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Abstract. The growing adoption of Al and data analytics in various
sectors has resulted in digital preservation emerging as a cross-sectoral
problem that affects everyone from data-driven enterprises to memory
institutions alike. As all contemporary storage media suffer from funda-
mental density and durability limitations, researchers have started inves-
tigating new media that can offer high-density, long-term preservation
of digital data. Synthetic Deoxyribo Nucleic Acid (DNA) is one such
medium that has received a lot of attention recently. In this paper, we
provide an overview of the ongoing collaboration between the FEuropean
Union-funded, Future and Emerging Technologies project OligoArchive
and the Danish National Archive in preserving culturally important digi-
tal data with synthetic DNA. In doing so, we highlight the challenges in-
volved using DNA for long-term preservation, and present a holistic data
storage pipeline that brings together several novel techniques (standard-
ized file storage, motif-based DNA encoding, scalable read consensus to
name a few) to provide reliable, passive, obsolescence-free digital preser-
vation using synthetic DNA.

Keywords: DNA storage, long-term archival, preservation, STARD-DK

1 Introduction

Today, we live in an increasingly digital society. Digital data pervades all dis-
ciplines and has established itself as the bed rock that drives our society, from
enabling data-driven decisions based on machine learning, to encoding our col-
lective knowledge compactly in a collection of bits. Thus, preservation of digital
data has emerged as an important problem that must be addressed by not just
memory institutions today, but also by institutions in several other sectors.
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In order to preserve digital data, it is necessary to first store the data safely
over a long time frame. Historically, this task has been complicated due to sev-
eral issues associated with digital storage media. All current media technologies
suffer from density scaling limitations resulting in storage capacity improving at
a much slower rate than the rate of data growth. For instance, Hard Disk Drive
(HDD) and magnetic tape capacity is improving only 16-33% annually, which is
much lower than the 60% growth rate of data [10]. All current media also suffer
from media decay that can cause data loss due to silent data corruption, and
have very limited lifetime compared to the requirements of digital preservation.
For instance, HDD and tape have a lifetime of 5-20 years. A recent survey by
the Storage and Networking Industry Association stated that several enterprises
regularly archive data for much longer time frames [19]. Thus, the current so-
lution for preserving data involves constantly migrating data every few years to
deal with device failures and technology upgrades. A recent article summarized
the financial impact of such media obsolescence on the movie industry [17].

In project OligoArchive [2], we are exploring a radically new storage media
that has received a lot of attention recently—Deoxyribo Nucleic Acid (DNA) [6,
13,9, 16]. DNA is a macro-molecule that is composed of smaller molecules called
nucleotides(nt). There are four types of nucleotides: Adenine (A), Cytosine (C),
Guanine (G), and Thymine (T). DNA used for data storage is typically a single-
stranded sequence of these nucleotides, also referred to as an oligonucleotide
(oligo). DNA possesses several key advantages over current storage media. First,
it is an extremely dense three-dimensional storage medium with a capacity of
storing 1 Exabyte/mm? which is eight orders of magnitude higher than mag-
netic tape, the densest medium available today [8]. Second, DNA is very durable
and can last millennia in a cold, dry, dark environment. A recent project that
attempted to resurrect the Woolly Mammoth using DNA extracted from per-
mafrost fossils that are 5000 years old is testament to the durability of DNA
even under adverse conditions [18]. Thus, data once stored in DNA can be left
untouched without repeated migration to deal with technology upgrades. Third,
as long as there is life on earth, we will always have the necessity and ability
to sequence and read genomes, be it for assembling the genome of a previously-
unknown species, or for sequencing the genome to detect diseases causing vari-
ations. As a result, unlike contemporary storage technologies, where the media
that stores data and the technology to read data are tightly interlinked, DNA
decouples media (biological molecules) from read technology (sequencing), thus
reducing media obsolescence issues.

In this work, we provide an overview of the ongoing collaboration between the
Danish National Archive and project OligoArchive in demonstrating a holistic
solution for long-term preservation of culturally significant data using DNA.
We present a motivating use case for long-term digital preservation, outline the
challenges involved in using DNA as a digital storage medium, and present the
end-to-end pipeline we have put in place to overcome these challenges.
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2 Context and Background

2.1 Danish National Archive Use Case

The Danish National Archives is a knowledge center documenting the historical
development of the Danish society. The archive collects, preserves and provide
access to original data with the purpose of supporting current and future possible
needs of the Danish community - public authorities as well as private citizens. A
huge part of this work includes the preservation of digitally created and retro-
digitized data securely and cost-effectively. Thus, the archive has received and
preserved such data since the 1970s.

The archival material used for this work consists of selected hand-drawings
made by the Danish king Christian IV (1577-1648). Although his reign was
marked by military defeat and economic decline, Christian IV stands out as one
of the most prominent, popular and admired characters in the line of Danish
kings. The hand-drawings date to the period 1583-1591 where the king was 6-14
years old. The material is a part of a larger archival unit consisting of numerous
documents and records 4. The specific image ® used for this experiment presents
a naval battle between several warships. Besides emphasizing the young king’s
admiration for warfare and naval tactics, the material further indicates his high
level of cultural education as well as his talent for drawing. At Danish National
Archive, the material is thus ranked as having “Enestaende National Betydning”
(meaning unique national significance).

2.2 DNA storage challenges

Using DNA as a digital storage medium requires mapping digital data from its
binary form into a sequence of nucleotides using an encoding algorithm. Once
encoded, the nucleotide sequence is used to synthesize DNA using a chemical
process that assembles the DNA one nucleotide at a time. Data stored in DNA
is read back by sequencing the DNA molecules and decoding the information
back to the original digital data.

A simple way to convert bits into nucleotides is to adopt a direct mapping
that converts 2 bits into a nucleotide, for instance 00 to A, 01 to T, 10 to G,
and 11 to C. This way a binary sequence is translated to an arbitrary sequence
of nucleotides. However, such a simple approach is not feasible due to several
biological limitations imposed by DNA synthesis and sequencing steps. First,
DNA synthesis limits the size of an oligo between hundred to few thousands of
nucleotides. Therefore, data must be divided into several pieces, with each piece
being stored in an oligo. However, unlike current storage devices, oligos do not
have logical addressing. Hence, indexing information that can help to identify
the order in which the oligos, and hence the corresponding data bits, must be
reassembled back during recovery must be stored together with the data bits
and integrated in each oligo.

4 https://www.flickr.com /photos/statensarkiver
® https://www.flickr.com/photos/statensarkiver /28273082238
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Second, oligos with repeat sequences (like ACACAC), or long consecutive re-
peats of the same nucleotide (like AAAAA), and oligos with extreme GC content,
where the ratio of Gs and Cs in the oligo is less than 30% or more than 70%, are
known to be difficult to synthesize, sequence, and process correctly. Thus, when
constructing oligos, constraints need to be enforced to minimize homopolymer
repeats and balance GC content. Further, care must be taken to minimize simi-
larity across oligos as having too many oligos with positionally-similar nucleotide
sequences can exacerbate sequencing errors and make it difficult to identify the
original oligo.

Third, sequencing and synthesis are not error free even for well-formed oligos,
as they introduce substitution errors, where a wrong nucleotide is reported, or
indel errors, where spurious nucleotides are inserted or deleted. Both sequencing
and synthesis also introduce bias. Some oligos are copied multiple times during
synthesis, while others are not. Similarly, some oligos are read thousands of times
during sequencing while others are not sequenced at all. Thus, it is important
to use error correction codes in order to recover data back despite these errors.

In addition to the aforementioned media-level challenges in using DNA as
a digital storage medium, there are also other problems associated with digital
preservation that DNA does not solve. Any digital file stored on DNA is an
encoded stream of bits whose interpretation makes sense only in the context of
the application used to render, manipulate, and interact with that file format.
While DNA might be able to store data for millennia, the associated applications
and file formats might become obsolete. Thus, in addition to preserving data, it is
also necessary to preserve the meaning of data by ensuring that data is stored in
a preservation-friendly, non-proprietary format. Digital data can also be altered
due to a variety of reasons and additional data-integrity techniques should be put
in place to ensure that data retrieved from DNA can be trusted to be the same as
the original source. The digital preservation community has long pioneered file
formats, information systems, and operational methodologies for solving such
format obsolescence issues [1]. Thus, a holistic DNA-based preservation solution
should build on such techniques to solve both media and format obsolescence
issues.

3 Design

In this section, we will describe the end-to-end pipeline we have put in place to
overcome the aforementioned challenges.

3.1 Overcoming format obsolescence with STARD-DK

In Denmark, all public institutions and organizations that produce data worthy
of persevering are legally bound to submit them to a public archive. As the vast
majority of data in the Danish public sector are organized as databases with or
without files in various formats, the focus has been on archiving these data in
a standardized, system-independent and cost efficient manner. As a result, the
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archive has implemented a Danish version of the STARD format (Software Inde-
pendent Archiving of Relational Databases) [7] named STARD-DK for storing of
such data. SIARD is an open format, designed for archiving relational databases
in a vendor-neutral form and is used in the CEF building block “eArchiving”.

The first step in preserving data is extracting it and creating an SIARD-
DK Archival information Package (AIP). In the creation of this particular AIP,
the digitized material was converted to TIFF format. Information relevant to
the images such as the preservation format of the files, their title, creator and
original size, descriptive information, etc., was extracted and packaged together
with relevant documentation in the AIP-format. This was done using proprietary
tools developed at the Danish National Archive. The usage of SIARD for storing
the files guarantee that the material is preserved in a rich format with relevant
metadata stored in a standardized, system and vendor independent way. The
resulting AIP is a single ZIP64 file that internally contains the TIFF images,
in addition to XML and XSD files that store the schema of the archive and
metadata information. This allows for strict validation of the AIP. Further, an
MD5 value of each file is stored inside the archive and serves as the fixity to
verify data integrity on retrieval.

3.2 DNA data storage pipeline

The end-to-end DNA media storage pipeline is presented in Figure 1. In the rest
of this section, we will provide an overview of both the write path that takes as
input the STARD zip file and stores it in DNA, and the read path that restores
back the zip file from DNA.

@ Original oligos Oligoarchive
RIGSARK]\'ET o i A ATGH H R
Original SIARD -'| Encoding |—‘ poibsatiiogialis —-I Synthesis |—‘ .

'—| Decoding |-— ATCOTGOATAGTCAGT '—l Consensus

Restored SIARD

- [Soavercig}

Inferred oligos | aton H

Noisy reads

Fig. 1. DNA Storage Pipeline

Write Path In order to store the archive on synthetic DNA, the zip file is
first encoded from binary into a quaternary sequence of oligonucleotides, and
then synthesized to generate synthetic DNA. The steps for encoding the STARD
archive file into oligos is presented in Figure 2. During encoding, the file is read
as a stream of bits and pseudo randomized. In other encoding methods, ran-
domization is used as a way to limit the number of homopolymer repeats in
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Stream of Randomized LDPC . Constrained .
bits bits ™ encoding [ Indexing =) code u

Fig. 2. Encoding bits into oligos

1
|

each oligo. In our encoding, homopolymer repeats are handled by an inner con-
strained code that we explain later. Thus, we do not need randomization for
avoiding homopolymer repeats. We use randomization primarily to improve the
accuracy of our clustering and consensus methods in the data decoding stage.
As mentioned before, data stored in DNA is read back by sequencing the DNA
to produce reads, which are noisy copies of the original oligos that can contain
insertion, deletion, or substitution errors. Our read clustering and consensus
methods rely on the fact that the original oligos are well separated in terms of
edit distance so that the distance between a noisy read and its corresponding
oligo is much smaller than the distance between two oligos. This assumption
makes it possible to cluster similar reads and infer the original oligo with a high
accuracy. A long sequence of zero or one bits can violate this assumption as they
can lead to multiple oligos being similar, or even identical, to each other. A long
sequence of bits can also lead to oligos with repetitive sequences (example: ACA-
CACAC). This can pose problems during data decoding, especially if paired-end
sequencing is used, where the DNA is partially read from either direction (5
to 3”7 and 3” to 5”) with overlap. In such a case, the two reads corresponding
to each orientation must be merged into a single representative read. Repetitive
sequences can create issues during this merging process. While we can develop
more advanced solutions to perform merging, randomization provides a simple
solution that eliminates such issues while ensuring that similarity across oligos
is also minimized.

After randomization, error correction encoding is applied to protect the data
against errors. We use large-block length Low-Density Parity Check (LDPC)
codes [11] with a block size of 256,000 bits as the error correction code, as it has
been shown to be able to recover data in the presence of intra-oligo errors, or
even if entire oligos are missing [5]. We configure LDPC to add 10% redundancy
to convert each sequence of 256,000 bits into 281,600 bits with data and parity.
Each 281,600 bit sequence is then used to generate a set of 300-bit sequences,
where each 300-bits is composed of 281 data bits and a 19-bit index that is used
to order the sequences. Each 300-bit sequence is then passed to a constrained
code that converts it into an oligonucleotide sequence.

The constrained code essentially views each oligo as a concatenation of several
shorter oligonucleotide sequences, that we henceforth refer to as motifs. In our
current configuration, the constrained code breaks up each 300-bit sequence into
a series of ten 30-bit integers. Each 30-bit integer is fed as input to a motif
generator that takes the 30-bit value and produces a valid 16nt (nucleotides)
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motif as output. The motif generator does this mapping by pre-constructing an
associative array where the 30-bit value is the key and a 16nt motif is the value.
This array is built by first enumerating all possible motifs of length 16nt. Then,
all motifs that fail to meet a given set of biological constraints are eliminated.

Our current motif generator is configured to allow up to two homopolymer
repeats (AA,CC,GG, or TT), and admits motifs with a G-C content in the
range 0.25 to 0.75. With these constraints, using 16nt motifs, out of 4'¢ possible
motifs, we end up with only 1,405,798,178 unique, valid motifs with which we
can encode any possible 30-bits of data ( as the number of all possible 30-bits
values is 230 = 1,073, 741, 824 which is lower than 1,405,798,178. Thus, we use
the billion motifs as values in the array corresponding to keys in the range 0 to
230, The 30-bit value is thus used as the key into this associative array to produce
the corresponding 16nt motif. Thus, at the motif level, the encoding density is
1.875 bits/nt. The reason we limited ourselves to 16nt and 30bits is the fact that
this associative array occupies around 100GB of memory, which we can easily
meet using our current hardware. The motif generator can be extended to larger
motif sizes and more relaxed biological constraints which can lead to higher bit
densities. But as this would require the use of external storage, we leave this
open to future work.

Using the associative array, each 300-bit sequence is encoded as concatena-
tion of ten motifs, each with a length of 16nt, leading to an oligo that is 160
nucleotides long. We would like to explicitly point out here that the length of
an oligo is a configurable parameter. Thus, while we use 160nts in our current
system due to favorable pricing provided by our synthesis provider, our encoder
can generate shorter or longer oligos if necessary, and automatically adjust var-
ious aspects (like the 19-bit index and 281-bit data size) based on desired oligo
length.

Read Path To retrieve back the SIARD archive, the DNA is sequenced in
order to retrieve back the nucleotide sequence of oligos. As mentioned before,
sequencing produces reads, which are noisy copies of the original oligos. Thus, we
need a consensus procedure to infer the original oligos from the reads. In prior
work, we structured this process as sequence of three algorithms, as depicted in
Figure 3. First, we identify all pairs of strings that are similar to each other.
As modern sequencers produce hundreds of millions of reads, this first task is
extremely computationally intensive due to use of the edit distance as a metric for
comparing strings. Thus, we have developed an efficient similarity join algorithm,
called OneJoin [15], that exploits the fact that due to randomization during
encoding, reads corresponding to the same original oligo are “close” to each other
despite some errors and “far” from the reads related to other oligos. The results
obtained from the join algorithm are then used to quickly identify clusters of
strings that are similar to each other. Each cluster thus groups all reads belonging
the same oligo. Finally, we apply a position-wise consensus procedure that uses
multiple reads to infer the original oligo in each cluster.
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Noisy Reads Edit Similarity Join Clustering Consensus
1. ACTGTTGTGATCC - TA
3. ACTGATGTGATTCAAA 1. ACTGTTGTGATCC - AA
1. ACTGTTGTGATCC - TA
2. ATCGTACATAATCAGT 3. ACTGATGTGATTCAAA
3- ACTGATGTGATTCAAA 2. ATCGTACATAATCAGT 5. ACTGAATGTATTAACA ACTGATGTGATTCAAA
: 4. ATCGTGAATAGCCTGT ATCGTACATAATCAGT

4. ATCGTGAATAGCCTGT
5. ACTGAATGTATGAGTCA

1. ACTGTTGTGATCC - TA

2. ATCGTACATAATCAGT
4. ATCGTGAATAGCCTGT

5. ACTGAATGTATGAGTCA

Fig. 3. Various steps in the OneJoin consensus procedure.

While our prior approach was able to infer original oligos with a high ac-
curacy, there were two problems. First, we found that under some datasets,
particularly for high coverage reads, OneJoin’s memory and computational us-
age were too high. As OneJoin is a string similarity join, it produces as output all
possible pairs of reads that are similar to each other. Thus, given a coverage N,
the computational and memory requirements of OneJoin were O(N?). Second,
the use of a general purpose string similarity join led to functionality repetition
at multiple places in the read path. For instance, OneJoin internally uses an
edit distance check to filter out strings that are not similar. Later in the read
pipeline, we had to repeat the edit distance computation in the alignment stage
once to get position-wise consensus. This repetition led to needless overhead.
To solve these problems, we have developed a new consensus procedure that we
refer to as OneConsensus.

In the following sections, we describe the key stages of OneConsensus algo-
rithm. In order to efficiently identify and group all the similar reads, our algo-
rithm relies on two well-known algorithmic tools that allow to drastically cut
down the computational time: CGK-Embedding and Locality Sensitive Hashing
(LSH).

CGK Embedding. As we mentioned in the previous section, the similarity
metric used in OneConsensus is the edit distance. Given two strings « and y, the
edit distance is defined as the minimum number of edit operations i.e. insertions,
deletions and substitutions, necessary to transform x in y. Another metric, com-
monly used to compare strings is the Hamming distance. However, the latter
takes into account only the number of mismatches between the two strings, or
in other words the number of substitutions to transform x in y. For example,
given the two strings ACACT and GACAC, their Hamming distance is 5 since
there are no matches, but the edit distance is 2 since it suffices to add G and
remove T’

From these definitions, we can make the observation that the edit distance
takes into account information about the ordering of characters and captures
the best alignment between two strings. However, while Hamming distance has
complexity that is linear with the string length, edit distance has complexity
that is quadratic. While several dynamic programming optimizations exist for
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accelerating edit distance computations [20], they often rely on pre-specified
distance thresholds and are unable to provide performance competitive with
fine-tuned Hamming distance computations in practice. Given the complexity
of this metric, we rely on randomized embedding techniques to minimize the
overhead of the edit distance computations.

Randomized embedding refers to a set of methods that map a complex met-
ric space into a simpler one. CGK-embedding algorithm, recently proposed by
Chakraborthy et al. [4] is one such algorithm that can map problems from an
edit space into a Hamming space. Given two strings x, y of length N taken from
an alphabet > such that dg(x,y), the edit distance between x and y, is less
than K, CGK-embedding is a function f: ZN — E3N that maps strings = and
y into f(z) and f(y) such that, with probability at least 0.99, the Hamming
distance of dg (f(z), f(y)) is bounded by K? when dg(z,y) < K. This implies
that the distortion D, defined as the ratio D(x,y) = %, is at most K.
Thus, as long as the edit distance is small, the distortion of émbedding is small.
This implies that the Hamming distance of embedded strings will accurately
track the edit distance of the original strings, thereby making it possible to re-
place the expensive edit distance computation with cheap Hamming distance
computation [22].

Algorithm 1 CGK-embedding

Input: A string S € {A,C,G, T}, a random string R € {0,1}*" and a char for
padding P =0
Output: The embedded string S e ZSN
1: 140
2: for j =0— 3N —1do
3: if ¢ < N then

4 S S
5 else

6: S; «~— P
7 end if

8: 11+ R;
9: end for

10: return S

The pseudo-code of embedding algorithm is shown in Algorithm 1. In this
case the procedure is applied to all strings of length N that are composed of the
characters A, C, G, T, representing the DNA alphabet. Given an input string, the
algorithm builds the corresponding embedded representation by appending one
character at time taken from the input string. The character appended can be
the repetition of the previous character or the next character in the input string
according to the value of a binary random string. In other words, the pointer of
the current character in the input string increases or remains the same depending
on the random string value, that can be 0 or 1. When the pointer to the input
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string goes beyond the string length, the embedded string is padded with a
special character P. In general, P can be any character that is not included in
the alphabet of the given dataset S. For sake of simplicity, in Algorithm 1 we
use 0 for padding. In essence, what we get as the output of embedding is a string
where characters from the input string can be repeated one or more times.

LSH for Hamming Distance. One of the main advantages of moving from
the edit distance space to the Hamming space is being able to use some useful
algorithms that are valid in the Hamming space only and instead not applica-
ble to the edit distance. One of these algorithms is Locality Sensitive Hashing
(LSH) [12].

Definition 1. We call a family H of functions (dy,ds,p1, p2)-sensitive for a
distance function D if for any p, ¢ € U (where U is the item universe):

— if D(p,q) < dy then Plh(p) = h(q)] > p1, that is, if p and q are close, the
probability of a hash collision is high;

— if D(p,q) > do then Plh(p) = h(q)] < po, that is, if p and q are far, the
probability of a hash collision is low;

where h €, H are hash functions randomly sampled from the family of hash
Jfunctions H

Considering two bit-string p and q of length N. In the Hamming distance
case, the hash function is defined as the i*" bit of these strings. Thus, if their
Hamming distance is dg(p, ¢), that is, the number of bits that differ position
wise in the two strings, then the probability that any given bit at a random
position is the same in both strings is 1 — w. Thus, the bit-sampling LSH
family for Hamming distance, defined as: Hy = {h; : h;(b1...bx)) = b; | i € [N]}
is (dy,dg,1— dﬁl, 1— %)-sensitive for the two Hamming distances d; < ds.

We use Hamming LSH over embedded reads to separate out the reads into
different buckets such that with a very high probability, reads within a bucket
are similar to each other, and hence correspond to the same reference.

Clustering based on Edit Distance At this stage, we have all reads grouped
in hash buckets based on their similarity. However, we still have two problems
to solve. (1) LSH can produce false positives, meaning that two dissimilar reads
can end up in the same bucket. The main consequences is that if reads are
very different, the consensus procedure lead to the wrong result. (2) Reads can
have different lengths due to insertions and deletions errors. Thus, we need to
adjust the reads in order to make their lengths uniform while taking into account
possible insertion/deletion errors. Both these problems can be solved by aligning
the reads in each bucket. More specifically, given a bucket, we sort the reads based
on length such that reads with length matching the reference oligos are moved
to the front of the bucket. Then, starting with the first read in the bucket, we
align all the following reads to the first one. The intuition behind sorting the
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reads is as follows. If a read has the same length as the reference oligos (160nt),
either the read has no insertion/deletion errors, or there are an even number of
insertion and deletion errors. Since the probability of errors is low with short-
read sequencing, the former scenario is more likely. Thus, by picking reads that
are of the correct length and aligning the rest of the reads to it, we increase the
probability of finding the correct original reference oligo.

The alignment of reads gives two pieces of information: the edit distance and
the Compact Idiosyncratic Gapped Alignment Report (CIGAR). The edit dis-
tance allows us to identify reads that are actually dissimilar even if they are in
the same buckets. We group only similar reads to form a cluster. The CIGAR
contains the base-by-base alignment information (the sequence of matches, inser-
tions and deletions) needed to align one read to the other. Using this information,
we adjust the reads by adding gaps where there is a deletion error, or deleting
nucleotides where there is an insertion error. Once all similar reads are found
within the bucket, we save the cluster and remove the reads from the bucket. Any
dissimilar reads that were not a part of the cluster are still left in the bucket. In
order to deal with false positives by LSH, the remaining reads are then processed
again in the same way, with the procedure being repeated until the bucket is
empty.

Position-Wise Consensus The result of the previous stages is a set of clusters.
All reads within a cluster are noisy copies of the same reference oligo with some
errors in random positions. At this point of the algorithm the only missing step
is the consensus procedure. The consensus algorithm works on a per position
basis. The key idea is that despite some random errors, all reads in a cluster are
aligned and adjusted based on the edit distance and CIGAR. Thus, if we consider
a specific position across all reads, it is likely that the majority of reads in that
position will contain the correct nucleotide while only some of them report the
wrong one. This implies that for any given position, it will be enough to take the
most-frequent nucleotide as the consensus outcome. Repeating this procedure
for each position, we produce one inferred oligo per cluster. We would like to
point out here that not all oligos need to be correctly inferred. In fact, as we
show later, some original oligos might not appear at all in the inferred set, and
other inferred oligos might have errors. We rely on the parity added by LDPC
codes at a higher level to recover data despite these errors.

The inferred oligos are then passed to the decoder which reverses the steps
shown in Figure 2. The constrained code is first used to convert each 160nt oligo
back into 300-bit sequences by converting each individual 16-nt motif into its
corresponding 30-bit value. The index stored in each 300 bits is used to reassem-
ble bits back in the correct order. The LDPC decoder is then used to recover
back data even if some bits were wrongly decoded, or some bits were zeroed out
as corresponding oligos were missing. The decoded data is then derandomized
to obtain a stream of bits that corresponds to the original input.
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4 Evaluation

At this stage of our collaboration, we have assembled the entire pipeline. We
are in the process of carrying out a real-life, large-scale synthesis experiment. As
we do not have results from real experiments yet, we will provide a preliminary,
simulation-driven evaluation in this section. Note that we simulate only the
synthesis and sequencing steps in Figure 1. We encode/decode the real dataset
using our pipeline.

4.1 Experimental Setup

The raw STARD archive that is fed as input to our pipeline is 12.9MB in size.
With redundancy added by LDPC, the resulting binary data to be stored on
DNA is 15.19MB in size. We encode the SIARD archive generating 405,212
oligos, each with a length of 160nts. Using these original oligos, we then generate
four million reads by using a short-read simulator® tool, that adds random errors
such as insertion, substitution, and deletion in each read to mimic the actions
of an Illumina DNA sequencer. This corresponds to an average coverage of 10X,
meaning that each oligo, on average is covered by 10 noisy copies.

4.2 Benchmark with sequence alignment

We begin our analysis by visualizing the coverage across oligos. While the aver-
age coverage is 10X, the overall coverage typically follows a negative binomial
distribution, with some oligos being covered hundreds of times, and some being
not covered at all. To visualize this, we aligned the reads to reference with BWA-
MEM v0.7.17 [14], a state-of-the-art short-read aligner. Based on the alignment
result from BWA-MEM, we show the histogram of coverage across oligos in Fig-
ure 4. The x-axis is the coverage (or number of reads that map to an oligo), and
y-axis is the number of oligos with that coverage in log scale. As can be seen, the
coverage distribution spans a range from 1 to 26, with majority of oligos being
covered 5-15x as expected given that the simulator was configured to produce
10x coverage.

We also use the alignment result to show the histogram of number of errors
(indels and substitutions) in Figure 5, where x-axis represents the number of
errors, and y-axis represents the number of oligos with that error count in log
scale. As can be seen, the error distribution is right skewed, with a majority of
reads having fewer than 2 mismatches, and a few reads having as many as 8
mismatches which accounts for a 5% error rate given the oligo length of 160.
Finally, we also used the alignment result to verify that each read uniquely
maps to an oligo (absence of XA’ field in the SAM output file produced by
BWA-MEM). This shows that oligos are “far” from each other in terms of edit
distance due to randomization.

S https:/ /sourceforge.net/projects/bbmap/
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Fig. 4. Histogram of occurrence of inferred oligos

BWA-MEM performs base-by-base, edit-distance-based base-by-base align-
ment and reports CIGAR and alignment score. As a result, it is computationally
very intensive. While such an alignment is required for genomic data analysis in
order to determine the exact location of a read in the genome, for the purpose
of DNA storage, we found that it is sufficient to simply map each read to an
oligo without full alignment. Accel-Align (v1.1.1; [21]) is a short-read aligner
that we have developed in the context of project OligoArchive that supports
alignment-free mapping-only mode that can quickly map reads to oligos. Thus,
we present a comparative analysis of BWA-MEM and Accel-Align here with the
goal of presenting it as a open-source tool that can be used by other researchers
for both DNA storage and more broadly, for analyzing genomic data.

Exec. time (second)|Correctly aligned (%)
BWA-MEM 25.5 100
Accel-Align 3.8 99.9
Table 1. Performance and accuracy of BWA-MEM and Accel-Align(map mode)

We use the BWA-MEM and Accel-Align to align/map reads to oligos. Using
BWA-MEM’s alignment as the gold standard, we evaluate Accel-Align’s accu-
racy. Table 1 shows the execution time and the percent of correctly aligned
reads. It shows that Accel-Align can performing mapping 6x faster than BWA-
MEM at a slight drop in accuracy of 0.004%. On futher analysis, we found this
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Fig. 5. Histogram of mismatches

drop to be due to Accel-Align’s inability to map reads with very high error
rate. Accel-Align is specifically built to trade off performance and accuracy for
Illumina-based short-read sequencing reads whose error rate is typically much
lower than 5%. As our simulated reads offer a more pessimistic error model,
Accel-Align experiences a slight drop in accuracy. Despite this, as the coverage
histogram with Accel-Align and BWA-MEM are near identical, we have found
Accel-Align to be a very useful tool for analyzing both DNA storage reads and
more broadly, genomic data [21].

4.3 End-to-end Decoding Results

Having presented an analysis of the reads, we will now present the decoding
results. Using OneConsensus procedure described earlier, we obtain the inferred
oligos using the simulated dataset. Table 2 shows the error statistics for these
oligos. The figures are obtained by comparing the inferred oligo for a certain
index with the corresponding original reference oligo. We see that we are able
to infer 404,075 oligos that correspond to 99.7% of the original oligos perfectly
without errors. In addition, 1010 oligos were inferred with some errors and 127
oligos were completely missing. Note that errors in an oligo does not imply that
the entire oligo is different from the original, but differs only with respect to a
few motifs. For this reason, we also report the difference between inferred data
and original encoded file in terms of number of bits.

We then use the constrained code to convert these inferred oligos into 300-bit
sequences, and reassemble them in order based on the 19-bit index. At this stage,
we will certainly have situations where an oligo is missing due to sequencing
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simulation bias, or an oligo could not be converted back into 300-bits due to
errors. In both cases, there will be a corresponding index whose data bits cannot
be recovered. We insert a sequence of zero bits for such indices and use the
reconstructed binary together with the LDPC decoder to restore the original
input. Despite the errors reported in Table 2, the LDPC decoder was able to
recover back the original archive completely, thanks to the additional parity
information added during encoding.

#Original Oligos 405212
#Correctly Inferred Oligos [404075
#Incorrectly Inferred Oligos| 1010
#Missing Oligos 127
#Incorrect bits 42678
Table 2. Statistics for decoding of STARD archive

Finally, in this section we compare OneConsensus with OneJoin-based con-
sensus algorithm. Table 3 compares the two algorithms in terms of the accuracy
achieved in inferring the encoding oligos. In terms of the number of oligos cor-
rectly inferred in their entirety, meaning an exact match between the inferred
oligo and the original reference oligo, we see that OneConsensus slightly under-
forms OneJoin. But as we mentioned earlier, oligos can also differ by just a few
motifs only, making the statistic about the correctly inferred oligos insufficient to
determine the actual accuracy of the two algorithms. For this reason, we report
also the number of missing oligos and the number of bits wrongly inferred by the
two algorithms. The number shows that OneConsensus outperforms OnelJoin, as
it mistakes only misses 127 oligos, while OneJoin 595 oligos. Overall, OneCon-
sensus leads to 42678 bit errors, compared to the 95935 bit errors produced by
the OnelJoin-based consensus.

In terms of memory consumption, we observed that OneJoin reaches a peak
of 2.5GB, while OneConsensus requires only 1.1GB. While the difference may
not seem too striking for this dataset, we would like to point out that while
OneConsensus memory consumption grows linearly with the dataset size, One-
Join requires an amount of memory that is quadratic with coverage.

OneConsensus|OneJoin

##Correctly Inferred Oligos 404075| 404104
#Incorrectly Inferred Oligos 1010 513
#Missing Oligos 127 595
#Incorrect bits 42678| 95935

Table 3. Statistics for OneConsensus and OneJoin-based consensus



16 E. Marinelli et al.

5 Conclusion and Future Work

In this work, we provided an overview of the ongoing collaboration between
project OligoArchive and the Danish National Archive in using DNA to pre-
serve culturally significant digital data. Building on prior work on molecular
information storage and digital preservation, we presented a holistic, end-to-end
pipeline for preserving both data and the meaning of data on DNA, and tested
the pipeline using simulation studies. There are several avenues of future work we
are pursuing. First, as described earlier, we are in the process of carrying out a
large-scale experiment to validate our pipeline using real data. Second, we are in-
vestigating various optimizations to both encoding and consensus algorithms to
support alternate synthesis and sequencing technologies with potentially higher
error rates. Finally, while we addressed the question of preserving data in this
work, we left open the question of preserving the decoding algorithm itself. Re-
cent work has investigated the design of nested universal emulators that can
be used to preserve and emulate such decoders using analog media like film or
archival paper [3]. Thus, we are investigating methods to combine DNA-based
digital data storage with analog media-based decoding logic storage.
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