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1LIX, École Polytechnique/CNRS, Institut Polytechnique de Paris, Palaiseau, France
{ariel.kwiatkowski, vicky.kalogeiton, marie-paule.cani}@polytechnique.edu

2INRIA Rennes, France
julien.pettre@inria.fr

Abstract

Simulating trajectories of virtual crowds is a commonly en-
countered task in computer graphics. It significantly over-
laps with the broader field of multiagent path finding, hav-
ing the same central goal, but with different desired charac-
teristics of motion. Several recent works have applied Rein-
forcement Learning methods to animate virtual crowds, how-
ever they often make quite different design choices when it
comes to the fundamental simulation setup. Each of these
choices comes with a reasonable justification for its use, so
it is not obvious what is their real impact, and how they af-
fect the results. In this work, we build upon our recent re-
search (Kwiatkowski et al. 2022b) where we study the impact
of these arbitrary design choices in terms of their impact on
the learning performance, as well as the quality of the result-
ing motion. We extend it with a more in-depth analysis of the
reward function, its structure and properties. We introduce a
simple framework for modelling the reward function that en-
ables studying its properties without performing a relatively
costly RL training. We also show some of our findings on how
certain specific reward functions succeed or fail at producing
believable behavior in different scenarios.

1 Introduction
Multiagent navigation is a task that is common across many
diverse applications. From warehouse robot path-finding, to
autonomous driving and virtual crowd generation, it is nec-
essary to generate trajectories moving agents between two
(or more) points in a way that is collision-free and effi-
cient. Each domain also has its unique characteristics – au-
tonomous cars have a very specific set of movements avail-
able to them, and warehouse robots are similarly constrained
by their hardware. In both of these cases it is also crucial that
any collisions are eliminated, even at the cost of longer and
less efficient trajectories, due to the high cost of collisions.
On the other hand, simulating virtual crowds is much more
forgiving – it is not restrained by the physical world, and
the cost of individual collisions may be as trivial as slightly
worse immersion in games or movies.

Whatever the domain, there is always a trade-off to be
made. Even in the domains where collisions are very costly,
they are not infinitely so. Similarly to human locomotion,
both pedestrian and motorized, where collisions and car
crashes still occur – some margin of error must be allowed.

Otherwise, if a lack of collision is infinitely more important
than any other goal, the only fully reliable strategy for all
participants is not to move at all. A natural way to express
the competing objectives is to give them numerical values,
and each trajectory is then rated based on the sum of those
values.

This formulation naturally yields itself to the Reinforce-
ment Learning (RL) approach. At its core, RL is a study of
sequential decision making, with the goal of optimizing a
scalar objective over time. It does not require any additional
structure like differentiability or having a known environ-
ment model, which makes it a natural option for learning to
act in complex environments.

An RL task can be described with three main components:
states, actions and rewards. When an agent takes an action,
it observes the new state of the environment, and receives a
reward indicating the quality of that action. In this work, we
focus on this last component by investigating the properties
of the reward function. A commonly used structure of a re-
ward function is a weighted sum of several terms, and so we
explore both the possible terms, as well as their weights.

In this work, we specifically focus on generating virtual
crowds using multiagent reinforcement learning. On the one
hand, this gives us a lot of flexibility on how to design and
train the RL agents. Occasional collisions are not a big issue
both during training and deployment, and their impact can
be significantly mitigated by simple rendering tricks (e.g.
rendering agents as smaller than their collision radius). On
the other hand, each of these design choices may have subtle
and difficult to predict consequences, and therefore we must
be mindful about them.

An often overlooked component of the behavior of vir-
tual crowds is the velocity at which the agents are moving.
In other domains there are typically external considerations
that set the possible and preferred velocities, like mechani-
cal capabilities and speed limits on roads. Simulated agents,
however, can move in arbitrary ways, which means that their
motion must be deliberately designed via an appropriate ac-
tion space, as well as a reward that incentivizes desired (of-
ten human-like) motion.

In this work, we aim to show what structures of the re-
ward function will exhibit desirable qualitative and quantita-
tive properties in the resulting RL agents. We use theoretical
modelling of several simplified scenarios which can indicate



potential problems with some choices of reward functions,
as well as empirical evaluation of agents trained with differ-
ent variants, in terms of reward-independent metrics such as
the number of collisions and energy usage.

This work overlaps with our recently published work
on the wider design choices in RL-trained crowd simula-
tions (Kwiatkowski et al. 2022b). We summarize the main
findings in the following sections, and extend the parts re-
lated to the reward function design.

2 Related work
Microscopic simulation of virtual crowds has garnered
significant research interest in recent years. Various non-
learning techniques have been introduced in the previous
decade (Toll and Pettré 2021), which typically involve de-
signing rule-based systems to update each agent’s velocity
based on their context. There also exists a body of work us-
ing RL for controlling virtual characters, including crowd
scenarios (Kwiatkowski et al. 2022a). In this section we de-
scribe the elements of related work which are the most rele-
vant to applying RL in crowd simulation.

Reinforcement Learning. RL is a study of sequential
decision making, where one or more agents act in an en-
vironment, affecting its state, and receiving rewards. Mod-
ern RL widely uses neural network-based algorithms (Sutton
and Barto 2018), using them e.g. as a policy function, map-
ping observations to actions taken by the agent. This net-
work is then optimized with a procedure based on the Policy
Gradient Theorem, as introduced by the REINFORCE algo-
rithm (Sutton et al. 1999). A more modern version that fol-
lows the same principle is the Proximal Policy Optimization
(PPO) algorithm, introduced by Schulman et al. (2017). PPO
is now the de facto standard on-policy algorithm used in
many DRL applications due to its simplicity and efficiency.

Crowd Simulation. Microscopic simulation of crowds is
typically done by either using force-based methods (Hel-
bing and Molnár 1995) where the positions of nearby
agents, obstacles, as well as the agent’s destination, all con-
tribute to Social Forces that drive the acceleration of the
agent at the next time step, or alternatively velocity-based
methods such as Optimal Reciprocal Collision Avoidance
(ORCA) (van den Berg et al. 2011). The latter construct ob-
stacles in the agent’s velocity space, which correspond to
velocities that would result in a collision if the agent were
to take them. This leads to effective solutions to collision
avoidance, able to capture anticipation behaviours in cross-
ing scenarios. Recently, vision-based and data-driven algo-
rithms were explored as well, promising even more human-
like results (Toll and Pettré 2021).

Crowd Simulation via DRL. There is a number of prior
papers which train DRL agents on the task of crowd simula-
tion. Long et al. (2018) use a multiagent robotic navigation
setup, which shares certain properties with crowd simula-
tion. Lee, Won, and Lee (2018) train an RL agent on a vari-
ety of crowd scenarios, showing that a single trained model
can be used to control multiple agents acting in a shared en-
vironment, on a diverse range of scenarios. Sun, Zhai, and
Qin (2019) train groups of agents by making them follow
specially-trained leader agents. Xu et al. (2020) combine

DRL with an ORCA layer that ensures collision-free move-
ment.

DRL is also used to generate more interesting, higher-
quality trajectories. Xu and Karamouzas (2021) use real-
world human trajectory data to train a supervised model
judging the human-likeness of a generated trajectory. Then,
the output of that model is used as an additional compo-
nent of the reward function, encouraging agents to act in a
human-like manner. Hu et al. (2022) use a parametric RL
approach to generate heterogeneous behaviors with a sin-
gle shared policy network. Each agent has its own preferred
velocity value, and is trained to move according to it. Simi-
larly, Panayiotou et al. (2022) vary the weights in the reward
functions of different agents in order to give them unique
and configurable personalities.

While each of these prior works tackles the same problem
of crowd simulation, many elements of their fundamental
setup differ in potentially significant ways, which makes di-
rect comparison infeasible.

3 Environment Design Choices
We identify three crucial design choices which can impact
the properties of virtual crowds trained with a standard DRL
algorithm – observations, actions, and the reward function.
In this section, we set the problem in standard multiagent
RL formalism, and describe the variants of observations and
action spaces explored in this work.

3.1 Problem Formulation
We model the problem of crowd simulation as a Par-
tially Observable Stochastic Game (POSG) (Hansen, Bern-
stein, and Zilberstein 2004). A POSG is defined as a tuple
(I,S, {Ai}, {Ωi}, {Oi}, T, {Ri}, µ), where I is the set of
agents, S is a set of states of the environment, Ai is a set of
actions for agent i (A = ×i∈IAi is the joint action set),
Ωi is the set of observations, Oi : S → Ωi is the obser-
vation function, Oi : S → Ωi is the observation function,
T : S × A → ∆S is the environment transition function,
Ri : S × A × S → R is the reward function, and µ ∈ ∆S
is the initial state distribution (note that we use the notation
∆X to mean the space of probability distributions over the
set X).

In a POSG, all agents simultaneously make decisions
based on their own private observations. Then, the environ-
ment is updated according to the joint action of all agents,
and each agent receives its own reward that it tries to maxi-
mize. The reward is computed the same way for each agent,
but based on its individual situation (i.e. no reward sharing).
We additionally specify a time limit Tmax ∈ N which is
the maximum number of steps the environment is allowed
to take before resetting.

3.2 Observation Space
In order to navigate through the environment, each agent
must perceive its environment in some way. However, it is
not obvious in what format agents should receive this infor-
mation, or in fact, what the information should be.



(a) Cartesian
Velocity.

(b) Cartesian
Acceleration.

(c) Polar Ve-
locity.

(d) Polar Ac-
celeration.

Figure 1: A schematic representation of the available action
spaces. In each case, we take a bird’s-eye view of an agent
moving in the positive Y direction at an intermediate speed,
represented by the blue arrow. The blue circle represents
the space of all physically possible velocities (i.e. below the
maximum speed). The green area represents the velocities
that the agent is able to have in the following timestep under
the specific action space.

The simplest human-inspired design is to give the agent
information in its own frame of reference, and to have it per-
ceive the environment through raycasting – a simple approx-
imation of human vision. The intention is that if humans can
effectively navigate using this type of information, then it
should also suffice for virtual agents, which should then act
more human-like. However, it is not necessarily the case that
an anthropomorphic structure is indeed optimal for virtual
agents, especially with it being only a rough approximation.
More realistic rendering of the agent’s vision is an option,
but it would result in very large observation sizes, subject to
the curse of dimensionality. Thus, it is worthwhile to explore
other possibilities.

An agent must receive information about its surroundings
(other nearby agents and obstacles, i.e. environment per-
ception), but also about its own internal state and knowl-
edge (e.g. its current velocity, or its current destination, i.e.
proprioception). In both of these cases, it is also relevant
what is the reference frame in which they are observed. For
the environment perception, we consider two types of per-
ception: Raycasting and Direct Agent Perception (AP). For
the reference frame, we have three representations: Abso-
lute, Relative, and Egocentric. The details of each of these
methods are described in (Kwiatkowski et al. 2022b).

3.3 Action Space and Dynamics
Human motion is highly complex, and a biomechanically ac-
curate simulation of human motion is a challenging research
problem in of itself, so for the purposes of creating vir-
tual crowds, we use a simplified model. The simplest choice
is holonomic locomotion (Hughes, Ondřej, and Dingliana
2015), where at each step, the agent can choose its velocity
constrained only by its magnitude. However, this approach
does not correspond well to the motion constraints of real
humans. Arechavaleta et al. (2008) propose a nonholonomic
model, in which an agent can move in the direction of its
current orientation, and incrementally change its orientation
for the next timestep.

Allowing the agent to freely choose its velocity at every
timestep gives it much more flexibility in choosing its behav-
ior. However, from the perspective of Newtonian mechanics,

it is more physically justified for the agent to directly choose
its acceleration. This would mean that the velocity change at
each timestep is incremental.

Similarly, there is a choice in how the actions should be
represented. We can take the bird’s eye view, where the
agents choose their actions according to an absolute refer-
ence frame, moving up or down, left or right. Alternatively,
we can take a more individual perspective, where the agents
operate in a polar frame, choosing their linear movement and
the direction of that movement.

For this reason, we consider four different dynamics mod-
els of the environment: Cartesian Velocity, Cartesian Ac-
celeration, Polar Velocity, and Polar Acceleration. Each of
these choices is described in detail in (Kwiatkowski et al.
2022b), and visualized in Figure 1.

4 Reward-independent metrics
Before we move on to the reward function design, it is worth
considering general metrics which quantitatively describe
the motion of trained agents. Typically, when developing
RL algorithms used in a fixed set of benchmarks, evalua-
tion is conceptually simple – we measure the average re-
ward obtained on each benchmark, potentially aggregating
those performances into a single measure, and as long as
it is statistically robust. This typically enough to prove the
algorithm’s performance. However, when discussing the de-
sign of the reward function, it is not that simple, as different
reward functions are not directly comparable. Instead, it is
useful to have one or more general metrics that quantita-
tively describe the agent’s behavioral characteristics.

In this work, we use reward-independent metrics both for
comparing the performance of agents trained using different
reward functions, and as a inspiration for reward function
design. We measure the following metrics, averaged across
all agents:

1. Energy usage (in two variants)
2. Total trajectory length (distance)
3. Total trajectory duration (time)
4. Number of collisions
5. Success rate
6. Average speed
7. Average deviation from the preferred speed

When comparing reward functions with an identical struc-
ture, we additionally track the values of each term with the
respective coefficient set to 1 (although some of them will
often directly overlap with the metrics stated above).

4.1 Energy usage
Energy is a valuable metric, functioning as a measure of
the overall movement efficiency. Following the hypothesis
stated by Bruneau, Olivier, and Pettré (2015) that human
tend to follow trajectories that minimize their energy expen-
diture, as well as the general intuition, we believe energy
to be a good coarse estimate of the human-likeness of the
agent’s movement.



We focus on pedestrian locomotion, and for this reason
we use an appropriate model of energy usage. The com-
monly used model is one known from gait analysis litera-
ture (Whittle 2008), and since then used in many RL-based
crowd simulation systems (Whittle 2008; Guy et al. 2010;
Godoy et al. 2020; Xu and Karamouzas 2021; Kwiatkowski
et al. 2022b). It estimates the energy usage per unit time, per
unit mass as:

E/∆t = es + ew v
2 (1)

where v is the speed of the agent, es and ew are parameters
specific to each person, whose values for a “standard hu-
man” are es = 2.23 and ew = 1.26. Note that for simplicity,
we assume a fixed mass and thus omit the agent’s mass m
in the following derivations. To get the real numerical val-
ues, it is enough to scale the results by the desired mass in
kilograms.

This expression is deceptively similar to the standard
equation for kinetic energy T = 1

2mv
2, but its interpreta-

tion is not that simple. Kinetic energy is something that an
agent has during motion, whereas Equation 1 refers to the
energy that it uses over time.

In fact, this expression seems to entirely disregard the ki-
netic energy that an agent gains while accelerating, since
it depends only on the momentary velocity, ignoring its
changes. Instead, the energy usage equation can be easily
obtained with a simple model of motion with linear damp-
ing, which uses some constant energy for general body
maintenance, and some energy for overcoming that damp-
ing. Consider an agent moving in a straight line, at a con-
stant velocity v⃗. It is slowed down by a damping force op-
posite to its motion F⃗ = − ew

∆t v⃗, so to maintain a constant
velocity, the agent has to exert a force equal in magnitude.
From Newtonian mechanics we know that work is the prod-
uct of the force and the distance across which the force was
applied, which means that the work over time is:

W/t =
F s

t
= F v = ew v

2 (2)

Combined with a constant energy usage of es, this leads
to the expression in Equation 1. It notably lacks any depen-
dency on the acceleration, or on the actual kinetic energy of
the agent.

We propose to extend this model based on physical prin-
ciples. When an agent accelerates, it uses energy to maintain
its metabolism and to overcome the damping, the same way
as in Equation 1. But it may also apply an additional force
so that its velocity increases over time. To estimate the total
energy usage, we analyze the acceleration resulting from ap-
plying a certain force in any direction relative to the current
velocity, leading to the more general expression:

E/∆t = es + |v⃗ · a⃗+ ewv⃗0 · v⃗| (3)

where v⃗0 is the velocity from the previous timestep and a⃗ =
(v⃗ − v⃗0)/∆t.

It is easy to see that this model is consistent with Equa-
tion 1 when v⃗0 = v⃗. When the agent moves with a positive

acceleration in the direction of the movement, it takes the
following simple form:

E/∆t = es + ew v
2 + av (4)

During deceleration, the model is more nuanced. There is
a velocity threshold vp := (1 − ew∆t)v0 corresponding to
the natural damping. As long as the deceleration maintains
the velocity above vp, the energy usage decreases, since the
agent can simply putting in effort to overcome the damp-
ing (passive deceleration). However, if the agent decides to
stop more abruptly, it must once again use additional energy
(active deceleration).

As is clear by looking at the equations, the practical dif-
ference between the two energy formulations (Equation 1,
and Equation 3) appears when agents accelerate or deceler-
ate during their trajectories. Moving at a constant speed will
result in the exact same energy usage under the two mod-
els, but if an agent instead decides to speed up and slow
down throughout its trajectory, the new model will indicate
a higher energy usage.

Note that the physical principles underlying our reasoning
are all based on continuous time, whereas computer-based
systems operate in discrete time. For simplicity, we used
above a simple discretization model where the energy cost is
computed based on the velocity in the “current” and previ-
ous timestep, instead of performing interpolation between it
and the previous timestep. A more precise estimate may be
obtained by averaging the velocity between two timesteps,
or using the equivalent of the trapezoidal rule in integration.

It is also important to state here that this model is still
a vast oversimplification of human locomotion. In reality,
we do not move by applying abstract forces to our center of
mass – we move our feet and let gravity propel us forward.
That being said, we believe that this formulation is more ac-
curate than the simple model which only considers constant
linear motion, and can be beneficial for computational ap-
plications like training RL agents.

5 Reward functions
We base our analysis on the reward structure that we intro-
duced in Kwiatkowski et al. (2022b), which encompasses
several reward terms already used in the literature on RL-
based crowd animation. It includes the following compo-
nents:

1. Reward for reaching the goal Rg = cg (once)
2. Reward for approaching the goal Rp = cp(dt − dt−1)

(every timestep)
3. Reward for maintaining a comfortable speed Rv =

−cv|v − v0|ce (every timestep)
4. Penalty for collisions Rc = −cc (every collision, every

timestep)
5. Reward for urgency Rt = −ct (every timestep)

where cg , cp, cv , ce, cc, ct are arbitrary (typically positive)
coefficients, v0 is the preferred speed, and dt is the distance
from the goal at timestep t. Additionally, we consider the
following alternative terms:



1. Alternative for the comfortable speed reward used by (Xu
and Karamouzas 2021), Rv = −cv exp(cs||v − v0||),
where v is the current velocity vector, and v0 is a vec-
tor pointing from the agent to its goal, with a magnitude
equal to v0. This term can be used to simultaneously re-
place Rv and Rt since it never reaches 0 due to the expo-
nential function.

2. A modification of the comfortable speed reward which
only penalizes velocities exceeding the preferred value
Rv = −cv δv>v0 |v − v0|ce

3. An additional term adding a penalty for the total distance
travelled Rd = −cd|v|

In this section, we describe our theoretical framework for
analyzing the properties of various reward structures and
their coefficients. We describe the modelling approach, as
well as the test behaviors which we model. The findings
based on this approach are in Section 7.2.

5.1 Reward modelling
In order to investigate the properties of a given reward func-
tion, it is useful to have a simplified model of the decision
process, one that can be quickly evaluated on a variety of dif-
ferent scenarios. Without this, every reward function would
have to be evaluated by training a new agent, or at least eval-
uating a fixed policy on the full environment, which is likely
to be computationally expensive when repeated many times.
For this reason, in this work we use two simple models of
the decision process, continuous and discrete, that enable
faster iteration and deeper understanding of the properties
of a given reward function.

Continuous reward model While in the RL setting, re-
wards are assigned on a step-by-step basis with discrete
time, the components of the reward function largely corre-
spond to continuous phenomena, which significantly simpli-
fies investigating some of their properties analytically.

Although it is convenient in certain cases, using contin-
uous models has two significant disadvantages. The first is
the fact that it does not exactly match the process we are
modelling. While the continuity of the physical reality is a
subject of debate, our simulations have to work with discrete
time. The second is the fact that to obtain valuable insights
with this model, we have to be able to actually solve the in-
tegrals, which are often famously intractable or highly com-
plex. For this reason, it is valuable to also have a less elegant,
but more flexible alternative.

Discrete reward model The discrete time model is much
closer to the reality of RL training. We emulate the deci-
sion process step-by-step, and assign rewards according to
the known reward function, factoring in any implementation
details that are relevant in the RL setting.

This model has the disadvantage of generally not being
tractable analytically, since evaluating arbitrary finite series
tends to be more difficult than integrals. However, it is very
easy to evaluate them numerically by simply enumerating
all the timesteps in an episode, leading to a more flexible
modelling framework.

(a) Circle sce-
nario.

(b) Corridor
scenario.

(c) Crossing
scenario.

(d) Random
scenario.

Figure 2: Agent’s initial positions and goals in four scenar-
ios: (a) Circle with 30 agents. (b) Corridor with 72 agents.
(c) Crossing with 32 agents. (d) Random with 15 agents.

5.2 Test behaviors
We use both continuous and discrete models on a set of sim-
ple, yet informative behaviors designed to probe specific as-
pects of a given reward function. We describe three of them
in this section, but it is likely that more will be added in the
course of this work.

Constant linear motion The simplest test behavior we
consider is an agent moving in a straight line, with a constant
velocity. This provides a simple check whether the reward
function (especially combined with a temporal discounting)
properly incentivizes moving at the preferred velocity, as op-
posed to e.g. standing still or moving at full speed.

Moving at a slower effective speed Even though the
agents should generally move at their preferred speed, some-
times external factors (such as avoiding collisions) lead to a
situation where they want to move at a lower speed. In this
scenario we consider two strategies – either actually slow-
ing down, or artificially lengthening the trajectory (e.g. by
moving in a loop) to keep moving at the preferred speed.
In pedestrian motion, the former is generally preferred, al-
though the latter may lead to behavior resembling a bicycle.

Not reaching the goal When the goal is relatively far
away compared to the maximum time allotted to the agent it
is useful to check what the reward or energy usage is with
relatively efficient navigation, as compared to the agent sim-
ply standing still. This is to ensure that the implementation
details of the RL setting (such as the time limit) do not ad-
versely affect the global properties of the reward function.

6 Experimental setup
In order to evaluate the impact and quality of the various de-
sign choices, we apply them on four commonly used crowd
scenarios, in order to provide a wide range of interactions
between agents: Circle, Corridor, Crossing, Random (see
Figure 2). In the Circle scenario, agents start on the perime-
ter of a circle, with a random noise applied independently
in both Cartesian directions. Their goals are placed on the
antipodal points of the circle, with an independent noise
of the same magnitude applied. In Corridor, agents start at
two ends of a straight corridor whose width is 4 meters and
length is 20 meters. They start either in a regular grid or in
a random formation, and their goal is to reach the opposite
side of the corridor. In Crossing, the agents start at the ends
of two corridors intersecting at a right angle, with the same



Proprioception Agent 1 ... Agent N

MLP1 MLP2 MLP2

Sum

Concatenation

MLP3

Raycast

Figure 3: The neural architecture used as the policy. Green
blocks represent inputs, blue blocks represent feed-forward
neural networks, yellow blocks represent vector operations,
red blocks represent outputs. Depending on the observation
model used, certain elements of the architecture are dis-
abled.

size as in Corridor. Similarly, they spawn either in a regular
grid or a random formation, and must reach the other end
of their respective corridors. In Random, the agents’ start-
ing positions and goals are generated according to a uniform
distribution with a given maximum size. In each of these sce-
narios, the area available to the agents is a square of 20x20
meters, with each agent being represented as a circle with
a 0.4 meter radius. In both Circle and Random, there are
optional small obstacles placed randomly in the scene, rep-
resented as immovable agents.

6.1 Policy Optimization
In this work, we train RL agents using PPO with General-
ized Advantage Estimation (GAE) (Schulman et al. 2018)
to estimate the advantages. The agents are trained in an in-
dependent paradigm with parameter sharing, i.e. they share
the same policy network, but each agent takes a decision on
its own action based on its private observations. The neu-
ral network outputs the mean of a Gaussian distribution, and
the standard deviation is kept as a trainable parameter of the
network.

6.2 Network Architecture
In order to appropriately process the Agent Perception ob-
servations, we use a neural architecture depicted in Figure 3.
It is inspired by prior work such as Deep Sets (Zaheer et al.
2017) and Mean Embedding (Hüttenrauch, Sosic, and Neu-
mann 2019), and extends the architecture used by Xu and
Karamouzas (2021).

The main desirable property of our architecture is permu-
tation invariance – given multiple identical nearby agents,
it should not matter in what order their representations are
input into the network, as this order is completely arbi-
trary. Without this property, the agent would need to learn
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Figure 4: Comparison of energy usage in agents trained with
a different exponent in the velocity term of the reward func-
tion. Lower is better.

this invariance itself, which quickly becomes expensive as
the number of observed agents grows. Furthermore, the ar-
chitecture should be able to accept a variable number of
observed agents, as this quantity will vary throughout the
episode. For this reason, we use the following model as an
embedding of nearby agents:

ϕ

(∑
i

ψ(xi)

)
where ϕ and ψ are regular MLP neural networks, and xi is
the observed information about an agent i. The summation
is performed over all agents visible to the agent observing
the scene. Because of the summation operator, this architec-
ture fulfills both previously stated desiderata, as the ordering
information is lost, and any number of agents can be pro-
cessed into a fixed-size embedding. This embedding is then
concatenated with the main stream of the neural network,
which processes the proprioceptive observations, as well as
optionally the raycasting.

In our current work, we are also evaluating a similar
architecture where the embeddings are instead processed
by a cross attention module inspired by the Transformer
model (Vaswani et al. 2017). It can potentially improve the
performance in crowded scenes, where the irrelevant agents
serve as noise impeding the navigation process.

7 Results
In this section, we describe the two types of experimental re-
sults obtained for this work. First, we briefly summarize the
conclusions of Kwiatkowski et al. (2022b), focusing on the
empirical findings relevant to the rewards. Then, we discuss
the results of applying our modelling methodology detailed
in Section 5.1, and the insights they lead to regarding the
reward function design.

7.1 Experimental results
The main goal of the empirical experiments was establishing
the performance implications of different dynamics and ac-
tion models, as measured by the total reward and the energy
consumption. The overall conclusion however is that there
are no strong regularities. The best observation and action
spaces depend heavily on the specific environment, but as
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Figure 5: Comparison of energy usage, collision count and
success rate in agents trained in Crossway 50 scenario, with
a varied collision penalty in the reward function.

a general rule, relative or egocentric observations, together
with non-holonomic actions work better than global obser-
vations and holonomic actions. The random scenario is an
exception due to its specific structure where the goal can
be in any location relative to the agent, whereas in all other
scenarios, the goal is generally in a “forward” direction for
each agent. There is, however, a consistent trend of agents
using Direct Agent Perception outperforming their raycast-
ing counterparts.

Additionally, we have two sets of experiments specifically
probing the properties of the reward function. In Figure 4
we train agents with different values of the ce coefficient de-
scribed previously. In both scenarios, there is an optimum
around ce = 1.9 where training to optimize that reward re-
sults in more energy-efficient motion. In Figure 5 we train
agents with a varying collision penalty Rc. We can see that
if the penalty is too low or too high, the agents fail to con-
sistently navigate to their goals – either by getting stuck in
the middle, or by refusing to move to avoid any risk of colli-
sions. It is also worth noticing the fact that the global mini-
mum of energy usage in this graph corresponds to the agents
not moving at all, which is an issue further investigated in
the following section.

7.2 Simulation results

Energy as reward A very tempting possibility at this
point may be using energy optimization directly as the re-
ward. After all, if we believe that it is a good metric for the
desired behavior of trained agents, maybe we can use the
flexibility of the RL framework to optimize it directly?

The answer is – maybe. In principle it is definitely pos-
sible, seeing as we can compute the energy for all actions
taken by the agent. However, using the (negative) energy as a
reward function has certain properties that make it challeng-
ing to optimize directly, and may require some additional
thought.

To understand this phenomenon, let us consider a continu-
ous model of the constant linear motion scenario. If an agent
moves in a straight line crossing a distance l with a fixed ve-
locity v, then the total energy it uses under this model is:
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Figure 6: Discounted negative energy usage as a function of
the velocity in the constant linear motion scenario, using a
discrete model, with different discount factors.

E =

∫ T

0

(es + ew v
2)dt =

∫ l/v

0

(es + ew v
2)dt (5)

= es
l

v
+ l ew v = l (es v

−1 + ew v) (6)

Notice that when we increase the velocity, the body of the
integral increases as well. At the same time, the length of the
integral decreases. These two aspects are balanced against
each other, with the optimal velocity:

v∗ =

√
es
ew

(7)

To relate this to the practical navigation task, consider
an RL training from the beginning on a nontrivial scenario
with multiple agents. This is common practice with a stan-
dard reward function and enables a simple training proce-
dure with a stationary environment. Agents will typically
learn by first approaching the goal, then actually reaching
it in time, and then adjusting their trajectories to minimize
collisions. When training with energy as the reward, the first
stage is likely to fail, which means that the upper limit of the
integral is some constant Tmax. If the agent cannot reach its
goal immediately, it will only learn that it is more energy ef-
ficient to stand still until the time limit runs out – a local op-
timum when evaluating the energy usage. The real gain from
navigating to the goal at just the right speed comes from the
balance between not spending too much time in motion, and
not using too much energy per unit time. If the agent ends
up not reaching the goal, then they receive the same negative
reward as if they stood still, and more – because they used
energy to move.

Furthermore, when considering energy as the reward, we
must pay close attention to other seemingly irrelevant de-
tails, such as the discount factor and the timestep. Com-
monly used discounting turns out to be a complicating fac-
tor. In prior work, Naik et al. (2019) argue that the typical ex-
ponential discounting can change the optimal behavior that



the agent is trying to learn. This phenomenon is rather ac-
cepted in the field as something that is theoretically prob-
lematic, but practically inconsequential, so a vast majority
of implementations only include exponential discounting.

In this case, using exponential discounting with an other-
wise reasonable discount factor like γ = 0.99 in certain sce-
narios leads to a situation where standing still turns from be-
ing a tricky local optimum, to a global optimum. Consider a
discrete model where the agent again chooses a velocity and
commits to it throughout the entire trajectory. Let the total
distance from the goal be d = 8m, the timestep ∆t = 0.1 s,
and the maximum episode length (in timesteps) T = 200. In
Figure 6 we show the energy-based discounted reward val-
ues with different discount factors, as a function of the ve-
locity. The undiscounted curve has the correct global prop-
erties with a globally optimal velocity v∗ = 1.33m

s . With
γ = 0.99, this value changes to v∗ = 0.88m

s , and with
γ = 0.98 the globally optimal policy is for the agents to
stay still, which is obviously undesirable. Regardless of of
the discount factor, we also see the local optimum around
v = 0 which corresponds to velocities which are too low for
the agent to reach its destination before the time limit.

This analysis indicates that using energy as reward re-
quires additional attention to the training setup. A promising
approach for the local optimum issue might be a curricu-
lum learning approach, where the agents are initially trained
on small, empty scenarios, which are then progressively in-
creased, and additional agents are added on. We could also
train the agents with a different reward function so that they
learn to successfully navigate to their goals, and then switch
the reward to the energy. The issue with the global optimum
might require a different discounting approach. Either using
γ = 1 or using the average reward setting (Naik et al. 2019)
can retain the correct global properties, but could lead to an
increased variance in the rewards. Alternatively, using an ap-
propriately shaped nonexponential discounting could keep
the discounted rewards finite, while preserving the global
properties. Finally, significantly increasing the maximum
time limit can potentially work to solve this issue as well,
but at a significant computational cost.

Moving at an effective slower speed Consider a contin-
uous model of the basic reward structure. In this scenario,
the agent wants to travel a distance d in a time T such that it
needs to move slower than its preferred velocity v0 > d

T . It
can either move in a straight line at the velocity v = d

T ,
or artificially extend its trajectory (e.g. by looping, or by
walking on a curved line). Considering just the value of the
velocity-related reward Rv = −cv|v − v0|ce , it is simple to
see that moving at exactly the preferred will incur no penalty,
whereas an agent moving slower but in a straight line will
have a nonzero penalty, meaning that the longer way will be
preferable.

This can potentially be addressed via three different mod-
ifications. If the velocity-related reward factors in the direc-
tion towards the goal, then a curved trajectory will also lead
to a penalty. Removing the penalty for moving too slowly
will instead cause both trajectories to yield an equal reward,
potentially causing agents to take the simpler option. Penal-

izing the total distance travelled also directly penalizes the
longer trajectory, and may be effective depending on the co-
efficients. We aim to investigate these three modifications in
terms of their similarity to the energy usage, as well as em-
pirically, by measuring the total curvature of agent trajecto-
ries when trained with each variant. Alternatively, using the
energy as a reward directly eliminates this issue, at the cost
of the previously discussed complications.

Not reaching the goal Going back to Figure 5, we see that
the seemingly poorly-performing agents with a steep colli-
sion penalty, end up using the least energy out of all the in-
vestigated variants. This is caused by the agents having to
travel a relatively long distance compared to the maximum
time allowed for a single episode. If the time required to
reach the goal at the preferred velocity is close to the max-
imum episode duration, then staying still is indeed less en-
ergy consuming in the scope of an episode – the energy used
for metabolism (es) is the same, and the energy used for
movement (ev) is lower without any movement.

This can be remedied in two ways. Extending the time
limit may suffice, but depending on the implementation, it
can proportionally increase the training time. Alternatively,
we propose adding a penalty at the end of episode to each
agent which has not reached its goal. Its magnitude should
be at least such that standing still, never outperforms effi-
cient navigation in terms of the total energy usage (counted
together with said penalty).

8 Conclusions
In this work, we build upon our prior analysis of various de-
sign choices made by designers of RL-trained crowd simula-
tion systems. We show that many of these choices, typically
ignored by researchers, can in fact significantly impact the
resulting simulation, in particular when evaluated in terms
of the energy efficiency.

Our current work focuses on designing the reward func-
tion for RL training. We introduce a theoretical and numer-
ical framework for modelling the navigation problem in a
way that enables analyzing the properties of a reward func-
tion, without having to go through a costly training process.
We use it to identify both present and potential flaws in the
reward structure, and to validate potential improvements be-
fore implementing them in the full simulation.

This aspect of our work is still at an early stage. We will
continue modelling various failure cases inspired by our ex-
periments, train agents with new and improved reward func-
tions, and repeat this process to obtain a solid understanding
of what matters in designing an effective reward for human-
like multiagent navigation. In the future, we consider using
an Inverse RL approach to learn the parameters of the re-
ward function from real data, or given enough data – learn
the whole reward function.
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