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A famous theorem of Szemerédi states that any subset of N + of positive upper density contains arbitrary long arithmetic progressions. Informally, an equivalent finitary version states that given any length k ≥ 3, any sufficiently dense subset of a sufficiently large integer interval contains an arithmetic progression of length k.

Our purpose in this paper is to introduce and study a closely related set Sz(k, δ), parametrized by a desired length k ≥ 3 and density 0 < δ ≤ 1. That set, introduced in Section 2, consists of all positive integers n satisfying Szemerédi's theorem relative to k and δ. In Section 3, we prove that Sz(k, δ) ∪ {0} is a numerical semigroup. Section 4 displays value tables of closely related functions r 3 (n), r 4 (n). In the last Section 5, we completely determine Sz(k, δ) for (k, δ) = (4, 1/2) and for more than thirty pairs (3, δ) with δ > 1/5. Interestingly, in a majority of these examples, it occurs that Sz(k, δ) contains some integer n but not n + 1. Said otherwise, the conductor of the numerical semigroup Sz(k, δ) ∪ {0} does not necessarily coincide with its multiplicity. The simplest occurrence of this phenomenon is the case Sz(3, 1/3), which contains 50 but not 51; more precisely, the corresponding multiplicity and conductor equal 49 and 55, respectively. That the set Sz(k, δ) is not empty follows from a famous theorem of Szemerédi, stated here in its finitary version [START_REF] Szemerédi | On sets of integers containing no k elements in arithmetic progression[END_REF]. Theorem 2.2 (Szemerédi). Given any integer k ≥ 3 and real number 0 < δ ≤ 1, there exists n(k, δ) ∈ N + such that for any integer n ≥ n(k, δ), every subset A ⊆ [1, n] of density |A|/n ≥ δ contains an arithmetic progression of length k.

We shall denote M(k, δ) = min Sz(k, δ). Observe that M(k, δ) owes its existence to Szemerédi's theorem above as already noted, and that 1 

if δ ≤ (k -1)/k, then M(k, δ) ≥ k + 1 since no proper subset of [1, k] contains an arithmetic progression of length k. As for δ = 1, it is clear that Sz(k, 1) = [k, ∞[ for all k ∈ N + .
2.1. The function r k (n). Closely linked to Szemerédi's theorem is the function r k (n), defined as the maximal cardinality of a subset A ⊆ [1, n] containing no arithmetic progression of length k. Indeed, Szemerédi's theorem is equivalent to the asymptotic bound r k (n) = o(n). This function can be used to reformulate membership in Sz(k, δ), as follows.

Lemma 2.3. Let k ≥ 3 be an integer and let 0 < δ ≤ 1. Then, for every positive integer n, we have n ∈ Sz(k, δ) if and only if r k (n)/n < δ.

Proof. Assume n ∈ Sz(k, δ). Let A ⊆ [1, n] be a subset of cardinality r k (n) containing no arithmetic progression of length k. Then r k (n)/n = |A|/n < δ since n ∈ Sz(k, δ). Conversely, assume r k (n)/n < δ. Let A ⊆ [1, n] be a subset of density |A|/n ≥ δ. Then |A| ≥ nδ > r k (n).
Hence, by definition of r k (n), the subset A contains an arithmetic progression of length k. Therefore n ∈ Sz(k, δ).

2.2.

Comparison with the van der Waerden numbers. Not much explicit information about M(k, δ) seems to be currently available in the literature. For δ = 1/r with r ∈ N + , the number M(k, 1/r) is bounded below by the corresponding van der Waerden number W (k, r). Given integers k, r ≥ 2, recall that W (k, r) denotes the least integer M such that, for every r-coloring

of [1, M], there is a monochromatic arithmetic progression of length k in [1, M]. To show (1) M(k, 1/r) ≥ W (k, r),
let N = M(k, 1/r), and consider any r-coloring of [1, N]. Then some color class X ⊆ [1, N] is of density |X|/N ≥ 1/r, and hence X contains an arithmetic progression of length k which is monochromatic by construction. This settles (1), as desired.

The only exactly known van der Waerden numbers at the time of writing are given in the following table. See e.g. [START_REF]Van der Waerden numbers[END_REF], a web page which also displays lower bounds on W (k, r) for many more pairs (k, r).

W (3, 2) = 9 W (3, 3) = 27 W (3, 4) = 76 W (4, 2) = 35 W (4, 3) = 293 W (5, 2) = 178 W (6, 2) = 1132
In subsequent sections, we shall prove that Sz(k, δ) ∪ {0} is a numerical semigroup and shall determine it for several pairs (k, δ). We first recall some basic notions regarding numerical semigroups.

SZ(k, δ) ∪ {0} AS A NUMERICAL SEMIGROUP

A numerical semigroup is a cofinite submonoid of N. That is, a subset S ⊂ N containing 0, stable under addition and with finite complement N \ S. Equivalently, it is a subset of N of the form S = a 1 , . . . , a n = a 1 N + • • • + a n N for some globally coprime positive integers a 1 , . . . , a n .

Given a numerical semigroup S ⊆ N, the multiplicity of S is m = min(S \ {0}), its Frobenius number is F = max(Z \ S), that is its largest gap, and its conductor is c = F + 1 or, equivalently, the smallest integer c such that

[c, ∞[ ⊆ S. If S = a 1 , . . . , a n = a 1 N + • • • + a n N
with the a i increasing and globally coprime, the multiplicity of S is m = a 1 . But determining the Frobenius number of S from the sole generators a i is a notoriously difficult problem for n ≥ 3. See e.g. [START_REF] Curtis | On formulas for the Frobenius number of a numerical semigroup[END_REF][START_REF] Ramírez Alfonsín | Complexity of the Frobenius problem[END_REF]. As for n = 2, Sylvester proved long ago [START_REF] Sylvester | On subinvariants, i.e. semi-invariants to binary quantities of an unlimited order[END_REF] that the Frobenius number of a 1 , a 2 equals (a 1 -1)(a 2 -1) -1. See [START_REF] Ramírez Alfonsín | The Diophantine Frobenius problem[END_REF][START_REF] Rosales | Numerical semigroups[END_REF] for extensive information on numerical semigroups.

Our objective in this section is to prove that Sz(k, δ) ∪ {0} is a numerical semigroup, using only a weakened version of Szemerédi's theorem.

3.1. Stability under addition. Our first task is to prove that Sz(k, δ) is stable under addition. We shall need the following elementary lemma [START_REF] Adhikari | On the degree of regularity of a certain quadratic Diophantine equation[END_REF]. Lemma 3.1. Let A, E be nonempty finite sets such that A ⊆ E. Denote δ = |A|/|E| the density of A in E. Let E = E 1 • • • E r be a partition of E into r nonempty parts. Then there exists an index i ≤ r such that

|A ∩ E i |/|E i | ≥ δ. Proof. If |A ∩ E i |/|E i | < δ for all i, then ∑ i |A ∩ E i | < δ ∑ i |E i |. Since ∑ i |A ∩ E i | = |A| and ∑ i |E i | = |E|, this implies |A| < δ|E| = |A|, a contradiction.
Proposition 3.2. For any integer k ≥ 3 and 0 < δ ≤ 1, the set Sz(k, δ) ∪ {0} is stable under addition.

Proof. Let n 1 , n 2 ∈ Sz(k, δ). Let E = [1, n 1 + n 2 ]
, and consider the partition

E = E 1 E 2 with E 1 = [1, n 1 ] and E 2 = [n 1 + 1, n 1 + n 2 ]. Thus |E i | = n i for i = 1, 2. Let X ⊆ E be of density |X|/(n 1 + n 2 ) ≥ δ. We must show that X contains an arithmetic progression of length k. Let X i = X ∩ E i for i = 1, 2. By the above lemma, either |X 1 |/n 1 ≥ δ or |X 2 |/n 2 ≥ δ.
It follows that either X 1 or X 2 contains an arithmetic progression of length k, whence X also does. Thus n 1 + n 2 ∈ Sz(k, δ), as stated.

Cofiniteness in N.

It directly follows from Szemerédi's Theorem 2.2 that N \ Sz(k, δ) is finite since it implies that, for some n(k, δ) ∈ N + , every integer n ≥ n(k, δ) belongs to Sz(k, δ). However, that statement can also be deduced by elementary arguments from the following weaker version of Szemerédi's theorem. This version 'only' states that Sz(k, δ) is nonempty, and hence that the number M(k, δ) = min Sz(k, δ) exists, whereas the original version states that N \ Sz(k, δ) is finite. As shown here, these statements are equivalent. Indeed, below we shall only use the existence of M(k, 1/r) for k, r ∈ N + to deduce the cofiniteness of Sz(k, δ) in N in general. That is, we shall deduce Theorem 2.2 from its weaker version Theorem 3.3.

Let us start by observing that Sz(k, δ) is monotonous in the parameter δ.

Lemma 3.4. Let k ≥ 3 be an integer, and let

0 < δ 1 ≤ δ 2 ≤ 1. Then Sz(k, δ 1 ) ⊆ Sz(k, δ 2 ).
Proof. Let n ∈ Sz(k, δ 1 ). Every subset of [1, n] of density at least δ 2 has density at least δ 1 , whence contains an arithmetic sequence of length k.

Therefore n ∈ Sz(k, δ 2 ).

We shall first prove the cofiniteness of Sz(k, δ) when δ = 1/r with r ∈ N + , and shall then use the above lemma for δ arbitrary. The case δ = 1/r relies upon the following intermediary result. Proposition 3.5. Let k, r, n be integers with k ≥ 3 and r, n ≥ 2. If n ∈ Sz(k, 1/r) and n ≡ 1 mod r, then n -1 ∈ Sz(k, 1/r).

Proof. By Euclidean division by r with remainder in [1, r], there are integers q,t such that n = qr + t with 1 ≤ t ≤ r. We have t ≥ 2 since n ≡ 1 mod r. Let X ⊆ [1, n -1] be any subset of density |X|/(n -1) ≥ 1/r. We claim that |X|/n ≥ 1/r. Indeed, we have r|X| ≥ n -1, whence |X| ≥ q + (t -1)/r. But since 2 ≤ t ≤ r, we have 1/r ≤ (t -1)/r < 1. Since |X| is an integer, it follows that |X| ≥ q + 1, whence r|X| ≥ qr + r ≥ qr + t = n, whence |X|/n ≥ 1/r. Thus X is still of density at least 1/r in [1, n]. It follows that X contains an arithmetic progression of length k. Therefore n-1 ∈ Sz(k, 1/r), as claimed.

Corollary 3.6. Let k, r be integers with k ≥ 3 and r ≥ 2. Then M(k, 1/r) ≡ 1 mod r.

Proof. Let n = M(k, 1/r) = min Sz(k, 1/r). Since n -1 /
∈ Sz(k, 1/r), the above proposition implies n ≡ 1 mod r, as desired. Proposition 3.7. For any integers k ≥ 3 and r ≥ 2, the complement N \ Sz(k, 1/r) is finite.

Proof. Set n = M(k, 1/r). Then n ≡ 1 mod r as seen above. Moreover, we have 2n ∈ Sz(k, 1/r), and 2n ≡ 2 mod r. It follows that 2n -1 also belongs to Sz(k, 1/r). Therefore Sz(k, 1/r) contains the numerical semigroup 2n -1, 2n , and in particular it contains all integers greater than or equal to the conductor of the latter semigroup, namely (2n -2)(2n -1) as given by the old result of Sylvester recalled above [START_REF] Sylvester | On subinvariants, i.e. semi-invariants to binary quantities of an unlimited order[END_REF].

3.3.

Completing the proof. We may now reach the objective of this section.

Theorem 3.8. For every integer k ≥ 3 and 0 < δ ≤ 1, the set Sz(k, δ) ∪ {0} is a numerical semigroup.

Proof. The stability of Sz(k, δ) under addition is given by Proposition 3.2. It remains to prove that its complement in N is finite, without invoking the full force of Theorem 2.2. There exists r ∈ N + such that 1/r ≤ δ. Since Sz(k, 1/r) ⊆ Sz(k, δ) by Lemma 3.4, and since the complement of Sz(k, 1/r) in N is finite by Proposition 3.7, the same holds for Sz(k, δ). We propose to call numerical semigroups of Szemerédi type those numerical semigroups S of the form S = Sz(k, δ) ∪ {0} for k ≥ 3 and 0 < δ ≤ 1.

3.4.

The number C(k, δ). Recall that M(k, δ) = min Sz(k, δ). Thus, in the standard terminology of numerical semigroups, the number M(k, δ) is the multiplicity of Sz(k, δ)∪{0}. We now introduce a notation for the conductor of that numerical semigroup.

Note that the conclusion of Corollary 3.12 may not necessarily hold for densities δ other than 1/r with r ≥ 2 an integer. For instance, with k = 3 and δ = 3/4, we have Sz(3, 3/4) = {3} ∪ [6, ∞[, so that M = 3 and C = 6, whence C > (M -1) 2 + 1.

EXACT VALUES OF r k (n)

Exact values of the functions r 3 (n) and r 4 (n) defined in Section 2.1 are currently known for n ≤ 187 and n ≤ 112, respectively. They are partly listed in the two tables below, which were read off from [START_REF] Gasarch | Finding large 3-free sets I: The small n case[END_REF] and [START_REF] Shao | On sets without k-term arithmetic progression[END_REF], respectively. In the next section, we shall use these values, in conjunction with Lemma 2.3, to determine Sz(k, δ) in many instances. We now determine Sz(3, δ) for various values of δ < 1, and Sz(4, 1/2), using Lemma 2.3 and the two tables above. In each case, we give the multiplicity M(k, δ), the conductor C(k, δ) and the full set Sz(k, δ).

n r 3 (n) n r 3 (n) n r 3 (n) n r 3 (n)
In most cases, the set Sz(3, δ) can be directly read off from the displayed values of r 3 (n) for n ≤ 187. Yet sometimes, we need upper bounds on r 3 (n)

  N = {0, 1, 2, . . . } and N + = N \ {0}. Given integers a ≤ b, we denote by [a, b] = {z ∈ Z | a ≤ z ≤ b} the integer interval they span, and [a, ∞[ = {z ∈ Z | z ≥ a}.

2 .Definition 2 . 1 .

 221 THE SET SZ(k, δ) Given any length k ≥ 3 and density 0 < δ ≤ 1, let Sz(k, δ) denote the set consisting of all n ∈ N + satisfying the following property: every subset X ⊆ [1, n] of density |X|/n ≥ δ contains an arithmetic progression of length k.

Theorem 3 . 3 .

 33 Given an integer k ≥ 3 and 0 < δ ≤ 1, there exists a positive integer n = n(k, δ) such that every subset A ⊆ [1, n] of density |A|/n ≥ δ contains an arithmetic progression of length k.

Thanks are due to Pierre Catoire, an undergraduate math student in Calais, for pointing out an error in a preliminary version of this statement.
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Notation 3.9. Let k ≥ 3 and 0 < δ ≤ 1. We shall denote C(k, δ) the conductor of the numerical semigroup Sz(k, δ) ∪ {0}.

We have [START_REF] Curtis | On formulas for the Frobenius number of a numerical semigroup[END_REF] M(k, δ) ≤ C(k, δ), since the multiplicity of any numerical semigroup is smaller than or equal to its conductor. Of course, M(k, 1) = C(k, 1) = k.

Here is yet another consequence of Proposition 3.5, similar in content and proof to Corollary 3.6.

Corollary 3.10. Let k, r be integers with k ≥ 3 and r ≥ 2. Then C(k, 1/r) ≡ 1 mod r.

Proof. The conductor n = C(k, 1/r) of Sz(k, 1/r) satisfies n-1 / ∈ Sz(k, 1/r). Hence n ≡ 1 mod r by Proposition 3.5.

We shall need the following characterization of the conductor. Proof. Denote S = Sz(k, 1/r). By Lemma 3.11, it suffices to show that S contains M consecutive integers starting from (M -1) 2 + 1, i.e. that

Recall from Proposition 3.5 that if n ∈ S and n ≡ 1 mod r, then n -

In particular, we have M ≡ 1 mod r by Corollary 3.6.

for any positive integer i ≥ 1. Then card(J i ) = i. We claim that J i ⊂ S for all i ≥ 1. Indeed, this holds for i = 1 since J 1 = {M}. For i ≥ 2 assume, by induction hypothesis, that the claim holds for i -1, i.e. that J i-1 ⊂ S.

for several n > 187. For that, we use the easy and well-known inequality (4)

for all k, n, i ≥ 1.

Determining the multiplicity M(k, δ) = min Sz(k, δ) is straightforward from Lemma 2.3 and the tables in Section 4. As for the conductor C(k, δ), it may be determined using Lemma 3.11. Tables 1 and2 below give Sz(k, δ) for more than 30 pairs (k, δ).