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We show that, for every positive integer r, there exists an integer b = b(r) such that the 4-variable quadratic Diophantine equation (x 1y 1 )(x 2y 2 ) = b is r-regular. Our proof uses Szemerédi's theorem on arithmetic progressions.

Introduction

Denote N = {0, 1, 2, . . . } and N + = N\{0}. Given a polynomial f ∈ Z[x 1 , x 2 , . . . , x n ], let D( f ) denote the corresponding Diophantine equation

f (x 1 , x 2 , . . . , x n ) = 0.
This equation is said to be r-regular, for some integer r ≥ 1, if for every r-coloring of N + , there is a monochromatic solution to it. It is said to be regular if it is rregular for all r ≥ 1. The degree of regularity of D( f ), denoted dor(D( f )), is defined to be infinite if D( f ) is regular, or else, it is the largest r such that D( f ) is r-regular. Determining the degree of regularity of a given Diophantine equation is difficult in general, even if it is linear.

In this paper, we shall consider the 4-variable Diophantine quadratic equation

(x 1 -y 1 )(x 2 -y 2 ) = b, (1) 
denoted Q(b), where b is a given positive integer. This equation is not regular. Indeed, it is not b-regular, and actually not even s-regular where s = √ b + 1, as witnessed by the s-coloring given by the class mod s; for if x 1 , y 1 , x 2 , y 2 are all congruent mod s, then (x 1y 1 )(x 2y 2 ) is divisible by s 2 , and hence cannot equal b since s 2 > b. That is, we have dor(Q(b)) ≤ √ b . Our purpose in this paper is to show that, nevertheless, the numbers dor(Q(b)) are unbounded as b varies.

Here is our main result.

Theorem 1.1. Given a positive integer r, there is a positive integer b = b(r) such that the equation (x 1y 1 )(x 2y 2 ) = b is r-regular.

A more specific version is stated and proved in Section 3. Our motivation to study this particular quadratic equation comes from previous work on the linear version

(x 1 -y 1 ) + (x 2 -y 2 ) = b,
and more generally on the 2k-variable linear Diophantine equation

(x 1 -y 1 ) + • • • + (x k -y k ) = b, (2) 
the object of the following conjecture by Fox and Kleitman [START_REF] Fox | On Rado's Boundedness Conjecture[END_REF].

Conjecture 1.2. Let L k (b) denote equation (2). Then

max b∈N + dor(L k (b)) = 2k -1.
If true, that estimate would be best possible, since it is shown in [START_REF] Fox | On Rado's Boundedness Conjecture[END_REF] that dor(L k (b)) ≤ 2k -1 for all k, b ≥ 1. See [START_REF] Adhikari | On a conjecture of Fox and Kleitman on the degree of regularity of a certain linear equation[END_REF]2] for solutions of the Fox-Kleitman conjecture for k = 2 and 3, respectively, and [START_REF] Schoen | The degree of regularity of the equation ∑ n i=1 x i = ∑ n i=1 y i + b[END_REF] for a very recent full proof.

Note that the solved case k = 2 of the conjecture and Theorem 1.1 imply a sharp contrast between the additive and the multiplicative versions of the equation,

namely max b dor(L 2 (b)) = 3 versus max b dor(Q(b)) = ∞.

Contents

Here is a brief description of the contents of the paper. In Section 2, we recall some classical problems on partition regularity. In Section 3, after recalling Szemerédi's theorem on arithmetic progressions, we prove our main result on the unboundedness of dor(Q(b)) as b varies. In Section 4, after setting up specific tools for the task at hand, we provide estimates for one of the numbers M(k, δ) involved in Szemerédi's theorem. In Section 5, we determine all b ≥ 1 for which Q(b) is 2-regular, as well as the smallest b ≥ 1 for which Q(b) is 3-regular. The last section is devoted to a few remarks and open questions.

Background

We first recall some background results and problems on partition regularity. The following abridged version of a theorem of Rado [START_REF] Rado | Verallgemeinerung eines Satzes von van der Waerden mit Anwendungen auf ein problem der Zahlentheorie, Sonderausgabe aus den Sitzungsbericten der Preuss[END_REF]10,[START_REF] Rado | Some recent results in combinatorial analysis[END_REF] characterizes the regular linear homogeneous equations on Z. 

c 1 x 1 + • • • + c n x n = 0 (3) 
is regular if and only ∑ i∈I c i = 0 for some non-empty subset I ⊆ {1, . . . , n}.

One of the main open problems in the linear case is Rado's boundedness conjecture. A simplified version of it states that if equation ( 3) is r-regular for some integer r = r(n) only depending on n, then it is regular. See for instance [START_REF] Fox | On Rado's Boundedness Conjecture[END_REF], where the conjecture is settled for n = 3 with the value r(3) = 24. See also [START_REF] Bialostocki | A zero-sum theorem[END_REF]4,[START_REF] Fox | On the degree of regularity of generalized van der Waerden triples[END_REF] Still less is known in the nonlinear case. For instance, it is an open question whether the quadratic Diophantine equation

x 2 + y 2 = z 2 (4) 
is regular. According to a recent preprint using massive computer computations with a SAT solver, equation ( 4) turns out to be 2-regular [START_REF] Cooper | Coloring so that no Pythagorean Triple is Monochromatic[END_REF]. More precisely, for every 2-coloring of the integer interval [START_REF] Adhikari | On a conjecture of Fox and Kleitman on the degree of regularity of a certain linear equation[END_REF]7825], there is a monochromatic solution in that interval to equation (4), and 7825 is minimal in that respect. However, it is not known whether that equation is 3-regular, and it remains an open problem to determine its precise degree of regularity. Note that some other homogeneous quadratic equations in three variables have recently been shown to be regular [START_REF] Frantzikinakis | Higher order Fourier analysis of multiplicative functions and applications[END_REF].

Main result

In this section, we show that the numbers dor(Q(b)) are unbounded as b varies.

Some tools

To start with, for the statement and proof of our main result, we need the deep theorem of Szemerédi about the existence of long arithmetic progressions in sufficiently dense subsets of sufficiently large integer interval [13, p. 244, Corollary].

Theorem 3.1 (Szemerédi). Given a desired length k ∈ N + and a specified density 0 < δ ≤ 1, there exists a positive integer N = N(k, δ) such that every subset A ⊆ [1, N] of density |A|/N ≥ δ contains an arithmetic progression of length k.

For definiteness and in the sequel, we shall denote by M(k, δ) the smallest positive integer N with the above property.

We also need an elementary folklore lemma about the preservation of density under partitions of finite sets. 

∑ i |A ∩ E i | < δ ∑ i |E i |. Since ∑ i |A ∩ E i | = |A| and ∑ i |E i | = |E|, the above inequality leads to |A| < δ|E| = |A|, a contradiction.

Unboundedness of dor(Q(b))

Let r ∈ N + be given. For the statement below, we invoke Szemerédi's theorem with the desired length k = r! + 1 and density δ = 1/r. Let N = M(r! + 1, 1/r). Then N has the property that every subset B ⊆ [1, N] of density |B|/N ≥ 1/r contains an arithmetic progression of length r! + 1. Clearly, the same property holds for any integer interval [a, a + N -1] of length N.

Recall that Q(b) denotes the Diophantine equation (

(x 1 -y 1 )(x 2 -y 2 ) = b.
) 5 
Not much is known about d besides the inequality r!d ≤ N. As customary in additive combinatorics, let us denote

S -S = {s 1 -s 2 | s 1 , s 2 ∈ S}. Fact 1. We have [1, r!]d ⊆ S -S.
Indeed, for all 1 ≤ j ≤ r!, we have jd = (s + jd)s, and so jd ∈ S -S by [START_REF] Cooper | Coloring so that no Pythagorean Triple is Monochromatic[END_REF]. That is, there exist x 1 , y 1 , x 2 , y 2 ∈ S such that (x 1y 1 )(x 1y 1 ) = N!r!, thus yielding a monochromatic solution of equation Q(N!r!). Therefore this equation is rregular, as claimed.

More properties of dor(Q(b))

The problem of determining dor(Q(b)) as a function of b ∈ N + is probably very difficult. In Section 5.1, we show that dor(Q(b)) ≥ 2 if and only if b ∈ 4N + , thereby improving the case r = 2 of Theorem 3.3. The case r = 3 of that result is improved in Section 5.2, where we show that dor(Q(36)) = 3. We conclude this section with some general properties of dor(Q(b)).

Proposition 3.4. Let b, m ∈ N + . If b ≡ 0 mod m 2 , then dor(Q(b)) ≤ m -1.
Proof. Consider the m-coloring of N + given by the class mod m. That is, color classes correspond to congruence classes mod m. If m 2 does not divide b, then equation (x 1y 1 )(x 2y 2 ) = b has no monochromatic solution under this coloring, for if x 1 , y 1 , x 2 , y 2 are of the same color, i.e., are congruent mod m, then m 2 divides (x 1y 1 )(x 2y 2 ).

For instance, if b is not divisible by 36 = 6 2 , then equation Q(b) is not 3regular, as follows by successively taking m = 2 and m = 3 in the above result.

Proposition 3.5. Let b,t ∈ N + . Then dor(Q(b)) ≤ dor(Q(t 2 b)). Proof. Set r = dor(Q(b)). Let c : N + → [1, r] be an r-coloring. Define a new r-coloring c : N + → [1, r] by setting c (n) = c(tn) for all n ≥ 1. Since Q(b) is r-regular by hypothesis, there is a solution (x 1 , y 1 , x 2 , y 2 ) of equation Q(b) which is monochromatic under c . Hence (tx 1 ,ty 1 ,tx 2 ,ty 2 ) is monochromatic under c. Moreover, since (x 1 -y 1 )(x 2 -y 2 ) = b by hypothesis, it follows that (tx 1 -ty 1 )(tx 2 -ty 2 ) = t 2 b.
Therefore (tx 1 ,ty 1 ,tx 2 ,ty 2 ) is a solution of equation Q(t 2 b), and it is monochromatic under c as already seen. We conclude that Q(t 2 b) is r-regular.

4 On M(3, 1/2) Theorem 3.3 involves the numbers M(r! + 1, 1/r) arising from Szemerédi's theorem. In this section, after setting up some useful tools, we determine this number for r = 2, namely M(3, 1/2).

Detecting arithmetic progressions

Let (G, +) be an abelian group. Here we set up some notation and terminology to help determine the presence or absence of arithmetic progressions of a given length in sequences in G. This will then be used in G = Z to show M(3, 1/2) = 17.

Let A = (a 1 , . . . , a n ) be a sequence in G of length |A| = n. A block in A is any subsequence of consecutive elements, i.e., of the form A[i, j] = (a i , a i+1 , . . . , a j ) for some indices 1 ≤ i, j ≤ n, allowing the empty subsequence if j < i. We denote by σ(A) = ∑ i a i the sum of the elements of A. Definition 4.1. Let A be a finite sequence in G. A block decomposition of A is a sequence (A 1 , . . . , A m ) of consecutive blocks A t of A, 1 ≤ t ≤ m, whose concatenation is A. A contraction of A is a sequence in G of the form (σ(A 1 ), . . . , σ(A m )) where (A 1 , . . . , A m ) is a block decomposition of A. A minor of A is a contraction of a block B of A or, equivalently, a block in a contraction of A.

For instance, if A = (1, 5, 1, 8, 2, 3, 1) in G = Z, then ((1, 5, 1), (8, 2), (3, 1)) is a block decomposition of A and (7, 10, 4) is the corresponding contraction of A. Some minors of A are (6, 1, 8), (7, 10), (9, 5, 1), (10, 3) and (10,4). Note that (6, 1, 8) is a contraction of the block (1, 5, 1, 8) in A, and a block in the contraction (6, 1, 8, 6) of A. Definition 4.2. Let X = (x 0 , x 1 , . . . , x n ) be a sequence in G with n ≥ 1. The discrete derivative of X is its sequence of successive jumps, i.e., ∆(X) = (x 1x 0 , . . . , x nx n-1 ).

For instance, X is an arithmetic progression of length n + 1 in G if and only if ∆(X) is a constant sequence of length n.

Let us now observe that for a sequence X, block sums in ∆(X) correspond to differences of two terms in X. Lemma 4.3. Let X = (x 0 , x 1 , . . . , x n ) be a sequence in G. Let A = ∆(X) = (a 1 , . . . , a n ) where a

i = x i -x i-1 for i ≥ 1. Let B = A[i, j] for some 1 ≤ i ≤ j ≤ n. Then σ(B) = x j -x i-1 . Proof. We have σ(A[i, j]) = ∑ i≤t≤ j (x t -x t-1 ) = x j -x i-1 .
Here is a correspondence between subsequences of X and minors of ∆(X).

Lemma 4.4. Let X be a finite sequence in G. If Y is a subsequence of X, then ∆(Y ) is a minor of ∆(X). Conversely, if C is a minor of ∆(X), then C = ∆(Y ) for some subsequence Y of X. Proof. Let X = (x 0 , x 1 , . . . , x n ) and A = ∆(X) = (a 1 , . . . , a n ) where a i = x i -x i-1 for i ≥ 1. Let Y = (x i 0 , x i 1 , . . . , x i m ) be a subsequence of X, with 0 ≤ i 0 < i 1 < • • • < i m ≤ n. Then ∆(Y ) = (x i 1 -x i 0 , . . . , x i m -x i m-1 ). Let B t = A[i t-1 + 1, i t ] for 1 ≤ t ≤ m. By Lemma 4.3, we have ∆(Y ) = (σ(B 1 ), . . . , σ(B m )). Let B = A[i 0 + 1, i m ]. Then (B 1 , . . . , B m ) is a block decomposition of B. Therefore ∆(Y ) is a contraction of block B

and hence a minor of A.

Conversely, let C be a minor of A. Hence there is a block B in A such that C = (σ(B 1 ), . . . , σ(B m )) for some block decomposition (B 1 , . . . , B m ) of B. For each 1 ≤ t ≤ m, we have B t = A[ j t , i t ] for some 1 ≤ j t ≤ i t ≤ n. Since the B t 's are consecutive blocks in B, and hence in A, we have j t = i t-1 + 1 for t ≥ 2. Thus, denoting i 0 = j 1 -1, we have B t = A[i t-1 + 1, i t ] for all 1 ≤ t ≤ m, and σ(B t ) = x i tx i t-1 by Lemma 4.3. Therefore C = ∆(Y ) where Y = (x i 0 , x i 1 , . . . , x i m ).

This correspondence yields the following convenient tool to determine the presence or absence of arithmetic progressions of a given length in sequences in G. Proposition 4.5. Let X be a finite sequence in G. Then X contains an arithmetic progression of length k ≥ 3 if and only if ∆(X) has a constant minor of length k -1.

Proof. If X contains an arithmetic sequence Y of length k, then ∆(Y ) is a constant sequence of length k -1, and it is a minor of ∆(X) by the preceding lemma. Conversely, let C be a constant minor of length k -1 of ∆(X). Then by the above lemma, there exists a subsequence Y of X such that C = ∆(Y ), and Y is an arithmetic progression of length k since ∆(Y ) is constant of length k -1.

For instance, let X = [START_REF] Adhikari | On a conjecture of Fox and Kleitman on the degree of regularity of a certain linear equation[END_REF]2,4,[START_REF] Cooper | Coloring so that no Pythagorean Triple is Monochromatic[END_REF]10,[START_REF] Rado | Some recent results in combinatorial analysis[END_REF][START_REF] Szemerédi | On sets of integers containing no k elements in arithmetic progression[END_REF][START_REF]Van der Waerden numbers[END_REF] in G = Z. Let A = ∆(X). Then A = (1, 2, 1, 5, 1, 2, 1) and A contains no constant minor of length 2 as easily checked by inspection. Therefore X contains no arithmetic progression of length 3.

Determining M(3, 1/2)

As an application in G = Z, we obtain here the exact value of M(r! + 1, 1/r) for r = 2. Even though the result is easy to obtain by computer, the present method will hopefully, in future works, yield exact values or good bounds in harder cases. Proof. We first claim that the only sequences B in N + such that |B| = 4, σ(B) ≤ 8 and admitting no constant minor of length 2 satisfy σ(B) = 8. More precisely, the only such sequences are, up to reversal, (1, 2, 4, 1) and (2, 1, 4, 1). This is easy. Indeed, let (C 1 ,C 2 ) be a block decomposition of B with

|C i | = 2 for i = 1, 2. Since σ(C 1 ) + σ(C 2 ) = σ(B) ≤ 8
, and no C i can be constant, then each C i concides, up to reversal, with one of the sequences (1, 2), (1, 3), [START_REF] Adhikari | On a conjecture of Fox and Kleitman on the degree of regularity of a certain linear equation[END_REF]4), (2,[START_REF] Bialostocki | A zero-sum theorem[END_REF]. Moreover σ(C 1 ) = σ(C 2 ), for otherwise (σ(C 1 ), σ(C 2 )) would be a constant minor of length 2 of B. Up to reversal of B, we may assume σ(C 1 ) < σ(C 2 ). Hence C 1 = (1, 2) up to reversal, and σ(C 2 ) = 4 or 5. By considering all possible combinations, it is easily seen that C 2 = (4, 1) is the only valid possibility. This proves the claim.

Assume, for a contradiction, that there exists X ⊂ [1, 17] of cardinality |X| = 9 containing no arithmetic progression of length 3. Let A = ∆(X), when X is viewed as an increasing sequence. Then |A| = 8, σ(A) = max(X)min(X) ≤ 16 and A admits no constant minor of length 2. Let (B 1 , B 2 ) be a block decomposition of A with |B 1 | = |B 2 | = 4. Then neither B 1 nor B 2 admits a constant minor of length 2. Moreover, since σ(B 1 ) + σ(B 2 ) = σ(A) ≤ 16, we may assume σ(B 1 ) ≤ 8 up to reversal of A. Hence σ(B 1 ) = 8 by the above claim. Therefore σ(B 2 ) ≤ 8 as well, whence σ(B 1 ) = 8 by the above claim again. But then, (σ(B 1 ), σ(B 2 )) = (8, 8) is a constant minor of length 2 of A, a contradiction. Proof. The proposition yields M(3, 1/2) ≤ 17. In order to establish the equality, we must exhibit, for all 1 ≤ m ≤ 16, a subset X m ⊆ [1, m] of density at least 1/2 and containing no 3-term arithmetic progression. Let X = {1, 2, 4, 5, 10, 11, 13, 14}. Then the set X m defined as follows will do:

X m = X ∩ [1, m] if m = 9 {1, 2, 4, 8, 9} if m = 9.

Comparison with W (k, r)

It would be desirable to determine M(k, 1/r) for more instances of the pair (k, r), as nothing precise seems to be known about these numbers. We have started to make the first few steps towards that objective in a paper under preparation. Of course, these numbers are bounded below by the corresponding van der Waerden numbers. Given integers k, r ≥ 1, recall that the van der Waerden number W (k, r) denotes the least integer M such that, for every r-coloring of [1, M], there is a monochromatic arithmetic progression of length k in [1, M]. Clearly, we have

M(k, 1/r) ≥ W (k, r). (6) 
Indeed, let N = M(k, 1/r), and consider any r-coloring of [1, N]. Then some color class X ⊆ [1, N] is of density |X|/N ≥ 1/r, and hence X contains an arithmetic progression of length k, of course monochromatic by construction. The only exactly known van der Waerden numbers at the time of writing are given in the following table. See e.g. [START_REF]Van der Waerden numbers[END_REF], a web page which also displays lower bounds on W (k, r) for many more pairs (k, r).

W (3, 2) = 9 W (3, 3) = 27 W (3, 4) = 76 W (4, 2) = 35 W (4, 3) = 293 W (5, 2) = 178 W (6, 2) = 1132 5 When r is small
In this section, we obtain sharper statements than Theorem 3.3 for r = 2 and 3. We also discuss some corresponding Rado numbers.

The case r = 2

For r = 2, and with the notation of Section 3, our main result states that with N = M(3, 1/2), equation (x 1y 1 )(x 2y 2 ) = 2N! is 2-regular.

We have seen above that M(3, 1/2) = 17. Thus, Theorem 3.3 states that equation Q(2 • 17!) is 2-regular. However, we now show that the same already holds for equation Q( 4 Assume now b ≡ 0 mod 4. First some notation. Let X ⊆ N + be any nonempty subset. We denote D(X) = (X -X) ∩ N, the set of distances in X, and

D 2 (X) = {d 1 d 2 | d 1 , d 2 ∈ D(X)},
the set of products of two distances in X. Thus, equation Q(b) has a solution in X if and only if b ∈ D 2 (X). Finally, we denote X = N + \ X.

Claim 1. If m ∈ N \ D(X), then m + X ⊆ X.
Indeed, for any x ∈ X, we have m = (m + x)x, and since m is not a distance in X, it follows that m + x cannot belong to X. 

3. Let t ∈ N satisfy t + X ⊆ X. Then tN ⊆ D(X).
Indeed, the hypothesis implies nt + X ⊆ X for all n ∈ N. Hence, for x ∈ X, we have nt + x ∈ X and so nt = (nt + x)x ∈ D(X).

Let now N

+ = A 0 A 1 be a partition of N + into two nonempty parts. Thus A 1-i = A i for i = 0, 1. We must show that Q(b) has a solution in either A 0 or A 1 or, equivalently, that b ∈ D 2 (A 0 ) ∪ D 2 (A 1 ). Clearly, if D(A i ) = N for i = 0 or 1, we are done since then b ∈ D 2 (A i ). Assume now D(A 0 ), D(A 1 ) = N. Claim 4. Let m ∈ N \ D(A 0 ). Then 2mN + ⊆ D(A 0 ). Indeed, Claim 1 implies m + A 0 ⊆ A 0 = A 1 . (7) 
Moreover, Claim 2 implies both D(A 0 ) ⊆ D(A 1 ) and D(A 1 ) ⊆ D(A 0 ). Therefore

D(A 0 ) = D(A 1 ).
Hence m ∈ N \ D(A 1 ), and Claim 1 implies

m + A 1 ⊆ A 0 . (8) 
It follows from ( 7) and ( 8) that 2m + A 0 ⊆ A 0 , and then Claim 3 implies

2mN + ⊆ D(A 0 ).
This settles Claim 4. We now examine four possible cases. 

Case 1. Assume 1 / ∈ D(A 0 ). Then Claim 4 implies 2N + ⊆ D(A 0 ). Hence 2, b/2 ∈ D(A 0 ), implying b = 2 • b/2 ∈ D 2 (A 0 ).
(A 0 ). But since 1 ∈ D(A 0 ), it follows that b ∈ D 2 (A 0 ). Case 4. Assume 1, 2, b/2 ∈ D(A 0 ). Then b = 2 • b/2 ∈ D 2 (A 0 ).

All four cases lead to the conclusion

b ∈ D 2 (A 0 ). Therefore Q(b) is 2-regular.
Remark 5.2. As easily seen, the 2-color Rado number for equation Q( 4) is equal to 5. That is, for any 2-coloring of [START_REF] Adhikari | On a conjecture of Fox and Kleitman on the degree of regularity of a certain linear equation[END_REF][START_REF] Cooper | Coloring so that no Pythagorean Triple is Monochromatic[END_REF], there is a monochromatic solution to that equation, and 5 is minimal for that property.

The case r = 3

We now show that equation (x 1y 1 )(x 2y 2 ) = 36 is 3-regular. By Proposition 3.4, the right-hand side b = 36 is minimal for that property.

Again, this is a much sharper statement than that provided by Theorem 3.3 for r = 3. Indeed, the number N = M(6! + 1, 1/3) is huge already, since N ≥ W (721, 3) by ( 6), and even more so is the constant term b = 6N! involved in our main result.

As in [2], for a finite sequence A in N + , we denote by bs(A) the set of all signed block sums in A, i.e., bs(A) = {±σ(B) | B is a block in A}.

We shall also need the following ad-hoc definition, specifically tailored to deal with equation Q(36). Of course, it may be easily adapted to deal with equation Q(b) for any b ≥ 1.

Definition 5.3. A sequence A = (a 1 , . . . , a n ) of positive integers is said to be admissible if bs(A) contains no solution of the equation uv = 36, i.e., contains none of the following subsets: {6}, {4, 9}, {3, 12}, {2, 18}, {1, 36}.

Moreover, if A is admissible and σ(A) ≤ t for some integer t, then A is said to be t-admissible. Finally, if A is not admissible then A is said to be forbidden.

For instance, the sequence A = (1, 1, 9, 1) is 12-admissible. Indeed, we have bs(A) ∩ N = {0, 1, 2, 9, 10, 11, 12}, a set containing no subset {u, v} from list (9). Remark 5.4. Every block in a t-admissible sequence is itself t-admissible. A sequence A is admissible if and only if its reverse sequence A is admissible.

In the sequel, as in [2], we say that a set X ⊆ N + is regular with respect to a Diophantine equation D if X contains a solution of D.1 Lemma 5.5. Let X be a finite subset of N + . Let A = ∆(X) be the discrete derivative of X. Then X is regular with respect to equation Q(36) if and only if A is forbidden. 

Theorem 2 .

 2 1. (Rado's theorem, abridged version) For n ≥ 2 and c 1 , . . . , c n ∈ Z \ {0}, the Diophantine equation

  for related papers. Other open problems in the linear case concern the m-color Rado number of a given equation. Recall that for a Diophantine equation D, the m-color Rado number R m (D) of D is defined as the smallest positive integer N such that for every m-coloring of [1, N], there is a monochromatic solution in [1, N] to D. If no such N exists, then R m (D) = ∞ by definition.

Lemma 3 . 2 .

 32 Let A ⊆ E be nonempty finite sets. Denote δ = |A|/|E| the density of A in E. Let E = E 1 • • • E r be a partition of E into r nonempty parts. Then there exists an index i ≤ r such that |A ∩ E i |/|E i | ≥ δ. Proof. Assume for a contradiction that |A ∩ E i |/|E i | < δ for all i ≤ r. Then |A ∩ E i | < δ|E i | for all i ≤ r and, summing over i, we get

Theorem 3 . 3 .

 33 Let r ∈ N + , and let N = M(r! + 1, 1/r) be as defined above. Then the Diophantine equation Q(N!r!) is r-regular. Proof. Let ∆ be an arbitrary r-coloring of the integer interval E = [1, (r + 1)N!]. Then there exists a color class S ⊆ E of density |S|/|E| ≥ 1/r. Let us partition E into subintervals of length N, as is possible since N divides |E|. By Lemma 3.2, there exists one such subinterval A ⊆ E of size |A| = N such that |S ∩ A|/|A| ≥ 1/r. By the defining property of N, the subset S ∩ A contains an arithmetic progression of length r! + 1, with common difference d for some d ≥ 1. Thus, there exists s ∈ S ∩ A such that {s, s + d, . . . , s + r!d} ⊆ S ∩ A.

  Set m = N!/d. Partition E into its classes mod m, and then partition each class mod m into subsets of cardinality r +1 of the form C = {a, a+m, . . . , a+rm} ⊂ E. This is possible since m divides |E| and r + 1 divides |E|/m. By Lemma 3.2 again, for at least one such subset C, we must have |S ∩ C|/|C| ≥ 1/r. But since |C| = r + 1, this implies |S ∩C| ≥ 2. Thus, there exist two distinct indices 0 ≤ i < j ≤ r such that a + im, a + jm ∈ S ∩C.

Fact 2 .

 2 We have um ∈ S -S for some u ∈[1, r]. Indeed, simply take um = (a + jm) -(a + im) for the two elements in S ∩C found above. Note that 1 ≤ u = ji ≤ r, as desired. We now combine the above facts. Since m = N!/d, by Fact 2 we have uN!/d ∈ S -S for some u ∈ [1, r]. Now since u divides r!, we have r!/u ∈ [1, r!], and hence (r!/u)d ∈ [1, r!]d. Therefore (r!/u)d ∈ S -S by Fact 1. Multiplying these two elements of S -S together, it follows that N!r! ∈ (S -S)(S -S).

Proposition 4 . 6 .

 46 Every subset X ⊂[START_REF] Adhikari | On a conjecture of Fox and Kleitman on the degree of regularity of a certain linear equation[END_REF] 17] of cardinality |X| = 9 contains an arithmetic progression of length 3.

Corollary 4 . 7 .

 47 We have M(3, 1/2) = 17.

Proposition 5 . 1 .

 51 ), and more generally for equationQ(b) whenever b ∈ 4N + . The equation (x 1y 1 )(x 2y 2 ) = b is 2-regular if and only if b is a multiple of 4.Proof. Proposition 3.4 implies that if b ≡ 0 mod 4, then Q(b) is not 2-regular.

Claim 2 .

 2 If D(X) = N, then D(X) ⊆ D(X). Indeed, let d ∈ D(X). Then d = xy for some x, y ∈ X with x ≥ y. Let now m ∈ N \ D(X). Then d = (m + x) -(m + y), and m + x, m + y ∈ X by Claim 1. Hence d ∈ D(X).

Claim

  

Case 2 .

 2 Assume 1 ∈ D(A 0 ) and 2 / ∈ D(A 0 ). Then Claim 4 implies 4N + ⊆ D(A 0 ). Hence b ∈ D(A 0 ), and since 1 ∈ D(A 0 ) it follows that b ∈ D 2 (A 0 ). Case 3. Assume 1 ∈ D(A 0 ) and b/2 / ∈ D(A 0 ). Then Claim 4 implies b ∈ D

3 . 4 .

 34 Given r ≥ 1, what is the smallest b = b(r) such that Q(b) is r-regular? Theorem 3.3 provides the upper bound b(r) ≤ M(r! + 1, 1/r)!r! but, as observed in cases r = 2 and 3, this is very far from being optimal. We have seen that b(2) = 4 and b(3) = 36. What is b(4), for instance? More generally, what is the expected growth of b(r) as a function of r? Given r, b ≥ 1, what is the r-color Rado number of equation Q(b)? In this paper, we provided the answer for the pairs (r, b) = (2, 4) and (3, 36).

That is, if there is some solution (x 1 , . . . , x n ) of D with x i ∈ X for all i.

we may assume |X| = 13. Let B = ∆(X), the discrete derivative of X when X is viewed as an increasing sequence. Then B is of length 12, and B satisfies σ(B) = max Xmin X ≤ 36. Then B is not admissible by the above claim. Hence B is regular with respect to Q(36) by Lemma 5.5.

Corollary 5.8. We have dor(Q(36)) = 3. Moreover, for all t ∈ N + , equation Q(36t 2 ) is 3-regular.

Proof. We have dor(Q(36)) ≥ 3 by the above corollary, and dor(Q(36)) ≤ 3 by Proposition 3.4. The second assertion follows from the 3-regularity of Q(36) and Proposition 3.5.

Corollary 5.9. The 3-color Rado number for equation Q(36) is equal to 37.

Proof. Let R denote the 3-color Rado number for Q(36). We have R ≤ 37, since Corollary 5.7 implies that for every 3-coloring of [START_REF] Adhikari | On a conjecture of Fox and Kleitman on the degree of regularity of a certain linear equation[END_REF]37], there will be a monochromatic solution of Q(36). To see that R ≥ 37, it suffices to exhibit a 3-coloring of [START_REF] Adhikari | On a conjecture of Fox and Kleitman on the degree of regularity of a certain linear equation[END_REF]36] admitting no monochromatic solution to Q(36). Here is such a coloring, the three color classes being as follows: 

Concluding remarks

Several problems related to the contents of this paper remain widely open and would deserve further investigation. Here is a short selection.

What is the degree of regularity of equation Q(b) as a function of b?

We showed here that, as b varies, the numbers dor(Q(b)) are both finite and unbounded.

2. Given r ≥ 1, can one determine all b ∈ N + such that dor(Q(b)) = r? For r = 2, our answer is all b ≡ 0 mod 4. For r ≥ 3, can one similarly expect the answer to be given by suitable congruence classes? For instance, for r = 3, is the answer given by b ≡ 0 or ±36 mod 180? We don't know, but some preliminary indices point to an answer of this type.
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