
HAL Id: hal-04147581
https://hal.science/hal-04147581v1

Submitted on 30 Jun 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Formulation methodologies based on Taylor expansion
power and Fourier expansion series for the

macro-element resolution scheme of enriched models for
the stress analysis of adhesively bonded joints

Michel Salaün, Eric Paroissien, Sébastien Schwartz, Tuan-Long Vu, Valeria de
Angelis, Maxime Luyat, Benjamin Ordonneau

To cite this version:
Michel Salaün, Eric Paroissien, Sébastien Schwartz, Tuan-Long Vu, Valeria de Angelis, et al.. For-
mulation methodologies based on Taylor expansion power and Fourier expansion series for the macro-
element resolution scheme of enriched models for the stress analysis of adhesively bonded joints. Inter-
national Journal for Numerical Methods in Engineering, In press, �10.1002/nme.7324�. �hal-04147581�

https://hal.science/hal-04147581v1
https://hal.archives-ouvertes.fr


Formulation methodologies based on Taylor expansion power and

Fourier expansion series for the macro-element resolution scheme of

enriched models for the stress analysis of adhesively bonded joints
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Abstract

In recent years, interest in adhesive bonding has grown as it can be considered an efficient
solution in terms of strength-to-mass ratio when applied to lightweight structures or an
interesting solution to complement conventional technologies. The study of bonded adhered
joints is carried out using a technique based on the macro-element method (ME), the ME
shape functions are modelled using Taylor expansion power and Fourier expansion series.
The purpose of this work is to compare the stiffness matrix obtained first from the entire
Taylor series and then with the entire Fourier series. The method has been developed so far
for 1D-bar and 1D-beam kinematics frameworks.
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1. Introduction

The design of structures leads to the use of joining technologies. Adhesive bonding offers the
ability of joining without damaging or modifying the physical characteristics of structural
parts to be joined, eventually made in various materials, like metals or plastics. Moreover,
the volume of adhesive materials, the specific mass of which is mainly slightly higher than
the unity, required to transfer the loads, is very restricted. As a result, adhesive bonding
can be regarded as an efficient solution in terms of strength-to-mass ratio when applied to
lightweight structures or as an attractive solution to complement conventional technologies
such as mechanical fastening in the frame of damage tolerant design approach for example.
The strength prediction of adhesive joints mainly involved an initial stress analysis which can
be addressed by the Finite Element (FE) method [1, 2, 3, 4, 5, 6]. Nevertheless, to reduce the
costs in terms of pre-processing, computational and post-processing times simplified stress
analyses are attractive. As demonstrated in various review papers [7, 8, 9, 10, 6, 11], a large
number of simplified stress analyses have been developed since the beginning of the 20th
century [12]. A simplified stress analysis can be analytical or semi-analytical. An analytical
stress analysis is fully led in close-form up to a ready-to-use equation. A semi-analytical
stress analysis is partially led in close-form and requires a dedicated resolution computer
program, based on more-or-less elementary numerical schemes, to provide the final result.
A widespread approach to simplify the stress analysis of bonded joints is to model the joints
as two beams on elastic foundation. The adhesive layer is then seen as a bed of spring linking
the kinematics of the adherends. The overlap composed by the beam and the adhesive layer
is often referred to the sandwich zone. This approach is the one introduced in the fundamen-
tal analytical models of a single-lap bonded joint under membrane by Arnovljevic [12] and
Volkersen [13], or under membrane and bending by Goland and Reissner [14]. However, de-
pending on the nature of both adherends (similar or dissimilar), on the assumed constitutive
model of materials (linear or non-linear), on the graduation of geometrical parameters, on the
boundary conditions, the existence of a ready-to-use equation is not guaranteed. Indeed, even
under linear analyses, the coupling of ordinary differential equations (ODEs) governing the
system can be too severe. Semi-analytical approaches have then been developed to extend the
application field of beams on elastic foundation modelling framework and to offer solutions
where the analytical solution cannot be applied due to the enrichment or complexification of
the set of hypotheses. The approach developed by Mortensen and Thomsen [15, 16, 17, 18]
involves a particular resolution scheme based on the multi-segment integration method [19].
Another semi-analytical approach, called macro-element (ME) modelling, has been developed
for some two decades by the authors of the present paper and their co-authors [11]. A ME
is a 4-node brick representing for a bonded overlap so that it includes the assumed physics
of the adhesive and adherends. This brick takes the shape of a stiffness matrix linking the
nodal displacements with the nodal forces, which has to be formulated. The formulation
of early ME stiffness matrices does not assume the shape of interpolation functions. In-
deed, the interpolation functions take the shape of the solution of the system of governing
ODEs, so that only one ME is needed to assess the solution at every abscissa along the over-
lap. The ME modelling is then able to support complicated configurations such as hybrid
(bolted/bonded) joints [20, 21]. Associated with an iterative resolution scheme, non linear
constitutive behaviors can be considered to simulate the progressive debonding of bonded
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joints [22] or delamination of composite materials [23], similarly to cohesive zone modelling.
In such a case, a discretization only along the overlap is required to locally update the ma-
terial properties and then the ME stiffness matrices. To take advantage of the required
discretization, a methodology of stiffness matrix formulation using the exponential of matrix
has been developed [24]. This methodology does not required the shape of interpolations
functions and significantly reduces the effort level in terms of mathematical pretreatment.
The solution is then provided at the discretization nodes. This approach allows for an easily
variation of initial simplifying hypotheses, such as the assumed beam model (Euler-Bernoulli
or Timoshenko) or local equilibrium of adherends. In particular, it has been applied to the
case where the adhesive properties are graduated along the overlap [24] or to the case of
multilayered bonded joints [25]. To retrieve the ability to mode an entire overlap with only
one ME while easily varying the initial set of simplifying hypotheses, two other approaches
were developed. The first one makes use of the Jordan form to solve the system of coupled
ODEs, the unknown of which is the vector of displacements and their derivatives [26]. The
second one is based on the use of Taylor expansion power series (TEPS) [27, 28, 29], which
has been applied on the graduation of adhesive properties and on the formulation of ME
mass matrices. Following the previous path consisting in enriching the ME modelling, the
objectives of this paper are to present the formulation methodologies based a new methodol-
ogy based on TEPS, (ii) on Fourier expansion series (FES) and (iii) to validate and compare
their convergence performance. Firslty, the formulation methodology of ME stiffness matrix
based on FES is described under membrane (section 2) and under membrane plus bending
(section 3), but more rapidly as it follows exactly the same way but with additional complex-
ity due to the higher number of variables. This methodology has already been presented in
[27] and [28] but in a different way. Furthermore, it is also given to introduce notations and
to make easier the description of Fourier series methodology. The formulation based on FES
is then validated and finally compared to the TEPS one in terms of convergence performance
(section 4).

2. ME for the 1D Bar model

2.1. Assumptions and governing equations of 1D Bar model

Here is considered a single-lap joint structure, given in Figure 1. The first hypothesis is to
consider this structure as monodimensional. The joint geometry is defined by the adherends
thicknesses e1 and e2, respectively for the upper and lower one, while ea is the adhesive
thickness. Finally, L and b are half-length and width of adherends.
The model of single-lap joint is based on the following assumptions:

• both adherends are modelled as bars made of a homogeneous linear elastic material;

• the adhesive layer is modelled as an infinite number of shear springs linking the upper
and lower adherends;

• the adhesive thickness is constant along the overlap;

• the adhesive stress is constant in the adhesive thickness.
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Figure 1: Simply supported single-lap involving the geometrical parameters, boundary conditions and in-
plane loading.

The same equilibrium as Volkersen’s [13] is used here (see Fig. 2). For both adherends, it
leads to

dNi(x)

dx
= (−1)ibT (x) , i = 1, 2 (1)

where Ni is the normal force of adherend i and T is the adhesive shear stress.

Figure 2: Free body diagram of infinitesimal pieces included between x and x + dx of both adherends in the
overlap region under 1D-bar kinematics. Subscript 1 (2) refers to the upper (lower) adherend.

The normal force in each adherend i is equal to:

Ni(x) = Ai
dui(x)

dx
, i = 1, 2 (2)

where Ai = Eieib is its membrane stiffness, Ei being its Young’s Modulus. The normal
displacement ui is the displacement of the point on the neutral line of adherend i at abscissa
x.
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The expression of the shear stress in the adhesive layer depends on the expression of its
shear modulus. If we consider a joint with homogeneous adhesive properties, the constitutive
equation of the adhesive layer reads

T (x) =
Ga

ea

(
u2(x)− u1(x)

)
, (3)

where Ga is the shear modulus of the adhesive layer.
Introducing equations (2) and (3) in (1) leads to the following second order equations, ex-
pressed only in displacements

Eiei
d2ui(x)

dx2
= (−1)i

Ga

ea

(
u2(x)− u1(x)

)
, i = 1, 2 . (4)

Taylor series expansions on each displacement ui were used to solve these equations in a
previous paper [28]. Here, however, another method will be used, considering only the
following set of first-order equations

dNi(x)

dx
= (−1)ib

Ga

ea

(
u2(x)− u1(x)

)
dui(x)

dx
=

1

Eieib
Ni(x) , i = 1, 2 .

(5)

2.2. Taylor expansion in power series (TEPS) for the 1D Bar model

For solving (5), the solution functions are searched as TEPS for any x between −L and L,
which means 

ui(x) =
+∞∑
n=0

uinx
n

Ni(x) =
+∞∑
n=0

Ninx
n , i = 1, 2 .

(6)

Then, the following variable change is made:

ξ =
x

L
(7)

which means the solutions are functions of variable ξ, belonging to ] − 1 , + 1[. Now, the
unknown functions read

ui(ξ) =
+∞∑
n=0

uin(Lξ)n =
+∞∑
n=0

uinL
nξn ≡

+∞∑
n=0

(ui)nξ
n

Ni(ξ) =
+∞∑
n=0

Nin(Lξ)n =
+∞∑
n=0

NinL
nξn ≡

+∞∑
n=0

(Ni)nξ
n , i = 1, 2

(8)
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where (ui)n and (Ni)n are the adimensioned series coefficients. It should also be noted that
this change of variable implies the following change in the derivative of any function, say ϕ

dϕ(x)

dx
=

1

L

dϕ(ξ)

dξ
. (9)

The expressions of ui and Ni are introduced in the equations (5). It follows, for all ξ and for
all i = 1, 2 

1

L

+∞∑
n=1

n (Ni)nξ
n−1 = (−1)ib

Ga

ea

(
+∞∑
n=0

(u2)nξ
n −

+∞∑
n=0

(u1)nξ
n

)

1

L

+∞∑
n=1

n (ui)nξ
n−1 =

1

Eieib

+∞∑
n=0

(Ni)nξ
n , i = 1, 2

(10)

which leads to the following recursive equations for all integer n
n+ 1

L
(Ni)n+1 − (−1)ib

Ga

ea

(
(u2)n − (u1)n

)
= 0

n+ 1

L
(ui)n+1 −

1

Eieib
(Ni)n = 0 , i = 1, 2 .

(11)

To solve this set of equations, it’s defined a truncation order, say N , which means all coef-
ficients of order greater than N are set to 0. Therefore, the above relations are valid only
for 0 ≤ n ≤ N − 1, which leads to a set of 4N equations, involving 4(N + 1) unknowns
((N + 1) for each function u1 , u2 , N1 and N2). The vectors of unknowns is now presented,
say Cu1 , Cu2 , CN1 and CN2 , defined as

Cu1 =


(u1)0
(u1)1

...
(u1)N

 Cu2 =


(u2)0
(u2)1

...
(u2)N

 CN1 =


(N1)0
(N1)1

...
(N1)N

 CN2 =


(N2)0
(N2)1

...
(N2)N

 (12)

However, the objective is to build the stiffness matrix of the ME. The way to obtain it is the
following. To complete the set of equations (11), the nodal displacement boundary conditions
are added: 

û1 = u1(ξ = −1) =
N∑
n=0

(u1)n(−1)n

û2 = u2(ξ = −1) =
N∑
n=0

(u2)n(−1)n

û3 = u1(ξ = 1) =
N∑
n=0

(u1)n(1)n

û4 = u2(ξ = 1) =
N∑
n=0

(u2)n(1)n

(13)
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Then, the nodal force boundary conditions are written according to the sign convention
defined Fig. 3: 

N̂1 = −N1(ξ = −1) = −
N∑
n=0

(N1)n(−1)n

N̂2 = −N2(ξ = −1) = −
N∑
n=0

(N2)n(−1)n

N̂3 = N1(ξ = 1) =
N∑
n=0

(N1)n(1)n

N̂4 = N2(ξ = 1) =
N∑
n=0

(N2)n(1)n

(14)

Figure 3: Nodal boundary condition diagram for 1D-bar kinematics. a) Nodal displacement b) Nodal forces
including sign convention.

Finally, the 1D Bar ME stiffness matrix, say KME, is such that

KME


û1
û2
û3
û4

 =


N̂1

N̂2

N̂3

N̂4

 (15)

and is obtained through the following way. First, gathering equations (11) and (13) leads to
a square system of size 4(N + 1), which formally reads

DME


Cu1
Cu2
CN1

CN2

 =


[
0
]
4N

û1
û2
û3
û4

 (16)

or, conversely 
Cu1
Cu2
CN1

CN2

 = D−1ME


[
0
]
4N

û1
û2
û3
û4

 (17)
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which allows to compute CN1 and CN2 as functions of ûi

[
CN1

CN2

]
= D̂−1ME


û1
û2
û3
û4

 (18)

where D̂−1ME is the rectangular matrix built of the 2(N + 1) last lines and 4 last columns of
D−1ME. At last, with (14) which formally reads

N̂1

N̂2

N̂3

N̂4

 = LME

[
CN1

CN2

]
(19)

where LME is a rectangular matrix of size 4 lines and 2(N + 1) columns, is obtained
N̂1

N̂2

N̂3

N̂4

 = LME D̂−1ME


û1
û2
û3
û4

 (20)

which means the 1D Bar ME stiffness matrix reads

KME = LME D̂−1ME . (21)

Remark. The change of variable (7) is introduced because the calculations leading to the
matrix KME are numerically more stable (see [30]).

2.3. Fourier series expansion (FSE) for the 1D Bar model

• Preliminary remarks on FSE (see [31] for example)
Now, for solving (5), the solution functions are searched as Fourier series for any x between
−L and L, which means the unknown functions are considered as 2L periodic functions.
However, it is well known the Fourier series convergence is poor at a discontinuity point (Gibbs
phenomenon), which is the case at the extremities of the joint as far as there is no reason the
displacements nor the stresses will be equal there. For example, for u1 displacement, one has

û1 = u1(x = −L) 6= u1(x = +L) = û3 . (22)

So, to recover good convergence properties, all the equations just mentioned must become
continuous. To do this, we proceed as follows, considering for example a general 2L periodic
function say ϕ which is assumed to be continuous inside the interval ]− L , + L[, but such
that ϕ(−L) 6= ϕ(+L). A new function called Tildevarphi is then introduced as

ϕ̃(x) = ϕ(x) − ϕ(+L) − ϕ(−L)

2L
x . (23)
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It is easy to check

ϕ̃(−L) = ϕ̃(+L) =
ϕ(+L) + ϕ(−L)

2
, (24)

which means ϕ̃ is 2L periodic function which is continuous on all R. Then, the Fourier
series of ϕ̃ uniformly converges towards ϕ̃ everywhere and may be derived term by term
(Dirichlet-Jordan theorem). Thus one has

ϕ̃(x) =
a0(ϕ̃)

2
+

+∞∑
n=1

(
an(ϕ̃) cos

nπx

L
+ bn(ϕ̃) sin

nπx

L

)
, (25)

for all x in R, coefficients an(ϕ̃) and bn(ϕ̃) being given by
an(ϕ̃) =

1

L

∫ +L

−L
ϕ̃(x) cos

nπx

L
dx , n ∈ N

bn(ϕ̃) =
1

L

∫ +L

−L
ϕ̃(x) sin

nπx

L
dx , n ∈ N∗ .

(26)

Finally, one obtains, for all x in R

dϕ(x)

dx
=

dϕ̃(x)

dx
+

ϕ(+L) − ϕ(−L)

2L

=
+∞∑
n=1

(
−an(ϕ̃)

nπ

L
sin

nπx

L
+ bn(ϕ̃)

nπ

L
cos

nπx

L

)
+

ϕ(+L) − ϕ(−L)

2L
.

(27)
• Application to the ME stiffness matrix computation
Consider (5). We introduce the continuous functions Tildeui and TildeNi associated with
ui and Ni respectively via (23). Replacing these last functions by the continuous ones in (5)
gives

dÑi(x)

dx
+

Ni(+L) − Ni(−L)

2L
= (−1)ib

Ga

ea

(
ũ2(x)− ũ1(x)

)
+ (∆u)i x

dũi(x)

dx
+

ui(+L) − ui(−L)

2L
=

1

Eieib
Ñi(x) + (∆N)i x , i = 1, 2

(28)

where it is set
(∆u)i = (−1)ib

Ga

ea

(
u2(+L) − u2(−L)

2L
− u1(+L) − u1(−L)

2L

)

(∆N)i =
1

Eieib

Ni(+L) − Ni(−L)

2L
, i = 1, 2

(29)
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Now are introduced the Fourier series of ũi and Ñi, which read
ũi(x) =

a0(ũi)

2
+

+∞∑
n=1

(
an(ũi) cos

nπx

L
+ bn(ũi) sin

nπx

L

)

Ñi(x) =
a0(Ñi)

2
+

+∞∑
n=1

(
an(Ñi) cos

nπx

L
+ bn(Ñi) sin

nπx

L

)
, i = 1, 2

(30)

and lead for i = 1, 2 to

+∞∑
n=1

(
−an(Ñi)

nπ

L
sin

nπx

L
+ bn(Ñi)

nπ

L
cos

nπx

L

)
+

Ni(+L) − Ni(−L)

2L

= (−1)ib
Ga

ea

(
a0(ũ2)− a0(ũ1)

2
+

+∞∑
n=1

(
(an(ũ2)− an(ũ1)) cos

nπx

L
+ (bn(ũ2)− bn(ũ1)) sin

nπx

L

))
+ (∆u)i x

+∞∑
n=1

(
−an(ũi)

nπ

L
sin

nπx

L
+ bn(ũi)

nπ

L
cos

nπx

L

)
+

ui(+L) − ui(−L)

2L

=
1

Eieib

(
a0(Ñi)

2
+

+∞∑
n=1

(
an(Ñi) cos

nπx

L
+ bn(Ñi) sin

nπx

L

))
+ (∆N)i x

(31)
To obtain the recursive equations for the integers n, the Fourier series of the function
varphi(x) equiv x is calculated, giving

an(x) = 0 (n ∈ N) , bn(x) =
1

L

∫ +L

−L
x sin

nπx

L
dx =

2L

nπ
(−1)n+1 (n ∈ N∗) . (32)

Finally, each equation of the previous system leads respectively to 3 set of equations, corre-
sponding to the constant term (namely a0), the terms in cos nπx

L
and the ones in sin nπx

L
. So

the complete set of recursive equations reads for i = 1, 2 and n ∈ N∗
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(−1)ib
Ga

ea

a0(ũ2)− a0(ũ1)
2

=
Ni(+L) − Ni(−L)

2L

bn(Ñi)
nπ

L
− (−1)ib

Ga

ea
(an(ũ2)− an(ũ1)) = 0

−an(Ñi)
nπ

L
− (−1)ib

Ga

ea
(bn(ũ2)− bn(ũ1)) = (∆u)i

2L

nπ
(−1)n+1

1

Eieib

a0(Ñi)

2
=

ui(+L) − ui(−L)

2L

bn(ũi)
nπ

L
− 1

Eieib
an(Ñi) = 0

−an(ũi)
nπ

L
− 1

Eieib
bn(Ñi) = (∆N)i

2L

nπ
(−1)n+1

(33)

To solve this set of equations, as for TEPS, a truncation order is defined, say N , which
means all coefficients of order greater than N are set to 0. Therefore, there are here (2N +1)
unknowns for each Fourier series so a total number of 4(2N + 1) unknowns. But, contrarily
to TEPS, there are 4(2N+1) equations in (33), which means the same number as unknowns.
However, there is some difficulties with the ”first” equations of (33), as one has, by taking
i = 1 and i = 2

b
Ga

ea

a0(ũ2)− a0(ũ1)
2

= − N1(+L) − N1(−L)

2L
=

N2(+L) − N2(−L)

2L
, (34)

First, a0(ũ2) and a0(ũ1) only appears in these relations and only through their difference, so
they cannot be separated. Second, relation (34) creates a link between the stresses N1 and
N2 at the extremities of the joint. Actually,the equation (1) can be written as follows

dN1(x)

dx
= − bT (x) = − dN2(x)

dx
(35)

which leads to
d(N1(x) +N2(x))

dx
= 0 (36)

or else N1(x) +N2(x) is constant along the joint. So one has

N1(+L) +N2(+L) = N1(−L) +N2(−L) ⇐⇒ N2(+L)−N2(−L) = −(N1(+L) +N1(−L))
(37)

and there is no contradiction in (34). But it means one equation in set (33) is lost and
remains the problem to separate a0(ũ2) and a0(ũ1) . A way to tackle this problem is to go
back to the Fourier series (30) giving ũi. Moreover, there is

ũi(±L) =
ui(+L) + ui(−L)

2
=

a0(ũi)

2
+

+∞∑
n=1

(−1)n an(ũi) , (38)
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which allows to obtain directly a0(ũ1). It is why the set of recursive equations (33) becomes
for i = 1, 2 and n ∈ N∗

a0(ũi)

2
+
∑
n≥1

(−1)n an(ũi) =
ui(+L) + ui(−L)

2

bn(Ñi)
nπ

L
− (−1)ib

Ga

ea
(an(ũ2)− an(ũ1)) = 0

−an(Ñi)
nπ

L
− (−1)ib

Ga

ea
(bn(ũ2)− bn(ũ1)) = (∆u)i

2L

nπ
(−1)n+1

1

Eieib

a0(Ñi)

2
=

ui(+L) − ui(−L)

2L

bn(ũi)
nπ

L
− 1

Eieib
an(Ñi) = 0

−an(ũi)
nπ

L
− 1

Eieib
bn(Ñi) = (∆N)i

2L

nπ
(−1)n+1

(39)

It should be noted that, in the previous equations, the sum appearing in the first relations
is done for any n ∈ N∗ in the general case, but becomes a sum from n = 1 to N when the
truncation is done.
In the following, it is described how the 1D Bar ME stiffness matrix KME (see (16)) is
obtained in the case of the FSE approach. The following notations are recalled

û1 = u1(−L) N̂1 = −N1(−L)

û2 = u2(−L) N̂2 = −N2(−L)

û3 = u1(+L) N̂3 = N1(+L)

û4 = u2(+L) N̂4 = N2(+L)

(40)

according to the sign convention defined Fig. 3. Then the vectors of unknowns, say Cu1 ,
Cu2 , CN1 and CN2 , are introduced

Cu1 =



a0(ũ1)
a1(ũ1)

...
aN(ũ1)
b1(ũ1)
b2(ũ1)

...
bN(ũ1)


Cu2 =



a0(ũ2)
a1(ũ2)

...
aN(ũ2)
b1(ũ2)
b2(ũ2)

...
bN(ũ2)


CN1 =



a0(Ñ1)

a1(Ñ1)
...

aN(Ñ1)

b1(Ñ1)

b2(Ñ1)
...

bN(Ñ1)


CN2 =



a0(Ñ2)

a1(Ñ2)
...

aN(Ñ2)

b1(Ñ2)

b2(Ñ2)
...

bN(Ñ2)


(41)

First, definition of (∆N)i given in (29) and relation (34) allow to replace the last equations
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of (39) by

−an(ũi)
nπ

L
− 1

Eieib
bn(Ñi) =

1

Eieib

Ni(+L) − Ni(−L)

2L

2L

nπ
(−1)n+1

=
1

Eieib

(
(−1)ib

Ga

ea

a0(ũ2)− a0(ũ1)
2

)
2L

nπ
(−1)n+1

(42)
which equivalently reads

an(ũi)
nπ

L
+

1

Eieib
bn(Ñi) +

1

Eieib

(
(−1)ib

Ga

ea

a0(ũ2)− a0(ũ1)
2

)
2L

nπ
(−1)n+1 = 0 (43)

With this new relations, the right-hand side of equations (39) only depends on numbers ûi
but not on numbers N̂i. This new set of equations formally becomes

DME


Cu1
Cu2
CN1

CN2

 = UME


û1
û2
û3
û4

 (44)

where DME is a square matrix of size 4(2N + 1) and UME is a rectangular matrix with
4(2N + 1) lines and 4 columns. Hence one obtains

Cu1
Cu2
CN1

CN2

 = D−1ME UME


û1
û2
û3
û4

 (45)

Moreover, with the truncation, one gets

Ni(+L) + Ni(−L)

2
= Ñi(±L) =

a0(Ñi)

2
+

N∑
n=1

(−1)n an(Ñi) , (46)

and (first equations of (33))

Ni(+L) − Ni(−L)

2L
= (−1)ib

Ga

ea

a0(ũ2)− a0(ũ1)
2

(47)

These relations equivalently read
Ni(+L) =

a0(Ñi)

2
+

N∑
n=1

(−1)n an(Ñi) + (−1)ibL
Ga

ea

a0(ũ2)− a0(ũ1)
2

Ni(−L) =
a0(Ñi)

2
+

N∑
n=1

(−1)n an(Ñi) − (−1)ibL
Ga

ea

a0(ũ2)− a0(ũ1)
2

(48)
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which formally becomes 
N̂1

N̂2

N̂3

N̂4

 = LME


Cu1
Cu2
CN1

CN2

 (49)

where LME is a rectangular matrix of size 4 lines and 4(2N+1) columns. Finally, one attains
N̂1

N̂2

N̂3

N̂4

 = LME D−1ME UME


û1
û2
û3
û4

 (50)

which means the 1D Bar ME stiffness matrix reads

KME = LME D−1ME UME . (51)

3. ME for the 1D Beam model

3.1. Assumptions and governing equations of 1D Beam model

The development of the 1D Beam ME is based on the following assumptions:

• both adherends are modelled as linear elastic Euler-Bernoulli laminated beams;

• the adhesive layer is modelled as an infinite number of shear springs and peel springs
linking the upper and lower adherends;

• the adhesive thickness is constant along the overlap;

• the adhesive stresses are constant in the adhesive thickness.

The equilibrium of the joint (see Fig. 4) comes from Goland and Reissner’s analysis [14].
The system of equilibrium equations reads

dNi(x)

dx
= (−1)ibT (x)

dVi(x)

dx
= (−1)i+1bS(x)

dMi(x)

dx
= −Vi −

bei
2
T (x)

i = 1, 2 (52)

where, for each adherend i, Ni is the normal force, Vi the shear force and Mi the bending
moment at abscissa x. T is the adhesive shear stress and S the adhesive peel stress of the
adhesive layer.Finally, it should be noted that b is the overlap width and ei is the thickness
of the adherent i.
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Figure 4: Free body diagram of infinitesimal pieces included between x and x + dx of both adherends in the
overlap region under 1D-beam kinematics. Subscript 1 (2) refers to the upper (lower) adherend.

The constitutive equations of the adherends are

Ni(x) = Ai
dui(x)

dx
−Bi

dθi(x)

dx

Mi(x) = −Bi
dui(x)

dx
+Di

dθi(x)

dx

θi(x) =
dvi(x)

dx

i = 1, 2 (53)

where, for each adherend i, Ai is the membrane stiffness, Bi the coupling membrane-bending
stiffness and Di the bending stiffness; Moreover, ui is the displacement in the x-direction, vi
the normal deflection and θi the bending angle.
In the case of a homogeneous adhesive macro-element, the constitutive equations of the
adhesive layer are

T (x) =
Ga

ea

(
u2(x)− u1(x)− e2

2
θ2(x)− e1

2
θ1(x)

)
S(x) =

Ea
ea

(v1(x)− v2(x))

(54)

where Ga is the shear modulus of the adhesive layer and Ea its adhesive peel modulus, which
is the parameter characterising its transverse tensile behaviour. The variable ea is redefined
as the adhesive thickness.
Now, it is possible to replace in equation (52) the expressions of T and S given in (54),
and those of Ni, Mi and θi given in (53) to obtain a differential system expressed only with
respect to the ui and vi and their derivatives (up to the order 3 for ui and 4 for vi). It is the
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way it is chosen in [28], where TEPS on each displacement ui and vi were used to solve these
equations. But here again, as for 1D Bar model, we use an alternative way, considering only
the following first order set of equations



dNi(x)

dx
= (−1)ib

Ga

ea

(
u2(x)− u1(x)− e2

2
θ2(x)− e1

2
θ1(x)

)
dVi(x)

dx
= (−1)i+1b

Ea
ea

(v1(x)− v2(x))

dMi(x)

dx
= −Vi −

bei
2

Ga

ea

(
u2(x)− u1(x)− e2

2
θ2(x)− e1

2
θ1(x)

)
dui(x)

dx
=

Di

AiDi −B2
i

Ni(x) +
Bi

AiDi −B2
i

Mi(x)

dθi(x)

dx
=

Bi

AiDi −B2
i

Ni(x) +
Ai

AiDi −B2
i

Mi(x)

dvi(x)

dx
= θi(x)

i = 1, 2 (55)

Let us remark this supposes AiDi − B2
i 6= 0 which is a classical hypothesis on material

properties.

3.2. Taylor expansion in power series for the 1D Beam model

To solve (55), it is continued as done in the in Section 2.2. After the same variable change
(see (7)), the solution functions are searched as TEPS for in ξ

ui(ξ) =
+∞∑
n=0

(ui)nξ
n Ni(ξ) =

+∞∑
n=0

(Ni)nξ
n

vi(ξ) =
+∞∑
n=0

(vi)nξ
n Vi(ξ) =

+∞∑
n=0

(Vi)nξ
n

θi(ξ) =
+∞∑
n=0

(θi)nξ
n Mi(ξ) =

+∞∑
n=0

(Mi)nξ
n

i = 1, 2 (56)

It means there are now 12 unknown functions.

After having introduced the above expressions in equations (55), the following recursive
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equations are obtained for all integer n and for all i = 1, 2

n+ 1

L
(Ni)n+1 − (−1)ib

Ga

ea

(
(u2)n − (u1)n −

e2
2

(θ2)n −
e1
2

(θ1)n
)

= 0

n+ 1

L
(Vi)n+1 − (−1)i+1b

Ea
ea

(
(v1)n − (v2)n

)
= 0

n+ 1

L
(Mi)n+1 + (Vi)n +

bei
2

Ga

ea

(
(u2)n − (u1)n −

e2
2

(θ2)n −
e1
2

(θ1)n
)

= 0

n+ 1

L
(ui)n+1 −

Di

AiDi −B2
i

(Ni)n −
Bi

AiDi −B2
i

(Mi)n = 0

n+ 1

L
(θi)n+1 −

Bi

AiDi −B2
i

(Ni)n −
Ai

AiDi −B2
i

(Mi)n = 0

n+ 1

L
(vi)n+1 − (θi)n = 0

(57)

To solve this set of equations, it is defined a truncation order, say N . Therefore, the above
relations are valid only for 0 ≤ n ≤ N−1, which leads to a set of 12N equations, involving
12(N + 1) unknowns ((N + 1) for each function). At this point one introduces the vectors of
unknowns defined for all i = 1, 2 as

Cui =


(ui)0
(ui)1

...
(ui)N

Cvi =


(vi)0
(vi)1

...
(vi)N

Cθi =


(θi)0
(θi)1

...
(θi)N

CNi
=


(Ni)0
(Ni)1

...
(Ni)N

CVi =


(Vi)0
(Vi)1

...
(Vi)N

CMi
=


(Mi)0
(Mi)1

...
(Mi)N


(58)

Figure 5: Nodal boundary condition diagram, 1D-beam kinematics. Nodal displacement (force) sign conven-
tion on the right (left) hand-side.

To complete the set of equations (57), the nodal displacement boundary conditions are added:
û1 = u1(ξ = −1) v̂1 = v1(ξ = −1) θ̂1 = θ1(ξ = −1)

û2 = u2(ξ = −1) v̂2 = v2(ξ = −1) θ̂2 = θ2(ξ = −1)

û3 = u1(ξ = 1) v̂3 = v1(ξ = 1) θ̂3 = θ1(ξ = 1)

û4 = u2(ξ = 1) v̂4 = v2(ξ = 1) θ̂4 = θ2(ξ = 1)

(59)
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Similarly, the nodal force boundary conditions are written according to the sign convention
defined Fig. 5:

N̂1 = −N1(ξ = −1) V̂1 = −V1(ξ = −1) M̂1 = −M1(ξ = −1)

N̂2 = −N2(ξ = −1) V̂2 = −V2(ξ = −1) M̂2 = −M2(ξ = −1)

N̂3 = N1(ξ = 1) V̂3 = V1(ξ = 1) M̂3 = M1(ξ = 1)

N̂4 = N2(ξ = 1) V̂4 = V2(ξ = 1) M̂4 = M2(ξ = 1)

(60)

Finally, the 1D Beam ME stiffness matrix, say KME, is the 12 × 12 matrix such that

KME

ûiv̂i
θ̂i


i=1,4

=

N̂i

V̂i
M̂i


i=1,4

(61)

It is obtained through the following way. First, gathering equations (57) and (59) leads to a
square system of size 12(N + 1), which formally reads

DME


Cui
Cvi
Cθi
CNi

CVi
CMi


i=1,2

=


[
0
]
12Nûiv̂i

θ̂i


i=1,4

 (62)

which allows to compute CNi
, CVi and CMiCNi

CVi
CMi


i=1,2

= D̂−1ME

ûiv̂i
θ̂i


i=1,4

(63)

where D̂−1ME is the rectangular matrix built of the 6(N + 1) last lines and 12 last columns of
D−1ME. Finally, with (60) which formally readsN̂i

V̂i
M̂i


i=1,4

= LME

CNi

CVi
CMi


i=1,2

(64)

where LME is a rectangular matrix of size 12 lines and 6(N + 1) columns, we obtainN̂i

V̂i
M̂i


i=1,4

= LME D̂−1ME

ûiv̂i
θ̂i


i=1,4

(65)

which means the 1D Beam ME stiffness matrix reads

KME = LME D̂−1ME . (66)
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3.3. Fourier series expansion for the 1D Beam model

The procedure is the same as in 2.3. In (55) are introduced the continuous functionsũi, ṽi,
θ̃i, Ñi, Ṽi and M̃i associated respectively to ui, vi, θi, Ni, Vi and Mi through (23). It gives,
for i = 1, 2

dÑi(x)

dx
+
Ni(+L)−Ni(−L)

2L
= (−1)ib

Ga

ea

(
ũ2(x)− ũ1(x)− e2

2
θ̃2(x)− e1

2
θ̃1(x)

)
+ (∆u)i x

dṼi(x)

dx
+
Vi(+L)− Vi(−L)

2L
= (−1)i+1b

Ea
ea

(ṽ1(x)− ṽ2(x)) + (∆v)i x

dM̃i(x)

dx
+
Mi(+L)−Mi(−L)

2L
= −Ṽi(x)− bei

2

Ga

ea

(
ũ2(x)− ũ1(x)− e2

2
θ̃2(x)− e1

2
θ̃1(x)

)
+ (∆θ)i x

dũi(x)

dx
+
ui(+L)− ui(−L)

2L
=

Di

AiDi −B2
i

Ñi(x) +
Bi

AiDi −B2
i

M̃i(x) + (∆N)i x

dθ̃i(x)

dx
+
θi(+L)− θi(−L)

2L
=

Bi

AiDi −B2
i

Ñi(x) +
Ai

AiDi −B2
i

M̃i(x) + (∆M)i x

dṽi(x)

dx
+
vi(+L)− vi(−L)

2L
= θ̃i(x) +

θi(+L)− θi(−L)

2L
x

(67)
where we have set for i = 1, 2

(∆u)i = (−1)ib
Ga

ea

(
u2(+L)− u2(−L)

2L
− u1(+L)− u1(−L)

2L

−e2
2

θ2(+L)− θ2(−L)

2L
− e1

2

θ1(+L)− θ1(−L)

2L

)

(∆v)i = (−1)i+1b
Ea
ea

(
v1(+L)− v1(−L)

2L
− v2(+L)− v2(−L)

2L

)

(∆θ)i = −Vi(+L)− Vi(−L)

2L
− bei

2

Ga

ea

(
u2(+L)− u2(−L)

2L
− u1(+L)− u1(−L)

2L

−e2
2

θ2(+L)− θ2(−L)

2L
− e1

2

θ1(+L)− θ1(−L)

2L

)

(∆N)i =
Di

AiDi −B2
i

Ni(+L)−Ni(−L)

2L
+

Bi

AiDi −B2
i

Mi(+L)−Mi(−L)

2L

(∆M)i =
Bi

AiDi −B2
i

Ni(+L)−Ni(−L)

2L
+

Ai
AiDi −B2

i

Mi(+L)−Mi(−L)

2L

(68)

Then are introduced the Fourier series of the unknown functions, with the same notation
convention as in equation (30), which means an(ψ̃) and bn(ψ̃) are Fourier coefficient of any
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function ψ̃. Using again the Fourier series decomposition of function ϕ(x) ≡ x, each
equation of the previous system leads respectively to 3 sets of equations, corresponding to
the constant term (namely a0), the terms in cos nπx

L
and the ones in sin nπx

L
. So the complete

set of recursive equations reads • Constant term for i = 1, 2

Ni(+L)−Ni(−L)

2L
= (−1)ib

Ga

ea

(
a0(ũ2)

2
− a0(ũ1)

2
− e2

2

a0(θ̃2)

2
− e1

2

a0(θ̃1)

2

)

Vi(+L)− Vi(−L)

2L
= (−1)i+1b

Ea
ea

(
a0(ṽ1)

2
− a0(ṽ2)

2

)
Mi(+L)−Mi(−L)

2L
= −a0(Ṽi)

2
− bei

2

Ga

ea

(
a0(ũ2)

2
− a0(ũ1)

2
− e2

2

a0(θ̃2)

2
− e1

2

a0(θ̃1)

2

)

ui(+L)− ui(−L)

2L
=

Di

AiDi −B2
i

a0(Ñi)

2
+

Bi

AiDi −B2
i

a0(M̃i)

2

θi(+L)− θi(−L)

2L
=

Bi

AiDi −B2
i

a0(Ñi)

2
+

Ai
AiDi −B2

i

a0(M̃i)

2

vi(+L)− vi(−L)

2L
=
a0(θ̃i)

2

(69)

• Terms in cos nπx
L

for i = 1, 2 and n ∈ N∗

bn(Ñi)
nπ

L
= (−1)ib

Ga

ea

(
an(ũ2)− an(ũ1)−

e2
2
an(θ̃2)−

e1
2
an(θ̃1)

)
bn(Ṽi)

nπ

L
= (−1)i+1b

Ea
ea

(an(ṽ1)− an(ṽ2))

bn(M̃i)
nπ

L
= −an(Ṽi)−

bei
2

Ga

ea

(
an(ũ2)− an(ũ1)−

e2
2
an(θ̃2)−

e1
2
an(θ̃1)

)
bn(ũi)

nπ

L
=

Di

AiDi −B2
i

an(Ñi) +
Bi

AiDi −B2
i

an(M̃i)

bn(θ̃i)
nπ

L
=

Bi

AiDi −B2
i

an(Ñi) +
Ai

AiDi −B2
i

an(M̃i)

bn(ṽi)
nπ

L
= an(θ̃i)

(70)
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• Terms in sin nπx
L

for i = 1, 2 and n ∈ N∗

−an(Ñi)
nπ

L
= (−1)ib

Ga

ea

(
bn(ũ2)− bn(ũ1)−

e2
2
bn(θ̃2)−

e1
2
bn(θ̃1)

)
+ (∆u)i

2L

nπ
(−1)n+1

−an(Ṽi)
nπ

L
= (−1)i+1b

Ea
ea

(bn(ṽ1)− bn(ṽ2)) + (∆v)i
2L

nπ
(−1)n+1

−an(M̃i)
nπ

L
= −bn(Ṽi)−

bei
2

Ga

ea

(
bn(ũ2)− bn(ũ1)−

e2
2
bn(θ̃2)−

e1
2
bn(θ̃1)

)
+ (∆θ)i

2L

nπ
(−1)n+1

−an(ũi)
nπ

L
=

Di

AiDi −B2
i

bn(Ñi) +
Bi

AiDi −B2
i

bn(M̃i) + (∆N)i
2L

nπ
(−1)n+1

−an(θ̃i)
nπ

L
=

Bi

AiDi −B2
i

bn(Ñi) +
Ai

AiDi −B2
i

bn(M̃i) + (∆M)i
2L

nπ
(−1)n+1

−an(ṽi)
nπ

L
= bn(θ̃i) +

θi(+L)− θi(−L)

2L

2L

nπ
(−1)n+1

(71)

Following Section 2.3, to solve this set of equations, a truncation order is defined, say N .
Therefore, there are here (2N + 1) unknowns for each Fourier series so a total number of
12(2N + 1) unknowns. As previously, it is observed that the number of equations (69)-(70)-
(71) is equal to 12(2N + 1) equations which is equal to the number of unknowns. But here
also, there are exactly the some difficulties than in Section 2.3. More precisely, in the set
(69), a0(ũ2) and a0(ũ1) only appears in expression a0(ũ2) − a0(ũ1), like a0(ṽ1) and a0(ṽ2)
through a0(ṽ1) − a0(ṽ2). The consequences of these stress relations are not discussed as in
Section 2.3 but is directly studied the solution proposed previously, which consists in going
back to the truncated Fourier series giving ũi and ṽi:

ũi(±L) =
ui(+L) + ui(−L)

2
=

a0(ũi)

2
+

N∑
n=1

(−1)n an(ũi)

ṽi(±L) =
vi(+L) + vi(−L)

2
=

a0(ṽi)

2
+

N∑
n=1

(−1)n an(ṽi)

(72)

which allows to obtain directly a0(ũi) and a0(ṽi). Likewise for the variable θ̃i

θ̃i(±L) =
θi(+L) + θi(−L)

2
=

a0(θ̃i)

2
+

N∑
n=1

(−1)n an(θ̃i) (73)
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These new relations are used to replace the three first ones of (69), which become

ui(+L) + ui(−L)

2
=

a0(ũi)

2
+

N∑
n=1

(−1)n an(ũi)

vi(+L) + vi(−L)

2
=

a0(ṽi)

2
+

N∑
n=1

(−1)n an(ṽi)

θi(+L) + θi(−L)

2
=

a0(θ̃i)

2
+

N∑
n=1

(−1)n an(θ̃i)

ui(+L)− ui(−L)

2L
=

Di

AiDi −B2
i

a0(Ñi)

2
+

Bi

AiDi −B2
i

a0(M̃i)

2

θi(+L)− θi(−L)

2L
=

Bi

AiDi −B2
i

a0(Ñi)

2
+

Ai
AiDi −B2

i

a0(M̃i)

2

vi(+L)− vi(−L)

2L
=

a0(θ̃i)

2

(74)

Below is obtained the 1D ME beam stiffness matrix KME, defined by (61). The same no-
tations are used for the nodal displacements (59) and for the nodal force (60) as in 3.2, the
only difference being that ξ = −1 and ξ = +1 now become x = −L and x = +L respectively.
Then, for each unknown function, generically noted ψ, the vector of unknowns reads

Cψ =



a0(ψ̃)

a1(ψ̃)
...

aN(ψ̃)

b1(ψ̃)

b2(ψ̃)
...

bN(ψ̃)


(75)

It can be observed that equations (74) and (70) only involve Fourier coefficients unknowns
and nodal displacement boundary conditions but not nodal forces. Those ones only appear
in (71), and only through the terms (∆θ)i, which involves Vi(+L)−Vi(−L)

2L
, (∆N)i and (∆M)i

which involves Ni(+L)−Ni(−L)
2L

and Mi(+L)−Mi(−L)
2L

(see (68)). However, the three first relations
of (69) allow to write these 3 terms as functions of the Fourier series unknowns. With this
new relations, the system (74)-(70)-(71) may formally rewritten as a square linear system
which unknowns are all the Fourier coefficients, the right-hand side depending only on nodal
displacements but not on nodal forces. This new set of equations formally becomes

DME C = UME Û , (76)
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where DME is a square matrix of size 12(2N + 1), C is the vector gathering the 12(2N + 1)
Fourier coefficients, UME is a rectangular matrix with 12(2N + 1) lines and 12 columns and

Û contains the 12 nodal displacements given in (59). Conversely, it becomes

C = D−1ME UME Û . (77)

The last step is the following. With the truncation, one has

Ni(+L) + Ni(−L)

2
= Ñi(±L) =

a0(Ñi)

2
+

N∑
n=1

(−1)n an(Ñi)

Mi(+L) + Mi(−L)

2
= M̃i(±L) =

a0(M̃i)

2
+

N∑
n=1

(−1)n an(M̃i)

Vi(+L) + Vi(−L)

2
= Ṽi(±L) =

a0(Ṽi)

2
+

N∑
n=1

(−1)n an(Ṽi)

(78)

The three first relations of (69) read

Ni(+L)−Ni(−L)

2L
= (−1)ib

Ga

ea

(
a0(ũ2)

2
− a0(ũ1)

2
− e2

2
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(
a0(ṽ1)

2
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(
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2
− e2

2
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− e1

2

a0(θ̃1)

2

)
(79)

By simple linear combinations, it is easy to express the vector of the 12 nodal forces, say N̂ ,
as functions of all the Fourier coefficients, which formally becomes

N̂ = LME C = LME D−1ME UME Û , (80)

where LME is a rectangular matrix of size 12 lines and 12(2N + 1) columns. Finally, is
obtained the 1D Beam ME stiffness matrix

KME = LME D−1ME UME . (81)

4. Validation

4.1. Method

The formulation methodologies presented in section 2 and section 3 are implemented in
Matlab codes which are supplementary materials of the present paper. The ME stiffness
matrices based on expansion series (TEPS or FES) are dependent on the truncation order N.
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The validation method consists then in assessing the convergence ME based-series stiffness
matrices as function of N. The convergence is then expressed as function of N with respect
to reference stiffness matrices, based on two cases for both 1D-bar and 1D-beam model: a
balanced case and an unbalanced case. The geometrical parameters used are the same for
both cases and are provided in Table 1. The material properties are given in Table 2. For
both cases, the adhesive material parameters are the same. The unbalanced case differs from
the balanced case by varying the Young’s modulus of the upper adherend only.

L b e1 e2 ea

6, 25 25 2 2 0, 2

Table 1: Geometrical parameters in mm

E1 E2 Ga Ea
Balanced case 70000

70000 800 2240
Unblanced case 210000

Table 2: Material parameters in MPa

In the case of the 1D-bar ME with homogeneous properties, the closed-form expression for
the ME stiffness matrix is known [32, 11]. It is then regarded as the reference 1D-bar ME
stiffness matrix and is recalled here:

KME =
1

1 + χ

A2

2L


ω

tanhω
+ 1

χ
1− ω

tanhω
− ω

sinhω
− 1

χ
ω

sinhω
− 1

1− ω
tanhω

ω
tanhω

+ χ ω
sinhω

− 1 − ω
sinhω

− χ
− ω

sinhω
− 1

χ
ω

sinhω
− 1 ω

tanhω
+ 1

χ
1− ω

tanhω
ω

sinhω
− 1 − ω

sinhω
− χ 1− ω

tanhω
ω

tanhω
+ χ

 (82)

where χ and ω are nondimensional parameters given by χ = A2

A1
and ω = 2L

√
Ga

ea

1+χ
e2E2

. In the

case of 1D-beam ME, the ME stiffness matrix components are not provided in closed-form
due to the complexity of the mathematical treatment. When the properties are homogeneous,
they can be deduced from algebraic manipulations without any approximations [20] using, for
example, a method involving coupling matrices DME and LME [23, 11]. It is then regarded as
the reference 1D-beam ME stiffness matrix and a Matlab code is available as supplementary
material of the paper by Lachaud et al. [23].
The convergence is firstly assessed by a comparison components by components of the ap-
proximated ME stiffness matrices by expansion series with the reference one through the
following error indicator:

error =

P∑
i=1

P∑
j=1

|Kexact
ij − Kseries

ij |

maxij |Kexact
ij |

(83)
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where P is the total number of degrees of freedom: P = 4 (P = 12) for the 1D-bar (1D-beam)
model.
A second convergence assessment is dedicated to the computed displacement jumps at the
interface for the classical single-lap joint configuration. The displacement jumps are evaluated
at both overlap ends where they are maximal. For simplicity, the boundary conditions are
directly introduced at the four ME nodes by prescribing or loading degrees of freedom. This
approach is like sandwich-type analyses of bonded joints. The prescription of degrees of
freedom leads to an inversible structural stiffness matrix Ks while the loading of degrees of
freedom leads to the feeding of a structural nodal force vector Fs. The minimization of the
potential energy leads to the classical equation Fs = KsUs where Us is the structural nodal
displacement vector. For the 1D-bar model, the degree of freedom of the left-side upper
adherend node is prescribed (û1 = 0) while the force F = 5 kN is applied to the right-side

lower adherend node: N̂4 = F . A 3×3 linear system has then to be solved. For the 1D-beam
model, the 3 degrees of freedom of the left-side upper adherend are prescribed (û1 = 0, v̂1 = 0,

θ̂1 = 0) while the the right-side lower adherend node is loaded such as: N̂4 = F , V̂4 = −V0
and M̂4 = −M0. The values of V0 and M0 are chosen following the approach of Cheng et al.
[33] to approximately consider the nonlinear geometrical effect due to eccentricity of the load
path. They are then depending on F . For a balanced joint, it is indicated that the Cheng
et al. approach reduces to the Goland and Reissner approach. The values of M0 and V0 are
then given in Table 3 for the balanced and unbalanced cases. A 9× 9 linear system has then
to be solved for the 1D-beam model.

V0 M0

Balanced case 231 3555
Unblanced case 297 3282

Table 3: Values of V0 in N and M0 in Nmm for both cases

For the 1D-bar model, the interface displacement jumps in shear δu of the in x = −L and
x = +L are computed such us δu(−L) = û2−û1 and δu(L) = û4−û3. For the 1D-beam model,
the interface displacement jumps in shear δu and in peel δv of the in x = −L and x = +L
are computed such us δu(−L) = û2 − û1 − 1

2
e2θ̂2 − 1

2
e1θ̂1, δu(L) = û4 − û3 − 1

2
e2θ̂4 − 1

2
e1θ̂3,

δv(−L) = v̂1 − v̂2 and δv(L) = v̂3 − v̂4. The absolute values of the relative difference with
the displacements jumps computed from the related reference ME stiffness matrix are then
computed.

4.2. Results for FES formulation

4.2.1. 1D-Bar model

For both balanced and unbalanced cases, as a function of the truncation order N , the vari-
ation of the error indicator as well as the absolute values of relative difference in interface
displacement jumps in shear δu in x = −L and x = +L are provided in Fig. 6 and Fig.
7 respectively. For the balanced case, the absolute values of relative difference in displace-
ment jumps are the same in x = −L and in x = +L for every truncation number N . It is
shown that the error as well as the relative difference are decreasing functions of increasing
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truncation number N . The more N is elevated, the more the approximated stiffness matrix
components and the interface displacements jumps tends to the reference ones. Errors and
relative differences around 1% are obtained for N=100. In addition, best fitting curves are
provided in the shape of power law. A convergence for the error indicator and displacement
jumps in shear in 1

N
is then measured.
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y = 2.3024x-0.988

R² = 0.9997
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trunca�on order (N)

balanced case unbalanced case

Figure 6: Error as function of the truncation order for both balanced and unbalanced cases

4.2.2. 1D-Beam model

For both balanced and unbalanced cases, as a function of the truncation order N , the vari-
ation of the error indicator as well as the absolute values of relative difference in interface
displacement jumps in shear δu and in peel δv in x = −L and x = +L are provided in Fig. 8,
Fig. 9 and Fig. 10 respectively. The same tendencies as for the 1D-bar model are observed.
The absolute values of relative difference in displacement jumps are the same in x = −L
and in x = +L for every truncation number N for the balanced case. Moreover, the error
as well as the relative difference are decreasing functions of increasing truncation number N .
The more N is elevated, the more the approximated stiffness matrix components and the
interface displacements jumps tends to the reference ones. A convergence in around 1

N
for

the error indicator and displacement jumps in shear and in peel is then measured. Finally,
relative differences in displacement jumps in shear and in peel around 1% are obtained for
N = 100.
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Figure 7: Relative difference in interface displacement jumps in shear at both overlap ends as function of the
truncation order for both balanced and unbalanced cases

4.3. Comparison between FES and TEPS formulations

A formulation methodology of 1D-bar and 1D-beam ME stiffness matrices based on TEPS
was presented by Ordonneau et al. and a Matlab code is available as a supplementary material
of [28]. In the present paper, a new methodology based on TEPS for the formulation of these
stiffness matrices are presented in addition of the FES formulation. The objective of the
current section is to compare the FES and both TEPS formulation in terms of convergence.
Only the balanced case is under consideration in this section. The results and associated
conclusions are the same for the unbalanced case and are provided in Appendix A.
For the 1D-bar model, as a function of the truncation order N , the variation of the error
indicator as well as the absolute values of relative difference in interface displacement jumps
in shear δu in x = −L are provided in Fig. 11 and Fig. 12 respectively. For the 1D-beam
model, as a function of the truncation order N , the variation of the error indicator as well as
the absolute values of relative difference in interface displacement jumps in shear δu and in
peel δu in x = −L are provided in Fig. 13, Fig. 14 and Fig. 15 respectively.
It is shown that, for the 3 series formulation, the error indicator and the relative difference
in interface displacements jumps converge with increasing function for both 1D-bar and
1D-beam models. Moreover, for low truncation number N , the FES formulation appears to
provide better or similar approximations as the TEPS formulation while, for higher truncation
numbers, the TEPS formulations provide significantly closer approximations. Indeed, the
convergence for TEPS formulations speeds up from N = 10 and lesser. For N = 10, the TEPS
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Figure 8: Error as function of the truncation order for both balanced and unbalanced cases

formulations provide relative difference 10 to 100 times lower than the FES formulation.
Finally, for the 1D-bar model, not any differences in terms of convergence are shown between
the TEPS formulation. For the 1D-beam model, the TEPS formulation by Ordonneau et al.
[28] converge lightly quickly than the present TEPS formulation.

4.4. Remarks

The methodology presented in for the formulation of ME stiffness matrix using TEPS and
FES as well as their implementation appear as validated for both 1D-bar and 1D-beam
model. The stiffness matrix components and the interface displacement jumps converge
to the reference ones. For a truncation order N = 100 (N = 10) relative differences in
interface displacement jumps around 1% are obtained with FES (TEPS) formulation. The
convergence rate associated with the FES formulation is regular and depend on 1

N
. On the

contrary, the TEPS formulation convergence rate is characterized by a significant speed up at
low truncation numbers. The present TEPS formulation present similar or lesser convergence
as the one presented by Ordonneau et al. [28]. Nevertheless, the methodology for the present
TEPS formulation is straight forward since it considers the first order differential equations
deduced from the simplifying hypotheses. Contrary to the one presented by Ordonneau et
al., not any algebraic manipulations are required. Finally, elements on computation cost
could be interesting. However, computational times are dependent on the implementation
quality and implementation platform used. As a result, instead of a quantitative assessment,
a qualitative assessment is preferred based on the coupling matrixDME, the inversion of which
is necessary for both TEPS and FES formulation. The size of DME is equal to P (N + 1)
and P (2N + 1) for TEPS and FES formulations respectively, so that the TEPS formulation
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Figure 9: Relative difference in interface displacement jumps in shear at both overlap ends as function of the
truncation order for both balanced and unbalanced cases

qualitatively appears less costly.

4.5. Application on the single-lap bonded joint test case

4.5.1. Overview

The computation of adhesive stresses by the ME modelling has already been (i) validated
with respect to classical theories (e.g. [20, 32]) by demonstrating that the same hypotheses
lead to the same results and (ii) assessed with respect to refined FE methods (e.g. [21, 28]) on
various types of bonded joints, eventually including nonlinear adhesive material behaviors.
In this section, the adhesive shear and peel stress distributions along the overlap of the
single-lap bonded joint are considered. The single-lap bonded joint is supposed (i) made
with adherends having the same elastic linear isotropic homogeneous materials, (ii) in-plane
loaded by a tensile force of f = 5 kN and simply supported at both extremities (see Figure
1). Under these hypotheses the classical theory of Goland and Reissner [14] can be applied.
The geometrical parameters are given in Table 1. Moreover, the length outside the overlap
of both adherends is equal to l1 = l2 = 50 mm. The material parameters for the adhesive are
provided in Table 2. The Young’s modulus and Poisson’s ratio are supposed equal to 70 GPa
and 0.35 respectively. 1D-beam ME models and a 2D FE plane strain model of this joint
are built. For the ME model, the computation is made considering for the overlap either
the reference stiffness matrix (see Section 4.1) or the stiffness matrix formulated using the
FES. The objective is to compare the adhesive stress distribution obtained by the different
approaches.
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Figure 10: Relative difference in interface displacement jumps in peel at both overlap ends as function of the
truncation order for both balanced and unbalanced cases

4.5.2. ME model

The ME model of the single-lap bonded joint (Figure 1) is built with one macro-elements
representing for the adherends and the adhesive layer along the overlap and two beam ele-
ments representing the adherends outside the overlap [11]. The structural stiffness matrix
Ks is then assembled from the elementary ME stiffness matrix KME and the beam element
stiffness matrix Kbeam,i for the adherend i where:

Kbeam,i =



Ai/li −Ai/li 0 0 0 0
−Ai/li Ai/li 0 0 0 0

0 0 12Di

l3i
−12Di

l3i
6Di

l2i
6Di

l2i

0 0 −12Di

l3i
12Di

l3i
−6Di

l2i
−6Di

l2i

0 0 6Di

l2i
−6Di

l2i
4Di

li
2Di

li

0 0 6Di

l2i
−6Di

l2i
2Di

li
4Di

li


(84)

A total of 6 nodes is then involved, each node having 3 degrees of freedom. After the
prescription of concerned displacements to ensure a simply support, a total of 15 degrees
of freedom is obtained. When considering the ME stiffness matrix KME based on FES
formulation, the ME model depends on the truncation order N. Here, 4 truncation orders are
selected: N = 2, N = 5, N = 50 and N = 500. The minimization of the potential energy
leads to the linear system Fs = KsUs where Us is the unknown nodal displacement vector
and Fs the nodal displacement vector depending on the applied tensile load f . Finally, to
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Figure 11: Error as function of the truncation order for the balanced case

consider the geometrically nonlinearity in terms of defection due to eccentricity of the load
path, the lengths outside the overlap li are modified to get the bending moment and shear
force at overlap ends such as predicted by Goland and Reissner ([11, 20]).

4.5.3. FE model

The 2D plane strain FE model of the single-lap bonded joint in Figure 1 is developed using the
commercial FE software SAMCEF v21.1 (SIEMENS). The geometry as well as the material
laws and parameters are the same as described previously. The adherends are meshed with
linear 4-node elements under plane strain assumption with 2 degrees of freedom per node
and normal Gaussian integration. The mesh strategy consists in refining the mesh in the
areas subjected to high stress gradients: both ends of the bonded overlap. Moreover, the
mesh of the FE model is designed to be driven by the number of elements in the adhesive
layer at both overlap ends. At each of both extremities of the overlap and along a length
of 4 mm, the adhesive is regularly meshed with elements, the aspect ratio of which is one.
Along the rest of the overlap, the mesh is distributed towards the center of the overlap to
reduce the size of the FE model (Fig. 16). At the interface between each adherend and
the adhesive, kinematics bonding condition at coincident nodes is applied, meaning that a
transition ratio equal to 1 is considered. To reduce the size of the FE model, the mesh is
then distributed in the adherend thickness and along the length outside of the overlap. The
prescription of displacements related to simply support conditions and the applied tensile
force f are introduced by constraining 2 additional nodes linked to both joint extremities
with rigid body elements (Figure 1 and Figure 16). Two computation cases are considered:
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Figure 12: Relative difference in interface displacement jumps in shear in x = −L as function of the truncation
order for the balanced case

geometrically linear and geometrically nonlinear. The same iterative resolution based on
the Newton Raphson scheme is then employed for both previous computation cases. The
adhesive stresses measured are Cauchy stresses extrapolated at nodes and averaged with
neighboring elements. The adhesive stresses are measured along the overlap at the middle of
the adhesive thickness.
To justify the mesh convergence, four different numbers of elements in the adhesive thickness
are tested: 2, 4, 8 and 12 elements leading to densities of 10, 20, 40 and 60 elements per
mm in the adhesive thickness – since ea = 0.2 mm – respectively. The adhesive peak stresses
in shear and in peel for a density of 60 elements per mm are taken as a references. The
ratio between the adhesive peak stress in shear and in peel for a given number of elements
in the adhesive thickness with the related reference adhesive peak stress in shear and in peel
is provided as a function of the meh density in Figure 17. It is shown that with 12 elements
in the adhesive thickness, the FE model can be regarded as converged.

4.5.4. Comparison

The adhesive shear and peel stress distributions along the overlap provided by the ME models
and FE model are given in Figure 18 and Figure 19 for geometrically linear and nonlinear
assumptions respectively. Moreover, the adhesive stress distribution by Goland and Reissner
[14] are added in Figure 19. The adhesive stress distributions predicted by the ME models
based KME based on FES formulation converge when the truncation order N is increased
as expected. The ME model with KME based on FES formulation at N = 500 provides
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Figure 13: Error as function of the truncation order for the balanced case

maximal adhesive shear and peel peak stresses relatively different from the ones predicted by
ME model with the reference KME stiffness matrix of −0.12% and −0.30% respectively for
both geometrically linear and nonlinear assumptions. Besides, in both geometrically linear
and nonlinear assumptions, the adhesive distributions provided by the ME and FE models
are in very close agreement. The differences appear at both overlap ends. As the ME models
are based on a simple beam on elastic foundation approach, they are not able to capture at
free ends (i) the tendency of the adhesive shear stress to drop to zero and (ii) the induced
brutal decrease of the peel stress, contrary to the converged FE model. Small differences in
terms of peak stresses can then be measured. The same conclusions arise when considering
the adhesive stress distributions given by the Goland and Reissner theory instead of those by
the ME models. Another source of difference is due to the various set hypotheses of models.
The ME model are 1D-beam models involving true Young’s modulus while the FE model
is under plane strain assumption resulting in effective Young’s modulus. This the same for
the theory by Goland and Reissner: the shear stress is assessed through the adherend true
Young’s modulus while the peel stress makes appear the adherend effective Young’s modulus.
That is why, in particular, the adhesive shear stress distribution given by the converged ME
model tends to the Goland and Reissner one contrary to the peel stress distribution (see
Figure 19).
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Figure 14: Relative difference in interface displacement jumps in shear in x = −L as function of the truncation
order for the balanced case

5. Conclusion and perspectives

In the frame of the simplified stress analysis of adhesively bonded single-lap joints, it is
common to model the adherends as beams or cylindrically bending plates and the adhesive
layer as a bed of springs. Even under these simplifications, the expressions for the me-
chanical fields in closed-for manner is not always possible, all the more when the models
are enriched (graduation of properties, variation of constitutive equations, boundary condi-
tions). Semi-analytical approaches associated with dedicated resolution schemes, such as the
macro-element modelling able to represent for an entire length bonded overlap with only one
4-nodes brick, become then necessary. In this paper, the formulation of ME stiffness matrix
of an entire adhesively bonded joint is approximated using Taylor expansion poser series and
of Fourier expansion series. A methodology associated with each of both previous expansion
series is presented and implemented. Both methodologies are validated by comparing the
stiffness matrix components term by term and the interface displacement jumps with the re-
sults from exact formulation. In addition, the formulation based on Taylor expansion power
series offer a significantly convergence rate associated with an expected lesser computation
cost. Nevertheless, the use of FES does not make disappear series terms so that it is not
necessary to look for additional equations. In the frame of 1D-bar or 1D-beam models, the
finding of additional equations is obvious. But the finding of additional equations prevented
Ordonneau [29] from the formulation of the macro-element stiffness matrix of an entire over-
lap made of 2D plates bonded by a bed of springs – associated with the peel and both shear
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Figure 15: Relative difference in interface displacement jumps in peel in x = −L as function of the truncation
order for the balanced case

displacement jumps. The use of FES could then be tested as a future work.
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Figure 19: Distribution along the overlap of the adhesive shear stress (a) and peel stress (b) provided by
the ME models and the FE model under geometrically nonlinear assumption and by Goland and Reissner
theory. A focus on the stress distribution along the first millimeter is added.
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Appendix A. Appendix

The results for the comparison of FES and both TEPS formulation for the unbalanced case
are given in this appendix. The relative difference in interface displacement jumps is given
in x = −L only since those in x = +L are similar.
For the 1D-bar model, as a function of the truncation order N, the variation of the error
indicator as well as the absolute values of relative difference in interface displacement jumps
in shear δu in x = −L are provided in Fig. A.1 and Fig. A.2 respectively.
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Figure A.1: Error as function of the truncation order (in log scale) for the unbalanced case

For the 1D-beam model, as a function of the truncation order N, the variation of the error
indicator as well as the absolute values of relative difference in interface displacement jumps
in shear δu and in peel δv in x = −L are provided in Fig. A.3, Fig. A.2 and Fig. A.5
respectively.
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Figure A.2: Relative difference in interface displacement jumps in shear in x = −L as function of the
truncation order (in log scale) for the unbalanced case
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Figure A.3: Error as function of the truncation order (in log scale) for the unbalanced case
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Figure A.4: Relative difference in interface displacement jumps in shear in x = −L as function of the
truncation order (in log scale) for the unbalanced case
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Figure A.5: Relative difference in interface displacement jumps in peel in x = −L as function of the truncation
order (in log scale) for the unbalanced case
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