

Improvement of the thermal performance of printed circuit boards by embedding of graphite heat spreaders

IMAPS-THERMAL

<u>Ahmed Sabry AHMED</u>, Rémi PERRIN and Guillaume LEFEVRE (Mitsubishi Electric)

Cyril BUTTAY (AMPERE) and Jacques JAY (CETHIL)

09/03/2023

MITSUBISHI ELECTRIC R&D CENTRE EUROPE

- Introduction to PCB embedding technology.
- > Structure optimization of a graphite heat spreader for PCB.

> Experimental validation.

> Conclusion.

Introduction to PCB embedding technology

1

©Mitsubishi Electric R&D Centre Europe

Export Control: NLR

1.1

Printed Circuit Board (PCB) provides :

- Electrical connections
- Mechanical support.

for electrical components of an electrical circuit to achieve certain function.

PCB embedding :

- Electrical benefits since it reduces circuit parasitics.
- Simplifying device packaging.
- Producing more compact systems.
- Thermal challenges due to compactness.

Thermal challenges :

- Reduction of semiconductor die size \rightarrow Higher power loss density.
- Increasing power density in a PCB \rightarrow High junction temperature.
- Poor thermal conductivity of dielectric materials \rightarrow High thermal resistance.

> Need for an efficient heat spreader closer to the power die and compatible with PCB process.

Possible materials for the heat spreader:

- Copper \rightarrow Conventional heat spreader
 - \rightarrow Good thermal conductivity 400 W/(m K).
- Diamond \rightarrow 2000 W/(m K) isotropic thermal conductivity.
 - \rightarrow Very expensive.
- Graphite \rightarrow Orthotropic \rightarrow 2000 W/(m K) (in-plane); 15 W/(m K) (cross-plane).
 - \rightarrow Inexpensive.
 - \rightarrow Available in sheet form.
 - \rightarrow Electrically conductive.

Crystal layered structure of Graphene with high in plane thermal conductivity [Fukunaga 2021]

- > Graphite offers high thermal performance as well as sheet form suited to PCB lamination process.
- > Can graphite be used as an embedded heat spreader in PCB ??

Structure optimization of a graphite heat spreader for PCB

2.1 The concept of a PCB structure with graphite

How to take advantage of the graphite in a PCB structure?

- Graphite is embedded in a PCB stack to improve heat spreading near the die.
- Lower thermal resistance path is offered for the heat:
 - \rightarrow Horizontally through graphite.
 - \rightarrow Vertically through copper.

> Graphite heat spreader near the die offers a horizontal heat path adding to the vertical one.

2.2 The proposed assembly for the PCB stack

> 2 layers PCB stack with near the die graphite embedding and laser-drilled micro via is chosen.

Cross section picture of the fabricated stack

Details of the PCB stack:

- Micro vias were laser-drilled \rightarrow Electrical connection to the chip & Vertical thermal path for the dissipated heat.
- Adhesive layer interleaved with graphite \rightarrow Compatibility with PCB process & structure stability.
- Via electrodeposition \rightarrow Direct copper to graphite contact for optimal horizontal heat path.

PCB samples with embedded SiC chips and graphite were successfully fabricated with classical PCB manufacturing process steps.

©Mitsubishi Electric R&D Centre Europe

2.3

FEM thermal simulation provides confirmation of the thermal behavior:

- Only a quarter was considered to reduce calculation time by 1/5 ratio.
- Junction to ambient thermal resistance $\rightarrow RthJA = \frac{Tmax 22^{\circ}C}{Power}$

> 49 % reduction in RthJA by embedding two graphite sheets

Sample Type	RthJA
Without Graphite	4.6 °C/W
With Graphite	2.3 °C/W

Heat flow vector direction figure shows that heat spreads vertically through copper vias and horizontally through graphite layers to achieve more heat spreading and less thermal resistance.

120 °C 114 °C without graphite 69 °C with graphite

Export Control: NLR

B Experimental validation

3.1 Experimental setup

Experimental test setup for thermal resistance measurements.

Experimental setup characteristics :

- The diode is first calibrated in an oven → Relation between Tj and the measured voltage (TSEP: thermal sensitive electrical parameter).
- The sample is clamped on a cold plate with a pressure of 1.8 bar \rightarrow ensure good contact with baseplate
- A thermal interface material (TIM) is placed between the sample and the cold plate.
- A mat between the PCB and the clamp \rightarrow Homogenous distribution of the pressure on the thin PCB sample.

Junction to case thermal resistance RthJC using TDIM 🙏 CETHIL 🍻 🌽

RthJC calculation procedure. [Dirk Schweitzer, 2011]

Thermal dual interface method:

- TDIMis used to determine RthJC following JEDEC51-14 standard → TDIM method has an accuracy within ± 20%.
 [Dirk Schweitzer, 2011]
- Two heating curves are obtained by using two TIMs of two different thermal resistances.
- Rth is determine by calculating the intersection point of δ and \mathcal{E} .

> TDIM method is not ideal for low Rth packaging but offer a reference point for comparison between

packages.

©Mitsubishi Electric R&D Centre Europe

3.2

Experimental test conditions:

- The cold plate is cooled by water with an inlet temperature of 23.5 °C.
- At steady state, RthJA = Zth_{JA}
- Applied power:

(Sil-Pad ® 1500ST) \rightarrow 11 W (without graphite) (Sil-Pad ® 1500ST) \rightarrow 16 W (with graphite) (De-water) \rightarrow 20 W (without graphite) (De-water) \rightarrow 24 W (with graphite)

In order to keep maximum junction temperature @70 °C.

ТІМ	k (W/m.K)	Thickness
Sil-Pad ® 1500ST	1.8	0.2 mm
Deionized water (3 drops)	0.58	<< 0.2 mm

> By Using TDIM method \rightarrow RthJC = 0.71 °C/W (without graphite)

Experimental test conditions:

- The cold plate is cooled by water with an inlet temperature of 23.5 °C.
- At steady state, RthJA = Zth_{JA}
- Applied power:

(Sil-Pad ® 1500ST) → 11 W (without graphite). (Sil-Pad ® 1500ST) → 16 W (with graphite). (De-water) → 20 W (without graphite). (De-water) → 24 W (with graphite).

In order to keep maximum junction temperature @70 °C.

Using TDIM \rightarrow RthJC = 0.56 °C/W (with graphite).

> Comparing to the reference sample, RthJC was reduced by 22 %.

Simulation conditions:

- Zth curves were obtained by transient thermal simulations → In order to verify TDIM measurement value and explain the difference with ideal FEM simulation.
- TDIM was used to calculate RthJC → Assigning two different heat transfer coefficients on the bottom surface of the PCB.

Location	Boundary condition		
Chip	20 W		
Top surfaces	10 W/(m².K)		
Bottom surface	5000 W/(m ² .K)		
	or		
	25000 W/(m².K)		

> Comparing to the reference sample, RthJC was reduced by 33 % according to simulations.

4 Conclusion

Export Control: NLR

Conclusion:

- A heat spreading solution compatible with standard PCB manufacturing process was proposed by embedding graphite layers in PCB.
- PCB samples with embedded SiC diodes, were designed and fabricated successfully. PCB samples with graphite were compared to reference samples without graphite.
- FEM simulations predict junction to ambient thermal resistance **RthJA reduction of 49 %.** while thermal experimental results showed a **RthJA reduction of 34 %.**

Package Type	Junction to case thermal resistance RthJC (°C/W) TDIM			
	Simulation	Experiment	Difference % w.r.t. simulation	
Sample without Graphite	0.69	0.71	4 %	
Sample with Graphite	0.46	0.56	20 %	
Reduction in RthJC %	33 %	22 %		

Next step:

• Thermal characterization for all remaining samples of the same design to obtain statistical information.

Thank you

Questions ??

Export Control: NLR

MITSUBISH ELECTRIC Changes for the Better