theory, quenching
of the superfluid density can occur when translation or
Galilean invariances are broken, resulting in important
consequences on the excitation spectrum. Such effects
have been already pointed out theoretically in the presence

of disorder [13,14], external periodic potentials [15–20],
supersolidity [21,22], and spin-orbit coupling [23–25].
Experimentally, the effects of the quenched superfluidity
on the collective frequencies of a harmonically trapped gas
were investigated in Ref. [26]. A similar situation emerges
in astrophysics in the context of neutron stars where the
periodic lattice of nuclei influences the superfluid density
in the inner crust [27,28].
Here we provide a combined theoretical and experimen-

tal investigation of the reduction of the superfluid fraction
caused by the presence of a periodic potential in a weakly
interacting Bose-Einstein condensate (BEC) confined in a
box. We determine the superfluid density employing
Leggett’s result [29,30], which is based on the knowledge
of the in situ modulated total density profile ρðrÞ, exper-
imentally available thanks to the use of a large-period
lattice. We also present an independent measurement of the
superfluid fraction that exploits the anisotropic character of
the sound velocity.
Superfluid fraction in a modulated potential.—We

consider a two-dimensional (2D) weakly interacting
BEC confined in a box of size L × L, in the presence of
the one-dimensional (1D) spatially periodic potential
VðxÞ ¼ V0 cos ðqxÞ. This potential brings two energy
scales to the problem, its amplitude V0 and the “recoil
energy” ϵq ¼ ℏ2q2=2m, where m is the mass of an atom.
Atomic interactions provide the third energy scale relevant
for the problem. They are conveniently characterized by the
chemical potential μ0 ¼ gρ0 of a uniform condensate with a
density equal to the average value ρ0 ¼ hρðxÞi, where ρðxÞ
is the density profile and the average is calculated over one
period of the potential VðxÞ. The interaction coupling
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constant between atoms g ¼ 4πℏ2as=m is fixed by the
s-wave scattering length as.
In such a configuration, the superfluid fraction is an

anisotropic rank-two tensor with eigenaxes x, y and with
diagonal elements denoted fs;α in the following (α ¼ x, y).
They can be calculated by applying the perturbation −vP̂α

to the system, where P̂α ¼
P

N
j¼1 p̂j;α is the momentum

operator along the axis α, and N is the number of particles.
This corresponds to working in the frame moving with
velocity v with respect to the laboratory frame. Only the
normal part reacts to the perturbation, so that, by calculat-
ing the average momentum hP̂αi and imposing periodic
boundary conditions, one accesses the superfluid fraction
along the axis α,

fs;α ¼ 1 − lim
v→0

hP̂αi
Nmv

: ð1Þ

A similar procedure, applied to the case of a rotating
configuration, employing the angular momentum operator
rather than the linear momentum operator, gives
access to the moment of inertia, whose deviation from
the rigid value provides direct evidence of superfluid
effects [31].
In the presence of the periodic potential VðxÞ, the motion

of the fluid is slowed down along the x direction, reflecting
the quenching of the superfluid density along this direction:
ρs;x < ρ0. The superfluid density evaluated along the
transverse y direction is instead not modified: ρs;y ¼ ρ0.
The Gross-Pitaevskii equation (GPE) describing the weakly
interacting BEC, solved in the frame moving with velocity
v, i.e., subject to the constraint −vPx, yields, according to
the definition (1), the result [32]

fs;x ¼
ρs;x
ρ0

¼ 1

hρðxÞih 1
ρðxÞi

: ð2Þ

According to the seminal work by Leggett [29,30], the
right-hand side of (2) provides generally an upper bound to
the superfluid density. Remarkably, the bound reduces to an
identity in the case of a weakly interacting BEC subject to a
1D periodic potential [35].
Effective mass and sound propagation.—Result (2) may

be surprising because it relates a transport property (the
superfluid density) to a static quantity (the equilibrium
density profile). The concept of effective mass, commonly
used in the context of interacting Bose [16,19,37] and
Fermi gases [20] placed in a periodic potential, elucidates
this relation. In the present case, the superfluid fraction of
the BEC, defined according to (2), exactly coincides with
the ratio

m
m�

x
¼ fs;x; ð3Þ

where the effective mass m�
x fixes the curvature of the

energy band along the x direction for small values of the
quasimomentum (see Supplemental Material [32]).
The relation (3) between the effective mass and fs;α

illustrates the crucial role of the superfluid density in the
propagation of sound. The hydrodynamic formalism of
superfluids indeed provides the following expression for
the velocity of a sound wave propagating along the x
direction in the presence of VðxÞ [3,16,26,38]:

c2x ¼
1

m�
xκ

¼ fs;x
1

mκ
; ð4Þ

where κ ¼ ½ρ0∂ρ0μðρ0Þ�−1 is the compressibility of the gas.
The value of the sound velocity propagating along the
transverse y direction is

c2y ¼
1

mκ
; ð5Þ

the effective mass m�
y being equal to the bare mass

in this case. The ratio between Eqs. (4) and (5) then
provides

fs;x ¼
c2x
c2y

: ð6Þ

The superfluid fraction can thus be determined either
through the explicit knowledge of the equilibrium
density profile via (2) or through the measurement of the
ratio (6).
Limiting cases.—Results (2) and (6) hold for any values

of the dimensionless parameters V0=μ0 and ϵq=μ0, as long
as the description of the T ¼ 0 Bose gas by a macroscopic
wave function is valid, i.e., as long as quantum phase
fluctuations between neighboring sites (a precursor of the
superfluid to Mott-insulator transition) can be ignored. We
now examine some limiting cases where ρðxÞ and fs;x take
a simple expression.
We start with the very weakly interacting regime where

μ0 ≪ ϵq. In this case, the GPE approaches the Schrödinger
equation for a single particle subject to the periodic
potential VðxÞ. In this regime, the identity m�=m ¼
hρih1=ρi was already noticed in Ref. [39].
The opposite case ϵq ≪ μ0 is described by the local

density approximation (LDA). The validity condition of the
LDA is equivalent to imposing that the period of the
potential 2π=q be much larger than the healing length
ℏ=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2mgρ0

p
. In the LDA, the equilibrium density becomes

ρðLDAÞðxÞ¼ρ0−ρ1cosðqxÞwith ρ0 ¼ μ0=g and ρ1 ¼ V0=g.
When injected into (2), this gives

fðLDAÞs;x ¼
�
1 −

ρ21
ρ20

�
1=2

¼
�
1 −

V2
0

μ20

�
1=2

: ð7Þ
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For values V0 > μ0, the LDA density vanishes in a finite
region within each period of VðxÞ, with the consequent
vanishing of the superfluid fraction (dotted line in Fig. 1).
We now consider the third limiting case of small V0,

which can be addressed using the formalism of the static
density response function. An expansion of the solution of
the GPE in powers of V0 yields the amplitude of the first
Fourier component of ρðxÞ,

ρ1
ρ0

¼ 2V0

2μ0 þ ϵq
þOðV3

0Þ: ð8Þ

Using (2), one finds the superfluid fraction [19]

fs;x ¼ 1 −
2V2

0

ð2μ0 þ ϵqÞ2
þOðV4

0Þ; ð9Þ

confirming the LDA result given above when we take the
limit ϵq=μ0 → 0. Note that (8) and (9) also hold in the
opposite limit of large ϵq=μ0, where the superfluid density
no longer depends on the interaction.
The expansion of the solution of the GPE in powers of

V0 also provides the compressibility

κ ¼ μ−10

�
1 −

2V2
0ϵq

ð2μ0 þ ϵqÞ3
�
þOðV4

0Þ; ð10Þ

showing that, different from the expansion (9) for the
superfluid density, the V2

0 correction to the compressibility
vanishes in the LDA limit ϵq=μ0 → 0. In this limit, we thus
predict from (4) and (5) that, at order 2 in V0, the speed of

sound cy in the direction perpendicular to the lattice will not
be affected by the presence of the lattice, whereas cx will be
reduced by an amount directly related to fs;x.
The ideal gas limit.—The addition of a lattice on a Bose

gas sheds interesting light on the controversial question of
the possible superfluidity in the ideal case. The fact that the
Landau criterion is not satisfied points to a nonsuperfluid
character of the ideal gas, while the approach based on
twisted boundary conditions leads to fs ¼ 1 for this
system. To remove this ambiguity, we take a gas with
chemical potential μ0 placed in a lattice of large spatial
period (ϵq ≪ V0) and consider the two limits (i) V0 → 0

and (ii) μ0 → 0. The order in which these limits are taken is
crucial. If we take limit (i) first (i.e., ϵq ≪ V0 ≪ μ0) and
then limit (ii), we find fs ¼ 1, see Eq. (9). Conversely,
taking first the limit (ii) (i.e., ϵq; μ0 ≪ V0) leads to fs ≈ 0

(see dashed line in Fig. 1). In our opinion, the latter
approach is more relevant as it implicitly takes into account
the residual (possibly disordered) modulated potentials
acting on the gas.
Experimental setup.—We now describe the experimental

determination of the superfluid fraction of a planar BEC
subjected to a sinusoidal potential along x. The setup has
been detailed in Refs. [40,41]. We start from a single
quasi-2D Bose gas of 87Rb atoms confined in an optical
dipole trap made of a combination of repulsive laser beams
at a wavelength λ ¼ 532 nm. We load all atoms around a
single node of an optical lattice, which provides a
strong confinement along the vertical direction z. It leads
to an approximate harmonic confinement of frequency
ωz=2π ≈ 3.7 kHz. The associated characteristic length
lz ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ=mωz

p
≈ 180 nm, is large compared to the s-wave

scattering length as ¼ 5.3 nm, which leads to a quasi-2D
regime where collisions keep their three-dimensional (3D)
character. The effective 2D coupling constant describing
the interactions in the cloud ismg=ℏ2 ¼ ffiffiffiffiffiffi

8π
p

as=lz ≈ 0.15.
The 2D character of our gas is not crucial for this experi-
ment, which could also be performed in a 3D boxlike
potential [42].
The in-plane confinement is created by spatially

shaped laser beams. A first beam creates a square box
potential of size L ¼ 40 μm. A second beam imposes the
sinusoidal potential modulated along the x axis with a
tunable amplitude V0 from 0 to 80 nK [32,43]. The lattice
period d ¼ 3.93ð4Þ μm and the average 2D density ρ0 ¼
60ð3Þ μm−2 are fixed. This corresponds to μ0=kB ≈ 50 nK
and ϵq=kB ¼ 7.1 nK. The temperature of the gas is below
the lowest measurable value in our setup, i.e., < 20 nK.
Superfluid fraction from Leggett’s formula.—To use

Leggett’s result (2), we measure the in situ 2D density
profile ρðmeasÞðx; yÞ in the presence of the lattice using
absorption imaging, see Fig. 2(a). We integrate it along y
to obtain the 1D profile ρðmeasÞðxÞ [Fig. 2(b)]. For an ideal
imaging system [44], ρðmeasÞðxÞ ¼ ρðxÞ, but finite optical

FIG. 1. Solid line: superfluid fraction calculated for a 87Rb
condensate by injecting the numerical solution of the GPE inside
Leggett’s formula (2) for ρ0 ¼ 60 μm−2, mg=ℏ2 ¼ 0.15, and
2π=q ¼ 3.93 μm, corresponding to μ0=ϵq ¼ 7.0. Dotted line:
LDA result. Red circles: experimental results obtained using
Leggett’s formula. Violet squares: experimental results obtained
from speeds of sound. The dashed line shows the prediction in the
opposite regime, μ0 ≪ ϵq, of a very weakly interacting system. In
all figures, the error bar represents the statistical uncertainties of
the measurements.
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resolution alters this relation and has to be included in the
analysis. The expected density distribution can be expanded
in Fourier series ρ0 −

P
n>0 ρn cosðnqxÞ, where the role of

higher harmonics becomes increasingly important for large
V0. We model our optical resolution by multiplicative
coefficients βn <1: ρðmeasÞðxÞ ¼ ρ0 −

P
n>0 βnρn cosðnqxÞ.

We calibrate the first coefficients βn by studying the
density response to a lattice of wave number q0 ¼ nq for
low lattice depths. In this case, the density modulation ρðxÞ
is dominated by its first harmonic and we fit the measured
profiles to a sinusoidal function whose amplitude is
adjusted to prediction (8). This adjustment provides β1 ¼
0.73ð2Þ and β2 ¼ 0.27ð6Þ, while the values of the coef-
ficients n ≥ 3 are below our experimental detectivity.
We show in Fig. 2(c) the values of ρn ¼ ρðmeasÞ

n =βn for
n ¼ 1, 2. Both measurements are in good agreement with
the predictions of the GPE (solid lines) over all the explored
range of values of V0. From this measurement and
restricting ρðxÞ to its two first Fourier components, we
calculate Leggett’s formula (2) and we plot the result as
circles in Fig. 1. We discuss in the Supplemental Material
[32] the effect of the truncation of the Fourier series on the
solution of the GPE and confirm that, in our case,
restricting to the first two harmonics already gives a good
estimate of fs;x.
Superfluid fraction from speed of sound.—We determine

the speeds of sound along x and y by studying the response

of the cloud to an external perturbation of its density. Here,
the perturbation consists of adding, during the preparation
of the cloud, a weak linear magnetic potential along x or y,
of amplitude ≈ 0.1 nK=μm. At time t ¼ 0, we abruptly
switch off this potential and measure the evolution of the
center of mass of the cloud, see Fig. 3(a). For a perturbation
along x, we observe a smaller frequency than the one
obtained for the same excitation along the y axis, a clear
signature of the modification of the superfluid transport
properties due to the presence of the lattice.
From the frequency νx;y of the fitted oscillations, we

determine the speed of sound through the relation
cx;y ¼ 2Lνx;y, valid when the lattice period and the healing
length are both much smaller than the phonon wavelength,
equal here to 2L. We show our measurements in Fig. 3(b)
as a function of the lattice depth. For a perturbation along y,
we observe a small increase of cy with V0, which can be
attributed to the modification of the compressibility of the
modulated gas with respect to the uniform case [see
Eqs. (5) and (10)]. Along the axis of the lattice, we note
a strong decrease of the speed of sound with the amplitude
of the modulating potential, which we associate with the
decrease of the superfluid fraction of the cloud. In addition,
we plot with solid lines the result of a simulation of the

FIG. 2. (a) In situ absorption image of the 2D gas modulated
with a lattice along x of period 3.93 μm and amplitude
V0 ¼ 54ð5Þ nK. The length of the scale bar is 20 μm. (b) Density
profile integrated along x (squares) and y (circles) and the fit to a
sinusoidal modulation (solid blue line) for ρðmeasÞðxÞ. The pixel
size is 1.15 μm. (c) Fourier components of the density modu-
lation ρn=ρ0 versus the lattice depth V0 for n ¼ 1 (circles) and
n ¼ 2 (squares). Solid lines represent the corresponding predic-
tions from the GPE. The dotted line is the weak lattice limit of (8).

FIG. 3. Speed of sound measurement. (a) Center-of-mass
position of the cloud after excitation as a function of time for
an excitation along or perpendicular to the lattice for
V0=kB ¼ 41ð4Þ nK. The solid lines are sinusoidal fits to the
data giving νx ¼ 19ð1Þ and νy ¼ 27ð1Þ Hz. (b) Extracted speed
of sound along y (black squares) and x (blue circles) axes for
different lattice depths. The solid lines are the prediction from
the GPE.
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experimental protocol with the GPE. We observe an
excellent agreement for both cx and cy. The superfluid
fraction fs;x obtained from the ratio (6) is plotted in Fig. 1.
Discussion and conclusion.—The determination of the

superfluid fraction fs;x based on sound propagation is in
excellent agreement with the prediction from the GPE. The
determination of fs;x based on Leggett’s formula, although
limited by the finite resolution of our optical system, also
agrees well with the prediction.
More generally, one may favor one of the two methods

depending on the system under study. For example, in a
spin-orbit coupled BEC that violates Galilean invariance
[25], the sound velocity measurement will give access to
the superfluid fraction, while the density may remain
uniform, in which case Leggett’s bound is not relevant.
Conversely, in supersolid BECs [45–51], the excitation
spectrum is, in general, more complex [52,53] and the
sound velocity measurement is not directly applicable to
extract fs, which, at least in one-dimensional-like configu-
rations, may be instead calculated using Leggett’s formula
[54]. A challenging question concerns the determination of
the superfluid density in higher dimensions if the total
density profile is not factorizable along the various direc-
tions [30], as in the case of 2D dipolar supersolids [50] and
of a vortex lattice [55]. Our Letter also paves the way for the
investigation of the superfluid fraction in other density
modulated quantum gases, like Fermi superfluids and 1D
and disordered systems. It could be extended to study the
links between the quenching of the superfluid fraction and
the emergence of number squeezing and phase fluctuations
effects [17,56] for deep periodic potentials, as well as to
investigate the consequence of finite temperature effects.
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Note added.—Recently, a manuscript by Tao et al. explored
anisotropic superfluidity in a periodically modulated
trapped BEC gas [57]. We employ here lattices with much
larger periods, allowing for an explicit measurement of
Leggett’s formula and enhancing the role of two-body
interactions.
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