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A new closed-form expression for the solution of ODEs in a ring of distributions and its connection with the matrix algebra
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A new expression for solving homogeneous linear ODEs based on a generalization of the Volterra composition was recently introduced. In this work, we extend such an expression, showing that it corresponds to inverting an infinite matrix. This is done by studying a particular subring and connecting it with a subalgebra of infinite matrices.

Introduction

Let Ã(t) be an N × N matrix-valued function analytic over t ∈ I = [0, 1] and I N the N × N identity matrix. Then, the system of ODEs d dt U s (t) = Ã(t)U s (t), U s (s) = I N , for t ≥ s, t, s ∈ I,

has a unique solution U s (t). When Ã(τ 1 ) Ã(τ 2 ) = Ã(τ 2 ) Ã(τ 1 ) for every τ 1 , τ 2 ∈ I, U s (t) takes the form

U s (t) = exp t s Ã(τ ) dτ .
In general, however, U s (t) has no known simple expression in terms of Ã(t). Indeed, despite systems of non-autonomous linear ODEs are crucial, common problems that appear in a variety of contexts [START_REF] Autler | Stark effect in rapidly varying fields[END_REF][START_REF] Benner | Model reduction and approximation: Theory and algorithms[END_REF][START_REF] Blanes | High order structure preserving explicit methods for solving linear-quadratic optimal control problems[END_REF][START_REF] Kwakernaak | Linear optimal control systems[END_REF][START_REF] Lauder | Pulse-shape effects in intense-field laser excitation of atoms[END_REF][START_REF] Shirley | Solution of the Schrödinger equation with a Hamiltonian periodic in time[END_REF], their solution is surprisingly difficult to formulate by an analytic expression. When Ã(t) is a scalar function, [START_REF] Pozza | A ⋆-product solver with spectral accuracy for non-autonomous ordinary differential equations[END_REF] shows that a closed form of the solution exists in the non-commutative ring S composed of a certain distribution set D(I) [START_REF] Schwartz | Théorie des distributions[END_REF], the so-called ⋆-product [START_REF] Giscard | Lanczos-like algorithm for the time-ordered exponential: the * -inverse problem[END_REF], and the usual addition. The ⋆-product is a convolution-like operation that generalizes the Volterra composition (e.g., [START_REF] Volterra | Leçons sur la composition et les fonctions permutables[END_REF]). The closed form is given in terms of a ⋆-product inverse in the ring. Moreover, it is easy to define a Smodule of matrices with a bilinear product that generalizes the results to the case of a matrix-valued Ã(t); see [START_REF] Giscard | An exact formulation of the time-ordered exponential using path-sums[END_REF][START_REF] Giscard | Tridiagonalization of systems of coupled linear differential equations with variable coefficients by a Lanczos-like method[END_REF]. In a few words, in this case, the solution U s (t) is given by the bilinear product inverse of a matrix in the S-module. This means that in the framework of the S ring, it is possible to express U s (t) in a closed form for every matrix-valued analytic function Ã(t, s). This new expression has led to several new symbolic and numerical approaches to the solution of (1) [START_REF] Pozza | A ⋆-product solver with spectral accuracy for non-autonomous ordinary differential equations[END_REF][START_REF] Giscard | Lanczos-like algorithm for the time-ordered exponential: the * -inverse problem[END_REF][START_REF] Giscard | An exact formulation of the time-ordered exponential using path-sums[END_REF][START_REF] Giscard | Tridiagonalization of systems of coupled linear differential equations with variable coefficients by a Lanczos-like method[END_REF][START_REF] Giscard | Dynamics of quantum systems driven by timevarying Hamiltonians: Solution for the Bloch-Siegert Hamiltonian and applications to NMR[END_REF][START_REF] Giscard | A Lanczos-like method for non-autonomous linear ordinary differential equations[END_REF][START_REF] Pozza | A new matrix equation expression for the solution of non-autonomous linear systems of ODEs[END_REF][START_REF] Pozza | The *-product approach for linear ODEs: a numerical study of the scalar case[END_REF].

In the pieces of literature mentioned above, the new expression for the solution of (1) has not been derived in the ring S, but in alternative equivalent ways. This paper aims to show the potentiality of working in the S-ring module. We do that by deriving a new result, namely, the expression for the solution of the non-homogeneous system of linear ODEs

Ã(t)U s (t) = d dt U s (t) + B(t), U s (s) = I N , for t ≥ s, t, s ∈ I, (2) 
where B(t) is an N × N matrix-valued analytic function over I. Moreover, we will show that there is a subring of S that corresponds to a subalgebra of infinite matrices, and we will prove the existence of certain matrix inverses in the subalgebra using the connection with S.

In Section 2, we define the ⋆-product and the related algebraic structures, and we derive the new expression of the solution of (2). Section 3 shows the connection between the S subring and a subalgebra of infinite matrices. As a consequence, the ODE solution can be obtained by solving a linear system in the subalgebra. Section 4 concludes the presentation.

A ⋆-product solution to non-homogeneous ODEs

Let f1 (t, s), f2 (t, s) be two bivariate functions and assume that they are analytic1 , in both t and s, over I = [0, 1]; we denote such a set of functions by A(I). The Volterra composition of f1 , f2 , introduced by Vito Volterra (e.g., [START_REF] Volterra | Leçons sur la composition et les fonctions permutables[END_REF]), is defined as f2 ⋆ v f1 (t, s) := t s f2 (t, τ ) f1 (τ, s) dτ, t, s ∈ I.

Note that, from now on, a function marked with a tilde will stand for a function from A(I). If we look at it as a product, the Volterra composition lacks important features. For instance, the identity. This is why the Volterra composition has been extended to the so-called ⋆-product [START_REF] Giscard | Lanczos-like algorithm for the time-ordered exponential: the * -inverse problem[END_REF]. Let Θ(t -s) be the Heaviside theta function, i.e.,

Θ(t -s) = 1, t ≥ s 0, t < s .
Moreover, let δ(•) = δ (0) (•) be the Dirac delta distribution and δ (i) (•) be its ith derivatives. We denote with D(I) the class of the distributions d that can be expressed as

d(t, s) = d(t, s)Θ(t -s) + k i=0 d i (t, s)δ (i) (t -s),
with d, di ∈ A(I). The ⋆-product ⋆ : D(I) × D(I) → D(I) is defined as

f 2 ⋆ f 1 (t, s) := I f 2 (t, τ )f 1 (τ, s) dτ, f 1 , f 2 ∈ D(I), (3) 
Consider the subclass A Θ (I) ⊂ D(I) comprising those distributions of the form

f (t, s) = f (t, s)Θ(t -s).
Then, the ⋆-product of f 1 , f 2 ∈ A Θ (I) is equivalent to the Volterra composition

f 2 ⋆ f 1 (t, s) = I f 2 (t, τ ) f 1 (τ, s)Θ(t -τ )Θ(τ -s) dτ, = Θ(t -s) t s f 2 (t, τ ) f 1 (τ, s) dτ = Θ(t -s)( f2 ⋆ v f1 )(t, s).
The ⋆-product is well-defined and closed in D(I); we refer the reader to [START_REF] Giscard | Lanczos-like algorithm for the time-ordered exponential: the * -inverse problem[END_REF][START_REF] Giscard | Tridiagonalization of systems of coupled linear differential equations with variable coefficients by a Lanczos-like method[END_REF] for further details. For the goals of this paper, it will be enough to recall the following properties. Given f ∈ A Θ (I), then

δ ′ (t -s) * f (t, s) = ∂ t f (t, s) Θ(t -s) + f (s, s)δ(t -s); (4) 
f * δ ′ (t -s) (t, s) = -∂ s f (t, s) Θ(t -s) + f (t, t)δ(t -s);
see [START_REF] Schwartz | Théorie des distributions[END_REF][START_REF] Giscard | Lanczos-like algorithm for the time-ordered exponential: the * -inverse problem[END_REF]. As a consequence,

Θ(t -s) ⋆ δ ′ (t -s) = δ ′ (t -s) ⋆ Θ(t -s) = δ(t -s), (5) 
i.e., δ ′ is the ⋆-inverse of Θ. Moreover,

• D(I) is closed under ⋆-multiplication;

• the ⋆-product is associative over D(I);

• the Dirac delta distribution 1 ⋆ (t, s) := δ(t -s) is the identity of the ⋆-product.

Therefore, S(I) := (D(I), ⋆, +, 0, 1 ⋆ ) is a non-commutative ring. The ⋆-product can also be extended to matrices and vectors composed of elements from D(I). This is easily done by replacing the standard multiplication appearing in the integrand of (3) with the usual matrix-matrix multiplication [START_REF] Giscard | A Lanczos-like method for non-autonomous linear ordinary differential equations[END_REF]. Similarly, we can define the right (and left) scalar-matrix multiplication. As a result, we obtain the module of the matrices with elements from D(I) with, as bilinear product, the ⋆-product between matrices, and, as scalar product, the ⋆-product between a scalar and a matrix.

The system of ODEs in (2) can be rewritten in the form

∂ t U (t, s) = Ã(t)Θ(t -s)U (t, s) + B(t, s)Θ(t -s), U (s, s) = I N , t, s ∈ I, (6) 
with U s (t) = U (t, s). Note that the matrices U (t, s) = Ũ (t, s)Θ(t -s), A(t, s) := Ã(t)Θ(t -s), and B(t, s) := B(t, s)Θ(t -s) are all composed of elements from A Θ (I). Therefore, by exploiting formula ( 4) and ( 5), equation ( 6) becomes:

δ ′ (t -s) ⋆ U (t, s) = Ã(t)U (t, s) + I ⋆ (t, s) + B(t, s), (7) 
where I ⋆ (t, s) is the identity matrix I N multiplied by δ(t -s) = 1 ⋆ (t, s). Once the problem has been rewritten into the ⋆-framework, we can derive a formula for its solution by working in the S(I)-module. If we ⋆-multiplying (7) from the left by Θ(t -s) we obtain

U (t, s) = Θ(t -s) ⋆ Ã(t)U (t, s) + I ⋆ (t, s) + B(t, s) . (8) 
Now, by replacing U (t, s) in the right-hand side of ( 8) with the right-hand side of ( 8) itself, we get the following iterations (we drop the dependency from t, s for the sake of readability)

U = Θ ⋆ ÃU + I ⋆ + B , = Θ ⋆ Ã Θ ⋆ ÃU + I ⋆ + B + I ⋆ + B , = Θ ⋆ A ⋆ ÃU + I ⋆ + B + I ⋆ + B , = Θ ⋆ A ⋆ ÃU + (A + I ⋆ ) ⋆ (I ⋆ + B) .
Note that the equality

Ã Θ ⋆ ÃU + I ⋆ + B = A ⋆ ÃU + I ⋆ + B
holds since Ã(t) does not depend on s. Repeating the iterations k times2 , we obtain

U = Θ ⋆ A ⋆ A ⋆ ÃU + (A ⋆ A + A + I ⋆ ) ⋆ (I ⋆ + B) , . . . = Θ ⋆ A k⋆ ⋆ ÃU + A k⋆ + • • • + A + I ⋆ ⋆ (I ⋆ + B) , (9) 
with A k⋆ the kth ⋆-power of A. As shown in [START_REF] Giscard | A Lanczos-like method for non-autonomous linear ordinary differential equations[END_REF], max t,s∈I

A k⋆ (t, s) ≤ max t,s∈I A(t, s) k (t -s) k-1 (k -1)! , k ≥ 1,
for any induced matrix norm. Therefore (9) uniformly converges to the expression

U (t, s) = Θ(t -s) ⋆ R ⋆ (A)(t, s) ⋆ (I ⋆ (t, s) + B(t, s)) , (10) 
where

R ⋆ (A) is the ⋆-resolvent of A, i.e., R ⋆ (A) = I ⋆ + ∞ k=1 A ⋆k (t, s).
Noticing that

R ⋆ (A) ⋆ (I ⋆ -A) =   I ⋆ + k≥1 A ⋆k   ⋆ (I ⋆ -A) = I ⋆ , (11) 
that is, R ⋆ (A) = (I ⋆ -A) -⋆ (the ⋆-inverse of (I ⋆ -A)), we get

U (t, s) = Θ(t -s) ⋆ (I ⋆ -A) -⋆ (t, s) ⋆ (I ⋆ (t, s) + B(t, s)) , (12) 
that is a closed-form expression in the S-module.

Finally, since the matrix A is composed of elements from the subset

A t Θ (I) := f ∈ A Θ (I) : f (t, s) = f (t)Θ(t -s) ⊂ A Θ (I),
it is useful to define the set

D t 0 (I) := f (t, s) = α1 ⋆ + n i=1 g i,1 ⋆ • • • ⋆ g i,mn , g i,j ∈ A t Θ (I), α ∈ C .
and the related subring (D t 0 (I), ⋆, +, 0, 1 ⋆ ).

The ⋆-product and the matrix algebra

Let {p k } k be a sequence of orthonormal shifted Legendre polynomials over the bounded interval I = [0, 1], i.e.,

I p k (τ )p ℓ (τ )dτ = δ k,ℓ = 0, if k = ℓ 1, if k = ℓ .
Despite the fact that the functions p k are not in D(I), with a small abuse of notation, we can still define the product

p k (s) ⋆ p ℓ (t) = I p k (τ )p ℓ (τ ) dτ = δ k,ℓ . Given a function f (t, s) = f (t, s)Θ(t -s) ∈ A Θ (I)
, we can expand it into the series

f (t, s) = ∞ k=0 ∞ ℓ=0 f k,ℓ p k (t)p ℓ (s), t = s, t, s ∈ I, (13) 
with coefficients

f k,ℓ = I I f (τ, ρ)p k (τ )p ℓ (ρ) dρ dτ ;
see, e.g., [17, p. 55]. The expansion can be rewritten in the matrix form

f (t, s) = ∞ k=0 ∞ ℓ=0 f k,ℓ p k (t)p ℓ (s) = φ(t) T F φ(s) t = s, t, s ∈ I.
where the coefficient matrix F and the vector φ(τ ) are defined as follows

F :=      f 0,0 f 0,1 f 0,2 . . . f 1,0 f 1,1 f 1,2 . . . f 2,0 f 2,1 f 2,2 . . . . . . . . . . . . . . .      , φ M (τ ) :=      p 0 (τ ) p 1 (τ ) p 2 (τ ) . . .      . (14) 
Note that each element of F can be bounded by

|f k,ℓ | ≤ max t,s∈[0,1] | f (t, s)| √ 2k + 1 √ 2ℓ + 1 (15) 
In particular, an univariate function f (t) can be expanded as

f (t) := ∞ d=0 α d p d (t), with α d = 1 -1 f (t)p d (t)dt.
Let B (k) be the coefficient matrix of p k (t)Θ(t -s). Then, the coefficient matrix of f (t, s) = f (t)Θ(t -s) can be also expanded into the series

F = ∞ k=0 α k B (k) .
Note that each B (k) is a banded matrix with bandwidth k+1, [START_REF] Pozza | A ⋆-product solver with spectral accuracy for non-autonomous ordinary differential equations[END_REF]. Moreover, the Fourier coefficients {α k } k≥0 decay geometrically [START_REF] Trefethen | Approximation theory and approximation practice[END_REF]. Indeed, there exist 0 < ρ < 1, C > 0 such that

|a k | ≤ Cρ k . ( 16 
)
As a consequence, each element of F can be bounded as follows

|f k,ℓ | = ∞ j=|k-ℓ|+2 α j B (j) k,ℓ ≤ ∞ j=|k-ℓ|+2 |α j ||B (j) k,ℓ | ≤ C max t,s∈[0,1] | f (t, s)| ∞ j=|k-ℓ|+2 ρ j √ 2k + 1 √ 2ℓ + 1 ≤ Kρ |k-ℓ|+2 , (17) 
for some K > 0. This means that F is characterized by a geometric decay of the element magnitude as we move away from the diagonal.

Consider f (t, s) = f (t)Θ(t -s), g(t, s) = g(t)Θ(t -s) ∈ A t Θ (I) and the related coefficient matrices ( 14) F, G, respectively. By orthogonality, φ(s) ⋆ φ(t) T = I, with I the identity matrix. Therefore, for every t = s,

(f ⋆ g)(t, s) = φ(t) T F φ(s) ⋆ φ(t) T G φ(s) , = φ(t) T F φ(s) ⋆ φ(t) T G φ(s), = φ(t) T F G φ(s).
Thus, the coefficient matrix H of the function h = f ⋆ g ∈ D t 0 (I) is given by the matrix-matrix product F G. It is important to note that the product F G is welldefined. Indeed, the series is convergent since by [START_REF] Lebedev | Special functions and their applications[END_REF] there exist K > 0 and 0 < ρ < 1 so that

|(F G) k,ℓ | = ∞ j=1 F k,j G j,ℓ ≤ ∞ j=1 |F k,j | |G j,ℓ | ≤ ∞ j=1 K f K g ρ |k-j|+2 f ρ |ℓ-j|+2 g ≤ ∞ j=1 Kρ |k-j|+|ℓ-j|+4 .
Moreover, since min j=1,2... |k -j|+|ℓ-j| = |k -ℓ|, there exist K f g > 0 and 0 < ρ f g < 1 so that

|(F G) k,ℓ | ≤ K f g ρ |k-ℓ| f g . (18) 
This latter bound show that F G is also characterized by a geometric decay of the element magnitude as we move away from the diagonal. Therefore, given F, G, H coefficient matrices of f (t, s) = f (t)Θ(t -s), g(t, s) = g(t)Θ(t -s), h(t, s) = h(t)Θ(ts), the matrix product F GH is also well-defined and characterized by a off-diagonal geometric decay. As a consequence, the set F of all the coefficient matrices of functions from D t 0 (I) is a subalgebra (with the usual sum, product, and matrix product) and it corresponds to the subring (D t 0 (I), ⋆, +, 0, 1 ⋆ ).

Consider now the N × N matrix-valued functions A(t, s) = [f i,j (t, s)] N i,j=1 , B(t, s) = [g i,j (t, s)] N i,j=1 ∈ C composed of elements from D t 0 (I). The functions f i,j and g i,j are associated with their coefficient matrices F (i,j) , G (i,j) , respectively. By extending the arguments presented above, we get the following expression for the (matrix) ⋆-product

C = A ⋆ B = [h i,j ] N i,j=1 , (A ⋆ B) k,ℓ (t, s) = N j=1 (f k,j ⋆ g j,ℓ )(t, s) = N j=1 φ(t) T F (k,j) G (j,ℓ) φ(s), t = s.
Therefore, the coefficient matrices H (k,ℓ) of the functions h k,ℓ (t, s) are given by

H (k,ℓ) = N j=1 F (k,j) G (j,ℓ) . (19) 
Defining the block matrices

A = [F i,j ] N i,j=1 , B = [G i,j ] N i,j=1 , C = [H i,j ] N i,j=1
, we obtain the relation:

C = AB. (20) 
Note that, despite the blocks having an infinite size, the product in (20) is well-defined since the matrix products in (19) are well-defined.

In Section 2, we have seen the crucial role played by the ⋆-resolvent R ⋆ (A). Let

C := k≥1 A ⋆k = [h i,j ] N i,j=1
, with h i,j ∈ A Θ . Therefore, using the notation above,

(R ⋆ (A)) k,ℓ (t, s) = φ(t) T I + H (k,ℓ) φ(s).
Hence, for t = s, we obtain

(R ⋆ (A) ⋆ (I ⋆ -A)) k,ℓ = N j=1 φ(t) T I + H (k,j) φ(s) ⋆ φ(t) T I -F (j,ℓ) φ(s), (21) = φ(t) T N j=1 I + H (k,j) I -F (j,ℓ) φ(s). (22) 
Then, relation [START_REF] Giscard | An exact formulation of the time-ordered exponential using path-sums[END_REF] implies

φ(t) T N j=1 I + H (k,j) I -F (j,ℓ) φ(s) = 1 ⋆ δ k,ℓ = φ(t) T I φ(s)δ k,ℓ . (23) 
In the following, we prove that N j=1 I + H (k,j) I -F (j,ℓ) = I.

Lemma 3.1. Let D be an infinite matrix so that φ(t) T Dφ(s) = δ(t -s), then D = I.

Proof. First of all, since δ(t -s) is a generalized function, the convergence of the series φ(t) T Dφ(s) is intended in a weak sense. This means that, for every f (t) analytic on I,

lim N →∞ I N k,ℓ=1 d k,ℓ p k (τ )p ℓ (s) f (τ )dτ = f (s) = I δ(τ -s) f (τ )dτ.
Setting f (t) = p j (t) gives

p j (s) = lim N →∞ N k,ℓ=1 d k,ℓ I p k (τ )p ℓ (s)p j (τ )dτ = lim N →∞ N k,ℓ=1 d k,ℓ p ℓ (s) I p k (τ )p j (τ )dτ, = ∞ ℓ=1 d j,ℓ p ℓ (s).
As the Legendre expansion of p j (s) is unique, d j,ℓ = δ j,ℓ , for j, ℓ = 1, 2, . . . . Theorem 3.2. Let A(t, s) be an N × N matrix-valued function composed of elements from D t 0 (I) and let A = [F (k,ℓ) ] N k,ℓ=1 be the related block matrix, with F (k,ℓ) the coefficient matrix of A k,ℓ (t, s). Moreover, consider the matrix-valued function C(t, s) = k≥1 A ⋆k (t, s), and let C = [H (k,ℓ) ] N k,ℓ=1 be the related block matrix, with H (k,ℓ) the coefficient matrix of C k,ℓ (t, s). Then

(I + C)(I -A) = I, that is, (I -A) is invertible.
Proof. Equations ( 21), ( 22) and (23) show that

φ(t) T N j=1 I + H (k,j) I -F (j,ℓ) φ(s) = φ(t) T D (k,ℓ) φ(s) = δ(t -s)δ k,ℓ ,
where the products (I + H (k,j) )(I -F (j,ℓ) ) are well-defined since (I + H (k,j) ) m,n is bounded by 1 + K h √ 2m + 1 √ 2n + 1 and (I -F (j,ℓ) ) m,n by K f ρ |k-ℓ| , see ( 15) and [START_REF] Trefethen | Approximation theory and approximation practice[END_REF]. Thus, for k = ℓ, D (k,k) = N j=1 I + H (k,j) I -F (j,ℓ) = I by Lemma 3.1. For k = ℓ, D (k,ℓ) = 0.

Consider the solution U (t, s) of ( 6) and let us define T as the block diagonal matrix with blocks all equal to T , the coefficient matrix of Θ(t -s). Using the notation of Theorem 3.2 and Expression [START_REF] Volterra | Leçons sur la composition et les fonctions permutables[END_REF], we can transform the ODE (6) into the matrix problem:

U = T(I + C)(I + B) = T(I -A) -1 (I + B), (24) 
where the block matrix B = [G (k,ℓ) ] N k,ℓ=1 is composed of the coefficient matrices G (k,ℓ) of the functions B k,ℓ (t, s). Hence, the solution of ( 6) can be expressed by

U k,ℓ (t, s) = φ(t) T Y (k,ℓ) φ(s), k, ℓ = 1, . . . , N, with U = [Y (k,ℓ) ] N
k,ℓ=1 . To conclude the presentation, we need to discuss the convergence of the expansion [START_REF] Giscard | Dynamics of quantum systems driven by timevarying Hamiltonians: Solution for the Bloch-Siegert Hamiltonian and applications to NMR[END_REF]. Indeed, since f is discontinuous for t = s, the expansion does not converge to f (t, t) and, moreover, it converges only linearly for t = s; see, e.g., [START_REF] Lebedev | Special functions and their applications[END_REF][START_REF] Trefethen | Approximation theory and approximation practice[END_REF]. Lemma 3.3. Consider f (t, s) ∈ A Θ and the related expansion in orthonormal shifted Legendre polynomials [START_REF] Giscard | Dynamics of quantum systems driven by timevarying Hamiltonians: Solution for the Bloch-Siegert Hamiltonian and applications to NMR[END_REF]. Then,

lim N →∞ N k=0 N ℓ=0 f k,ℓ p k (t)p ℓ (s) = f (t, s), t = s f (t, t)/2, t = s , t, s ∈ (0, 1).
Proof. The proof is direct consequence of Theorem 1 and Remark 1 in Section 4.7 of [START_REF] Lebedev | Special functions and their applications[END_REF].

However, for the fixed s = 0, the univariate function

f (t, 0) = f (t, 0)Θ(t -0) = f (t, 0) is analytic over [0, 1]. Therefore, defining a k = ∞ ℓ=0 (f k,ℓ p ℓ (0)), we get the Legendre expansion f (t, 0) = ∞ k=0 p k (t) ∞ ℓ=0 f k,ℓ p ℓ (0) = ∞ k=0 a k p k (t), t ∈ [0, 1].
Therefore, the truncated series M k=0 a k p k (t) converges geometrically to f (t, 0). As a consequence, in a numerical setting, we can approximate the function f (t, 0) by using F M , the principal leading submatrix of F , obtaining the approximation

f (t, 0) ≈ φ M (t) T F M φ M (0),
with φ M (t) the first M elements of φ(t). In this case, we expect to reach a good enough accuracy for a (relatively) small M . Note that for s > 0 this is not possible, as we expect the emergence of the Gibbs phenomenon; see, e.g., [START_REF] Trefethen | Approximation theory and approximation practice[END_REF].

By considering the principal leading submatrix of each of the blocks in formula (24), for s = 0, we get the following approximated solution to (2)

U 0 (t) ≈ (I N ⊗ φ M (t) T T M )(I M -A M ) -1 (I M + B M )(I N ⊗ φ M (0)); (25) 
see also [START_REF] Pozza | A new matrix equation expression for the solution of non-autonomous linear systems of ODEs[END_REF]. The numerical approach for the solution of a non-autonomous linear ODE system derived from (25) can be found in [START_REF] Pozza | A ⋆-product solver with spectral accuracy for non-autonomous ordinary differential equations[END_REF][START_REF] Pozza | A new matrix equation expression for the solution of non-autonomous linear systems of ODEs[END_REF][START_REF] Pozza | The *-product approach for linear ODEs: a numerical study of the scalar case[END_REF] where several numerical examples show its efficacy.

Conclusion

In this paper, we have presented a new expression for the solution of a (nonhomogeneous, non-autonomous) system of linear ODEs using the so-called ⋆-product.

The ⋆-product, the usual sum, and a specific set of distributions constitute a ring S.

We have also shown that a certain subring of S corresponds to a subalgebra of infinite matrices. Thanks to this correspondence, we have expressed the solution of the linear ODE system in the infinite matrix algebra. Such a solution is obtained by inverting a determined infinite matrix. The connection between the ⋆-product ring and the matrix subalgebra helped us to show that such an inverse always exists. By truncating the infinite matrices, it is possible to derive numerical methods for the solution of ODEs. This paper complements the results we are developing in the truncated case by placing it in the general framework of the infinite matrix algebra.

Note that in the previously appeared works, we have usually assumed the functions to be smooth. Here we restrict the assumption to analytic for the sake of simplicity.

In fact, such iterations are Picard iterations, see[START_REF] Pozza | The *-product approach for linear ODEs: a numerical study of the scalar case[END_REF] Section 2].
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