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NUMERICAL SEMIGROUPS OF SZEMERÉDI TYPE

S. D. ADHIKARI, L. BOZA, S. ELIAHOU, M. P. REVUELTA, M. I. SANZ

ABSTRACT. Given any length k≥ 3 and density 0< δ≤ 1, we introduce
and study the set Sz(k,δ) consisting of all positive integers n such that
every subset of {1,2, . . . ,n} of density at least δ contains an arithmetic
progression of length k. A famous theorem of Szemerédi guarantees
that this set is not empty. We show that Sz(k,δ)∪ {0} is a numerical
semigroup and we determine it for (k,δ) = (4,1/2) and for more than
thirty pairs (3,δ) with δ > 1/5.
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Key words and phrases. Arithmetic progression; van der Waerden number;
multiplicity; Frobenius number; conductor.

1. INTRODUCTION

Denote N = {0,1,2, . . .} and N+ = N \ {0}. Given integers a ≤ b, we
denote by [a,b] = {z ∈ Z | a ≤ z ≤ b} the integer interval they span, and
[a,∞[ = {z ∈ Z | z≥ a}.

A famous theorem of Szemerédi states that any subset of N+ of posi-
tive upper density contains arbitrary long arithmetic progressions. Infor-
mally, an equivalent finitary version states that given any length k ≥ 3, any
sufficiently dense subset of a sufficiently large integer interval contains an
arithmetic progression of length k.

Our purpose in this paper is to introduce and study a closely related set
Sz(k,δ), parametrized by a desired length k ≥ 3 and density 0 < δ ≤ 1.
That set, introduced in Section 2, consists of all positive integers n satisfy-
ing Szemerédi’s theorem relative to k and δ. In Section 3, we prove that
Sz(k,δ)∪{0} is a numerical semigroup. Section 4 displays value tables of
closely related functions r3(n),r4(n). In the last Section 5, we completely
determine Sz(k,δ) for (k,δ) = (4,1/2) and for more than thirty pairs (3,δ)
with δ > 1/5. Interestingly, in a majority of these examples, it occurs that
Sz(k,δ) contains some integer n but not n+1. Said otherwise, the conduc-
tor of the numerical semigroup Sz(k,δ)∪{0} does not necessarily coincide
with its multiplicity. The simplest occurrence of this phenomenon is the
case Sz(3,1/3), which contains 50 but not 51; more precisely, the corre-
sponding multiplicity and conductor equal 49 and 55, respectively.
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2. THE SET SZ(k,δ)

Definition 2.1. Given any length k ≥ 3 and density 0 < δ ≤ 1, let Sz(k,δ)
denote the set consisting of all n∈N+ satisfying the following property: ev-
ery subset X ⊆ [1,n] of density |X |/n≥ δ contains an arithmetic progression
of length k.

That the set Sz(k,δ) is not empty follows from a famous theorem of Sze-
merédi, stated here in its finitary version [9].

Theorem 2.2 (Szemerédi). Given any integer k ≥ 3 and real number 0 <
δ≤ 1, there exists n(k,δ) ∈ N+ such that for any integer n≥ n(k,δ), every
subset A⊆ [1,n] of density |A|/n≥ δ contains an arithmetic progression of
length k.

We shall denote M(k,δ) = min Sz(k,δ). Observe that M(k,δ) owes its
existence to Szemerédi’s theorem above as already noted, and that1 if δ ≤
(k−1)/k, then

M(k,δ)≥ k+1
since no proper subset of [1,k] contains an arithmetic progression of length
k. As for δ = 1, it is clear that Sz(k,1) = [k,∞[ for all k ∈ N+.

2.1. The function rk(n). Closely linked to Szemerédi’s theorem is the func-
tion rk(n), defined as the maximal cardinality of a subset A⊆ [1,n] contain-
ing no arithmetic progression of length k. Indeed, Szemerédi’s theorem is
equivalent to the asymptotic bound rk(n) = o(n). This function can be used
to reformulate membership in Sz(k,δ), as follows.

Lemma 2.3. Let k ≥ 3 be an integer and let 0 < δ ≤ 1. Then, for every
positive integer n, we have n ∈ Sz(k,δ) if and only if rk(n)/n < δ.

Proof. Assume n ∈ Sz(k,δ). Let A ⊆ [1,n] be a subset of cardinality rk(n)
containing no arithmetic progression of length k. Then rk(n)/n = |A|/n < δ

since n ∈ Sz(k,δ). Conversely, assume rk(n)/n < δ. Let A ⊆ [1,n] be a
subset of density |A|/n≥ δ. Then |A| ≥ nδ > rk(n). Hence, by definition of
rk(n), the subset A contains an arithmetic progression of length k. Therefore
n ∈ Sz(k,δ). �

2.2. Comparison with the van der Waerden numbers. Not much ex-
plicit information about M(k,δ) seems to be currently available in the liter-
ature. For δ = 1/r with r ∈N+, the number M(k,1/r) is bounded below by
the corresponding van der Waerden number W (k,r). Given integers k,r≥ 2,
recall that W (k,r) denotes the least integer M such that, for every r-coloring

1Thanks are due to Pierre Catoire, an undergraduate math student in Calais, for pointing
out an error in a preliminary version of this statement.
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of [1,M], there is a monochromatic arithmetic progression of length k in
[1,M]. To show

(1) M(k,1/r)≥W (k,r),

let N = M(k,1/r), and consider any r-coloring of [1,N]. Then some color
class X ⊆ [1,N] is of density |X |/N ≥ 1/r, and hence X contains an arith-
metic progression of length k which is monochromatic by construction.
This settles (1), as desired.

The only exactly known van der Waerden numbers at the time of writing
are given in the following table. See e.g. [10], a web page which also
displays lower bounds on W (k,r) for many more pairs (k,r).

W (3,2) = 9 W (3,3) = 27 W (3,4) = 76
W (4,2) = 35 W (4,3) = 293
W (5,2) = 178
W (6,2) = 1132

In subsequent sections, we shall prove that Sz(k,δ)∪{0} is a numerical
semigroup and shall determine it for several pairs (k,δ). We first recall
some basic notions regarding numerical semigroups.

3. SZ(k,δ)∪{0} AS A NUMERICAL SEMIGROUP

A numerical semigroup is a cofinite submonoid of N. That is, a subset
S⊂N containing 0, stable under addition and with finite complement N\S.
Equivalently, it is a subset of N of the form S = 〈a1, . . . ,an〉 = a1N+ · · ·+
anN for some globally coprime positive integers a1, . . . ,an.

Given a numerical semigroup S⊆N, the multiplicity of S is m = min(S\
{0}), its Frobenius number is F = max(Z \ S), that is its largest gap, and
its conductor is c = F + 1 or, equivalently, the smallest integer c such that
[c,∞[⊆ S.

If S = 〈a1, . . . ,an〉= a1N+ · · ·+anN with the ai increasing and globally
coprime, the multiplicity of S is m = a1. But determining the Frobenius
number of S from the sole generators ai is a notoriously difficult problem
for n ≥ 3. See e.g. [2, 4]. As for n = 2, Sylvester proved long ago [8] that
the Frobenius number of 〈a1,a2〉 equals (a1−1)(a2−1)−1. See [5, 6] for
extensive information on numerical semigroups.

Our objective in this section is to prove that Sz(k,δ)∪{0} is a numerical
semigroup, using only a weakened version of Szemerédi’s theorem.

3.1. Stability under addition. Our first task is to prove that Sz(k,δ) is
stable under addition. We shall need the following elementary lemma [1].
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Lemma 3.1. Let A,E be nonempty finite sets such that A ⊆ E. Denote
δ = |A|/|E| the density of A in E. Let E = E1 t ·· · t Er be a partition
of E into r nonempty parts. Then there exists an index i ≤ r such that
|A∩Ei|/|Ei| ≥ δ.

Proof. If |A∩Ei|/|Ei|< δ for all i, then ∑i |A∩Ei|< δ∑i |Ei|. Since ∑i |A∩
Ei|= |A| and ∑i |Ei|= |E|, this implies |A|< δ|E|= |A|, a contradiction. �

Proposition 3.2. For any integer k≥ 3 and 0 < δ≤ 1, the set Sz(k,δ)∪{0}
is stable under addition.

Proof. Let n1,n2 ∈ Sz(k,δ). Let E = [1,n1 +n2], and consider the partition
E = E1 tE2 with E1 = [1,n1] and E2 = [n1 + 1,n1 + n2]. Thus |Ei| = ni
for i = 1,2. Let X ⊆ E be of density |X |/(n1 + n2) ≥ δ. We must show
that X contains an arithmetic progression of length k. Let Xi = X ∩Ei for
i = 1,2. By the above lemma, either |X1|/n1 ≥ δ or |X2|/n2 ≥ δ. It follows
that either X1 or X2 contains an arithmetic progression of length k, whence
X also does. Thus n1 +n2 ∈ Sz(k,δ), as stated. �

3.2. Cofiniteness in N. It directly follows from Szemerédi’s Theorem 2.2
that N\Sz(k,δ) is finite since it implies that, for some n(k,δ) ∈ N+, every
integer n ≥ n(k,δ) belongs to Sz(k,δ). However, that statement can also
be deduced by elementary arguments from the following weaker version of
Szemerédi’s theorem.

Theorem 3.3. Given an integer k≥ 3 and 0 < δ≤ 1, there exists a positive
integer n = n(k,δ) such that every subset A ⊆ [1,n] of density |A|/n ≥ δ

contains an arithmetic progression of length k.

This version ‘only’ states that Sz(k,δ) is nonempty, and hence that the
number M(k,δ) = minSz(k,δ) exists, whereas the original version states
that N \Sz(k,δ) is finite. As shown here, these statements are equivalent.
Indeed, below we shall only use the existence of M(k,1/r) for k,r ∈ N+ to
deduce the cofiniteness of Sz(k,δ) in N in general. That is, we shall deduce
Theorem 2.2 from its weaker version Theorem 3.3.

Let us start by observing that Sz(k,δ) is monotonous in the parameter δ.

Lemma 3.4. Let k ≥ 3 be an integer, and let 0 < δ1 ≤ δ2 ≤ 1. Then
Sz(k,δ1)⊆ Sz(k,δ2).

Proof. Let n ∈ Sz(k,δ1). Every subset of [1,n] of density at least δ2 has
density at least δ1, whence contains an arithmetic sequence of length k.
Therefore n ∈ Sz(k,δ2). �

We shall first prove the cofiniteness of Sz(k,δ) when δ= 1/r with r∈N+,
and shall then use the above lemma for δ arbitrary. The case δ = 1/r relies
upon the following intermediary result.
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Proposition 3.5. Let k,r,n be integers with k ≥ 3 and r,n ≥ 2. If n ∈
Sz(k,1/r) and n 6≡ 1 mod r, then n−1 ∈ Sz(k,1/r).

Proof. By Euclidean division by r with remainder in [1,r], there are integers
q, t such that n = qr+ t with 1 ≤ t ≤ r. We have t ≥ 2 since n 6≡ 1 mod r.
Let X ⊆ [1,n−1] be any subset of density |X |/(n−1)≥ 1/r. We claim that
|X |/n ≥ 1/r. Indeed, we have r|X | ≥ n− 1, whence |X | ≥ q+(t − 1)/r.
But since 2 ≤ t ≤ r, we have 1/r ≤ (t− 1)/r < 1. Since |X | is an integer,
it follows that |X | ≥ q + 1, whence r|X | ≥ qr + r ≥ qr + t = n, whence
|X |/n≥ 1/r. Thus X is still of density at least 1/r in [1,n]. It follows that X
contains an arithmetic progression of length k. Therefore n−1∈ Sz(k,1/r),
as claimed. �

Corollary 3.6. Let k,r be integers with k ≥ 3 and r ≥ 2. Then M(k,1/r)≡
1 mod r.

Proof. Let n = M(k,1/r) = minSz(k,1/r). Since n− 1 /∈ Sz(k,1/r), the
above proposition implies n≡ 1 mod r, as desired. �

Proposition 3.7. For any integers k ≥ 3 and r ≥ 2, the complement N \
Sz(k,1/r) is finite.

Proof. Set n = M(k,1/r). Then n ≡ 1 mod r as seen above. Moreover, we
have 2n ∈ Sz(k,1/r), and 2n≡ 2 mod r. It follows that 2n−1 also belongs
to Sz(k,1/r). Therefore Sz(k,1/r) contains the numerical semigroup 〈2n−
1,2n〉, and in particular it contains all integers greater than or equal to the
conductor of the latter semigroup, namely (2n−2)(2n−1) as given by the
old result of Sylvester recalled above [8]. �

3.3. Completing the proof. We may now reach the objective of this sec-
tion.

Theorem 3.8. For every integer k≥ 3 and 0 < δ≤ 1, the set Sz(k,δ)∪{0}
is a numerical semigroup.

Proof. The stability of Sz(k,δ) under addition is given by Proposition 3.2.
It remains to prove that its complement in N is finite, without invoking
the full force of Theorem 2.2. There exists r ∈ N+ such that 1/r ≤ δ.
Since Sz(k,1/r) ⊆ Sz(k,δ) by Lemma 3.4, and since the complement of
Sz(k,1/r) in N is finite by Proposition 3.7, the same holds for Sz(k,δ). �

We propose to call numerical semigroups of Szemerédi type those numer-
ical semigroups S of the form S = Sz(k,δ)∪{0} for k ≥ 3 and 0 < δ≤ 1.

3.4. The number C(k,δ). Recall that M(k,δ) = minSz(k,δ). Thus, in the
standard terminology of numerical semigroups, the number M(k,δ) is the
multiplicity of Sz(k,δ)∪{0}. We now introduce a notation for the conductor
of that numerical semigroup.
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Notation 3.9. Let k≥ 3 and 0 < δ≤ 1. We shall denote C(k,δ) the conduc-
tor of the numerical semigroup Sz(k,δ)∪{0}.

We have

(2) M(k,δ)≤C(k,δ),

since the multiplicity of any numerical semigroup is smaller than or equal
to its conductor. Of course, M(k,1) =C(k,1) = k. Here is yet another con-
sequence of Proposition 3.5, similar in content and proof to Corollary 3.6.

Corollary 3.10. Let k,r be integers with k≥ 3 and r≥ 2. Then C(k,1/r)≡
1 mod r.

Proof. The conductor n=C(k,1/r) of Sz(k,1/r) satisfies n−1 /∈Sz(k,1/r).
Hence n≡ 1 mod r by Proposition 3.5. �

We shall need the following characterization of the conductor.

Lemma 3.11. Let S be a numerical semigroup with multiplicity m. Then
the conductor of S is the smallest integer c ∈ S such that S contains m con-
secutive integers starting from c.

Proof. Indeed, if S contains [c,c+m−1], then by successively adding mul-
tiples of m, it will contain all of [c,∞[. �

The following statement was suggested by one of the referees.

Corollary 3.12. Let k,r be integers with k≥ 3 and r≥ 2. Let M =M(k,1/r)
and C =C(k,1/r). Then C ≤ (M−1)2 +1.

Proof. Denote S = Sz(k,1/r). By Lemma 3.11, it suffices to show that S
contains M consecutive integers starting from (M−1)2 +1, i.e. that

(3)
[
(M−1)2 +1,(M−1)2 +M

]
⊂ S.

Recall from Proposition 3.5 that if n ∈ S and n 6≡ 1 mod r, then n− 1 ∈ S.
Hence, if n ∈ S and n≡ a mod r with 1≤ a≤ r−1, then [n−a+1,n]⊂ S.
In particular, we have M ≡ 1 mod r by Corollary 3.6.

Let Ji = [iM− i+1, iM] for any positive integer i≥ 1. Then card(Ji) = i.
We claim that Ji⊂ S for all i≥ 1. Indeed, this holds for i= 1 since J1 = {M}.
For i≥ 2 assume, by induction hypothesis, that the claim holds for i−1, i.e.
that Ji−1 ⊂ S. Then Ji−1 +M ⊂ S, i.e. [iM− i+ 2, iM] ⊂ S. Now, since
iM− i+ 2 ≡ 2 mod M, it follows that iM− i+ 1 ∈ S. Hence S contains
[iM− i+1, iM] = Ji, as claimed.

For i = M− 1, the claim yields [(M− 1)2 + 1,M2−M] ⊂ S. Moreover,
since min(Jm) = M2−M+1, the claim for i = M implies M2−M+1 ∈ S.
Therefore [(M−1)2 +1,M2−M+1]⊂ S, whence (3) holds. �
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Note that the conclusion of Corollary 3.12 may not necessarily hold for
densities δ other than 1/r with r ≥ 2 an integer. For instance, with k = 3
and δ = 3/4, we have Sz(3,3/4) = {3}∪ [6,∞[, so that M = 3 and C = 6,
whence C > (M−1)2 +1.

4. EXACT VALUES OF rk(n)

Exact values of the functions r3(n) and r4(n) defined in Section 2.1 are
currently known for n ≤ 187 and n ≤ 112, respectively. They are partly
listed in the two tables below, which were read off from [3] and [7], respec-
tively. In the next section, we shall use these values, in conjunction with
Lemma 2.3, to determine Sz(k,δ) in many instances.

n r3(n) n r3(n) n r3(n) n r3(n)
1 1 26−29 11 71−73 21 121 31
2−3 2 30−31 12 74−81 22 122−136 32
4 3 32−35 13 82−83 23 137−144 33
5−8 4 36−39 14 84−91 24 145−149 34
9−10 5 40 15 92−94 25 150−156 35
11−12 6 41−50 16 95−99 26 157−162 36
13 7 51−53 17 100−103 27 163−164 37
14−19 8 54−57 18 104−110 28 165−168 38
20−23 9 58−62 19 111−113 29 169−173 39
24−25 10 63−70 20 114−120 30 174−187 40

n r4(n) n r4(n)
53 27 84−86 39
54−57 28 87−90 40
58−59 29 91−92 41
60−63 30 93−96 42
64−65 31 97−98 43
66−67 32 99−100 44
68−69 33 101−103 45
70−73 34 104 46
74−76 35 105−106 47
77−78 36 107−111 48
79−81 37 112 49
82−83 38

5. DETERMINING SZ(k,δ)

We now determine Sz(3,δ) for various values of δ < 1, and Sz(4,1/2),
using Lemma 2.3 and the two tables above. In each case, we give the mul-
tiplicity M(k,δ), the conductor C(k,δ) and the full set Sz(k,δ).

In most cases, the set Sz(3,δ) can be directly read off from the displayed
values of r3(n) for n≤ 187. Yet sometimes, we need upper bounds on r3(n)
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for several n > 187. For that, we use the easy and well-known inequality

(4) rk(n+ i)≤ rk(n)+ rk(i)

for all k,n, i≥ 1.
Determining the multiplicity M(k,δ) = minSz(k,δ) is straightforward

from Lemma 2.3 and the tables in Section 4. As for the conductor C(k,δ), it
may be determined using Lemma 3.11. Tables 1 and 2 below give Sz(k,δ)
for more than 30 pairs (k,δ).

(k,δ) M(k,δ) C(k,δ) Sz(k,δ)
(3,1/2) 17 17 [17,∞[
(3,1/3) 49 55 {49,50,52,53}∪ [55,∞[
(3,1/4) 129 129 [129,∞[

(3,2/3) 7 7 [7,∞[
(3,2/5) 23 33 {23,28,29,31}∪ [33,∞[
(3,2/7) 78 85 [78,83]∪ [85,∞[
(3,2/9) 181 ? ?

(3,3/4) 3 6 {3}∪ [6,∞[
(3,3/5) 7 7 [7,∞[
(3,3/7) 19 22 {19}∪ [22,∞[
(3,3/8) 35 43 {35,38,39}∪ [43,∞[
(3,3/10) 67 67 [67,∞[
(3,3/11) 81 96 {81}∪ [89,94]∪ [96,∞[
(3,3/13) 144 170? {144,148,149}∪ [152,168]∪ [170,187]∪ ?

TABLE 1. The sets Sz(3,δ) for selected values of δ

For illustration purposes, we now prove one case in detail.

Proposition 5.1. We have Sz(3,1/4) = [129,∞[.

Proof. Looking at the values of r3(n) in Section 4, we see that the smallest
n≥ 1 satisfying r3(n)< n/4 is 129. Hence M(3,1/4) = 129 by Lemma 2.3.
Let us now prove C(3,1/4) = 129. By Lemma 3.11, is suffices to show that
Sz(3,1/4) contains the whole of [129,257], i.e. that

(5) r3(n)< n/4

for all 129 ≤ n≤ 257. The relevant table in Section 4 shows that (5) holds
for all 129 ≤ n ≤ 187. It remains to see that 187+ i satisfies (5) for all
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(k,δ) M(k,δ) C(k,δ) Sz(k,δ)
(3,4/5) 3 6 {3,4}∪ [6,∞[
(3,4/7) 8 15 [8,13]∪ [15,∞[
(3,4/9) 19 21 {19}∪ [21,∞[
(3,4/11) 39 45 {39}∪ [45,∞[
(3,4/13) 62 66 {62}∪ [66,∞[
(3,4/15) 91 106 {91,94,98,99,102,103}∪ [106,∞[
(3,4/17) 141 141? [141,∞[ ?

(3,5/6) 3 3 [3,∞[
(3,5/7) 3 6 {3}∪ [6,∞[
(3,5/8) 7 7 [7,∞[
(3,5/9) 8 15 {8}∪ [10,13]∪ [15,∞[
(3,5/11) 18 18 [18,∞[
(3,5/12) 22 27 {22,23,25}∪ [27,∞[
(3,5/13) 29 42 {29,34,35}∪ [37,40]∪ [42,∞[
(3,5/14) 45 45 [45,∞[
(3,5/16) 61 65 {61,62}∪ [65,∞[
(3,5/17) 69 75 {69,70,72,73}∪ [75,∞[
(3,5/18) 80 87 {80,81,83}∪ [87,∞[
(3,5/19) 99 115 {99,103}∪ [107,113]∪ [115,∞[
(3,5/21) 135 139? {135,136}∪ [139,200]∪ ?

(4,1/2) 57 61 {57,59}∪ [61,∞[

TABLE 2. More instances of sets Sz(3,δ), and Sz(4,1/2)

1≤ i≤ 70. This follows from the inequality rk(n+ i)≤ rk(n)+rk(i) recalled
in (4). Indeed, we have r3(187) = 40, and

r3(187)+ r3(i)< (187+ i)/4

for all 1 ≤ i ≤ 70, as checked by scanning the values of r3(i) in this range.
More precisely, the smallest difference (187+ i)/4− (r3(187)+ r3(i)) for
1≤ i≤ 70 comes at i = 41 and equals 228/4− (40+16) = 1. �

5.1. Concluding questions. The present results raise some obvious ques-
tions regarding numerical semigroups of Szemerédi type. For instance, all
cases met so far satisfy C(k,δ)/M(k,δ) ≤ 2. Is this true in general? More
generally, what is the value of maxC(k,δ)/M(k,δ) as k ≥ 3 and 0 < δ ≤ 1
vary? Is it finite or infinite? If finite, is it attained?

Acknowledgments. The authors are grateful to the anonymous referees for their
constructive and detailed suggestions on a preliminary version of this paper.
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DE SEVILLA, AVENIDA DE LA REINA MERCEDES 4, C.P. 41012 SEVILLA, SPAIN

E-mail address: pastora@us.es

M. I. SANZ, DEPARTAMENTO DE MATEMÁTICA APLICADA I, UNIVERSIDAD DE
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