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This work deals with wave propagation into a coaxial cable, which can be modelled by the 3D Maxwell equations or 1D simplified models. The usual one, called the telegrapher's model, is a 1D wave equation on the electrical voltage and current. We derived a more accurate model from the Maxwell equations that takes into account dispersive effects. These two models aim to be a good approximation of the 3D electromagnetic fields in the case where the thickness of the cable is small. We perform some numerical simulations of the 3D Maxwell equations and of the 1D simplified models in order to validate the usual model and the new one. Moreover, we show that while the usual telegrapher model is of order one with respect to the thickness of the cable, the dispersive 1D model is of order two.

Introduction and motivation

An electrical cable is a structure whose transverse dimensions are smaller than the longitudinal one. In particular, a co-axial cable is a dielectric material that surrounds metallic inner-wires and is surrounded by a metallic shield. A dielectric material is characterised by its dielectric permittivity ε and its magnetic permeability µ. The study of the propagation of electromagnetic waves along such a cable is an important issue in many industrial applications such as wire troubleshooting. See [START_REF] Auzanneau | Wire troubleshooting and diagnosis: Review and perspectives[END_REF] for a general review of wire troubleshooting, [START_REF] Admane | Inverse scattering for soft fault diagnosis in electric transmission lines[END_REF] for the detection of soft fault diagnosis in a simplified transmission line and [START_REF] Beck | Computer-implemented method for reconstructing the topology of a network of cables: US20200363462A. France[END_REF] for reconstruction of the underline graph of an unknown network. The simplest way to models a coaxial cable is to consider a 1D model called telegrapher model which deals with the propagation of the voltage V δ,0 and the current I δ,0 along infinitesimal LC quadripoles:

(1.1) C(z) ∂ t V δ,0 (t, z) + ∂ z I δ,0 (t, z) = 0, L(z) ∂ t I δ,0 (t, z) + ∂ z V δ,0 (t, z) = 0,

The variable z represents the longitudinal variable of the cable, C to the capacitance and L to the inductance. However, the real propagation of electromagnetic waves is governed by the 3D Maxwell equations. Solving 3D Maxwell's equation is a not a trivial task: complex geometry due to defaults, 3D mesh for the thin cable... Indeed, performing such 3D simulations when the cable is thin can be a numerical challenge. One of computational difficulties comes from the fact that the transversal scale of the mesh must be small compared to the thickness δ of the cable whereas the longitudinal scale of the mesh must be small in regard to the typical wavelength of input. The practical regime δ (typical wavelength) implies that (transversal scale of the mesh) (longitudinal scale of the mesh).

In [START_REF] Beni Hamad | An efficient numerical method for time domain electromagnetic wave propagation in co-axial cables[END_REF], we propose an efficient numerical method to solve the 3D Maxwell equations in an elongated cylindrical coaxial cable. We use an anisotropic prismatic mesh, with a transverse mesh and a longitudinal mesh, which is consistent with the thin cable geometry, while relying on a hybrid implicit-explicit scheme. However, the simulations stay costly all the more so as engineers are not usually interested in the full electromagnetic fields but in the electrical voltage and current that are 1D quantities. On the other hand, one could derive 1D models, called the telegrapher models. This leads to a good approximation of the solution of our 3D problem (see [START_REF] Beck | Modélisation et étude mathématique de réseaux de câbles électriques[END_REF][START_REF] Imperiale | Mathematical modeling of electromagnetic wave propagation in heterogeneous lossy coaxial cables with variable cross section[END_REF]). It is also worthwhile mentioning that such models can be extended to the multi-conductors case: see [START_REF] Paul | Analysis of Multiconductor Transmission Lines[END_REF] in the electromagnetism literature or [START_REF] Beck | Mathematical modelling of multi conductor cables[END_REF] for a more rigorous approach. The simplified 1D models have been derived by performing asymptotic analysis of the 3D Maxwell equations as the thinness of the cable tends to zero. In this asymptotic analysis, we have assumed that the electromagnetic fields can be expand in powers of δ where δ is the thinness parameter. The derivation of the simplified 1D models gives an explicit way to compute the effective inductance L(z) and the effective capacitance C(z) at each point z from the geometry of the cross-section at the point z and the characteristic of the dielectric material.

Unfortunately, this model cannot be used for fine wire troubleshooting since it's blind from some geometrical defaults and neglects some dispersive effects that are measured in practical experiments. Indeed, the coefficients L and C are invariant under conformal mapping, i.e. for two sections connected by a conformal map, L and C are the same. We expect a 1D model that take into account all the geometrical defaults, or at least crushing. It requires further analysis so as to have a model that is as exhaustive as necessary. A more accurate model was derived in chapter 5 of [START_REF] Beck | Modélisation et étude mathématique de réseaux de câbles électriques[END_REF] by considering the second order terms in the asymptotic expansion. In that case the electrical capacitance C and inductance L become spatial differential operators. More precisely, (1.1) must be replaced by

(1.2) C δ,2 (z, ∂ z ) ∂ t V δ,2 (t, z) + ∂ x I δ,2 (t, z) = 0, L δ,2 (z, ∂ z ) ∂ t I δ,2 (t, z) + ∂ x V δ,2 (t, z) = 0.
In the particular case where the permittivity and the permeability do not depend on the longitudinal variable z, the capacitance and inductance operators are second order elliptic operators given by

C δ,2 (z, ∂ z ) = C 1 -δ 2 κ e ∂ 2 z and L δ,2 (z, ∂ z ) = L 1 -δ 2 κ m ∂ 2 z ,
where κ e and κ m are computed from the geometry of the cross-section at point z and the characteristic of the dielectric material. Note that when κ e and κ m are constants, one finds the equations of the linear ABCD-Boussinesq's model of shallow water-wave propagation (see [START_REF] Bona | Boussinesq equations and other systems for small-amplitude long waves in nonlinear dispersive media: I. Derivation and linear theory[END_REF]). We could not find any case in the classical literature on coaxial cables [START_REF] Paul | Analysis of Multiconductor Transmission Lines[END_REF] where our new effective coefficients are introduced. This is because in the aforementioned literature the standard telegrapher's model is only valid for cylindrical cables with constant permittivity and permeability. In fact, under these hypothesis, our new effective coefficients κ e and κ m vanish. The coefficient κ e cannot vanish in the case where • the cable is made of cylindrical, concentric, different layers of homogenous dielectric material, known as onion-like structure (from now on), • the velocity of electromagnetic waves is not homogeneous.

In that case, the dispersion effect due to C δ,2 cannot be neglected. From 1D models, one can reconstruct electromagnetic fields which explicit formulae in order to make some comparisons with the 3D Maxwell equations. In particular we will see that the usual Transverse Electro-Magnetic (TEM) hypothesis is no longer true. This hypothesis states that the electric (and magnetic) field lines are all restricted to normal directions to the direction of propagation. This is widely used to justify 1D models in the classical literature [START_REF] Paul | Analysis of Multiconductor Transmission Lines[END_REF]. In [START_REF] Beni Hamad | An efficient numerical method for time domain electromagnetic wave propagation in co-axial cables[END_REF], we have also made comparisons between numerical simulations of (1.1) and numerical simulation between 3D Maxwell's equations. But, we have not shown the order of convergence with respect to δ, that is to say

(1.3) ||(3D model) -(1D model (1.1))|| L ∞ t L 2 x ||(3D model)|| L ∞ t L 2 x ≈ δ.
Moreover, as we have already said, one expect more efficient approximations that take into account dispersives effects. The aims of the paper are threefold:

(1) We will be presenting the second order 1D model as well as the way to calculate the characteristic coefficients involved in the equations. Moreover, we will show that it is a well-posed problem (see theorem 2.1). (2) We will give a formal derivation of this second order model in the context of onion-like structure (see theorem 3.1). (3) We perform numerical comparaisons between 1D model and 3D Maxwell's theory in a periodic domain. More precisely we aim to show (1.3) and

||(3D model) -(1D model (1.2))|| L ∞ t L 2 x ||(3D model)|| L ∞ t L 2 x ≈ δ 2
(see figure 1 and figure 2).

We are able to perform numerical simulation of the 3D Maxwell's equations only in the cylindrical case. This is why we will only consider cylindrical cables in this paper. Moreover, we will assume that the inner-wire and the shield are perfect conducting materials. That is, the electromagnetic waves are confined in the dielectric part of the cable so that we can neglect the skin-effect. See [START_REF] Beck | Asymptotic modeling of Skin-effects in coaxial cables[END_REF] for the derivation of the resistance from the skin-effect in the 1D model. Notations. The usual Sobolev spaces are denoted by H r and H 1 /R refers to Sobolev space with null average, i-e

H 1 /R (S) := {u ∈ H 1 (S) | ˆS u = 0}.

3D and 1D models of waves propagation in a co-axial cable

A cylindrical co-axial cable is a waveguide

Ω = S × R
such that all cross sections S × {x 3 } are identical, and that each cross section has a closed inner hole O with non-null area and is included in a bounded disk B of R 2 . Therefore, the domain S has a boundary made of two connected parts

∂ -S := ∂S ∩ O and ∂ + S := ∂S ∩ ∂(B \ (S ∪ O))
that assume to be Lipschtiz continuous. 

G δ : B × R → B × R (x T , x 3 ) → (δx T , x 3 )
parametrized by a small parameter δ 1 which refers to the thickness of the cable. More precisely one has

Ω δ = G δ (Ω).
Moreover the characteristic coefficients of the thin cable Ω δ are obtained from the reference cable Ω by

ρ δ = ρ • G -1 δ
where ρ = ε, µ. The notation x 3 ∈ R will always refer to the longitudinal variable whereas x T = (x 1 , x 2 ) ∈ R 2 will always refer to the transverse variables. The propagation of electromagnetic waves along the thin cable is described by the electromagnetic fields (E δ , H δ ) : Ω δ → R 3 which solve the 3D Maxwell equations

(2.2)      ε δ ∂ t E δ -∇ (x T ,x 3 ) × H δ = 0 in Ω δ µ δ ∂ t H δ + ∇ (x T ,x 3 ) × E δ = 0 in Ω δ E δ × n = 0 at ∂Ω with initial conditions E δ |t=0 = E δ 0 and H δ |t=0 = 0.
where ∇ (x T ,x 3 ) × stands for the usual 3D curl operator. Note that we have made the three following simplifications:

(1) (Dielectric conductivity) We assume that there is no loss in the dielectric material. If we want to take it into account, we shall consider

ε δ ∂ t E δ + σ δ E δ -∇ (x T ,x 3 ) × H δ instead of ε δ ∂ t E δ -∇ (x T ,x 3
) × H δ where σ δ is the electrical conductivity. For practical cable, this conductivity is very small, i-e of order O(δ 2 ). However, if the cable is wetted the conductivity could be of order O(1). This work was conducted in [START_REF] Beck | Mathematical modelling of multi conductor cables[END_REF] when the δ 2 terms are neglected. (2) (Metallic conductivity) The boundary condition E δ × n = 0 means that we have considered the inner-wire and the metallic shields as perfect conducting materials. A more realistic model should consider highly conductive material instead of perfect conducting material. See [START_REF] Beck | Asymptotic modeling of Skin-effects in coaxial cables[END_REF] where the δ 2 terms are neglected. (3) (Easy data) The hypothesis on the initial conditions are not necessary, they are just given for sake of simplicity. One could consider more general initial conditions. (4) (Sole inner-wire) We consider only one inner hole O. The case of several inner wires is treated in [START_REF] Beck | Mathematical modelling of multi conductor cables[END_REF]. To compare with practical experiments, one can extract the voltage V δ (x 3 , t) and the current I δ (x 3 , t) from the electromagnetic fields. The way to extract it will be detailed in (6.1). Given the difficulty in solving the Maxwell equation, one can consider a 1D model of wave propagation. In this model, the unkowns are not the electromagnetic fields but the voltage V δ,2 (x 3 , t) and the current I δ,2 (x 3 , t) which solve the following telegrapher's equations

(2.3)    C δ,2 (x 3 , ∂ x 3 ) ∂ t V δ,2 + ∂ 3 I δ,2 = 0, L δ,2 (x 3 , ∂ x 3 ) ∂ t I δ,2 + ∂ 3 V δ,2 = 0.
Here the generalised capacitance C δ,2 and inductance L δ,2 operators are differential operators that will be defined later. Let us note some consequences of the four simplifications we made:

(1) (Dielectric conductivity) If there is electrical conductivity of order O(1) then we shall consider

C δ,2 (x 3 , ∂ x 3 , ∂ t ) ∂ t V δ,2 + GV δ,2 + K * t V δ,2 instead of C δ,2 (x 3 , ∂ x 3 ) ∂ t V δ,2
in the first equation of (2.3). The operator C δ,2 (x 3 , ∂ x 3 , ∂ t ) becomes non-local in time but the expression is not nice. These are described in Fourier frequency space in chapter 5 of [START_REF] Beck | Modélisation et étude mathématique de réseaux de câbles électriques[END_REF]. (2) (Metallic conductivity) Considering highly conductive material instead of perfect perfect conducting material leads to replacing

L δ (x 3 , ∂ x 3 ) ∂ t I δ,2 by L δ (x 3 , ∂ x 3 ) ∂ t I δ,2 +δR∂ 1/2 t I δ,2 - δ 2 L sk I δ,2
where the resistance R is described in [START_REF] Beck | Asymptotic modeling of Skin-effects in coaxial cables[END_REF], the fractional derivative ∂ 1/2 t stands for the Fourier multiplier associated to √ iω in Fourier frequency space and the coefficient L sk is described in chapter 7 of [START_REF] Beck | Modélisation et étude mathématique de réseaux de câbles électriques[END_REF] (see theorem 7.5.2).

(3) (Easy data) If we consider general initial condition, we need to add a source term in the 1D model (see chapter 5 of [START_REF] Beck | Modélisation et étude mathématique de réseaux de câbles électriques[END_REF]). (4) (Sole inner-wire) If we consider several inner wires, then the electrical voltage and current become vectors whose dimension coincide with the number of inner wires. With the electrical voltage V δ,2 and current I δ,2 one can reconstruct an approximation (E δ,2 , H δ,2 ) of the electromagnetic field (E δ , H δ ) (see section 2.4). Note that if we formally take δ = 0 into (2.3) one has the usual telegrapher equations (1.1) whose solutions are denoted by V δ,0 and I δ,0 . One can also reconstruct an approximation (E δ,0 , H δ,0 ) of the electromagnetic field (E δ , H δ ) from V δ,0 and I δ,0 . In [START_REF] Beck | Modélisation et étude mathématique de réseaux de câbles électriques[END_REF], some error estimates are proved in the case where the characteristic coefficients of the dielectric ε δ and µ δ are continuous. Our aim is to illustrate such error estimates with numerical simulations (see tables 1 and 2) when ε δ and µ δ are piecewise constant.

Main result 1. Numerical results of (2.2), (1.1) and (2.3) satisfy

||V δ -V δ,2 || L ∞ t L 2 x ||V δ || L ∞ t L 2 x ≈ δ 2 and ||E δ -E δ,2 || L ∞ t L 2 x ||E δ || L ∞ t L 2 x ≈ δ 2 , whereas ||V δ -V δ,0 || L ∞ t L 2 x ||V δ || L ∞ t L 2 x ≈ δ and ||E δ -E δ,0 || L ∞ t L 2 x ||E δ || L ∞ t L 2 x ≈ δ.
Finally, our results justify the use of 1D models instead of the full 3D Maxwell equations. Moreover, they also justify the preference for the second order 1D model (2.3) instead of the usual one (1.1).

Harmonic potential and description of the effective capacitance and inductance.

To define the generalised capacitance and inductance operators, one needs to introduce the harmonic potentials

ϕ(ρ), ψ(ρ) ∈ H 1 (S)
which are the solutions of the following elliptic equations in the reference geometry (2.4)

     div ρ∇ϕ(ρ) = 0, in S, ϕ(ρ) = 1, at ∂ -S ϕ(ρ) = 0, at ∂ + S,

and

(2.5)

         div ρ∇ψ(ρ) = 0 in S \ Γ, ∂ n ψ(ρ) = 0, at ∂S, [ψ(ρ)] Γ = 1, [ρ∂ n ψ(ρ)] Γ = 0, through Γ, ´S ψ(ρ) = 0,

where

• the differential operator ∇ and div refer to usual 2D gradient and divergence operators on the cross-section S, • the artificial cut Γ is any artificial 1D curve which links the inner Σ 1 2 to the outer Σ N + 1 2 boundaries, and [•] Γ the jump through the cut. Even if we can take any cut, we choose Γ := S ∩ e 1 where e 1 is the abscissa axis. Since the gradient of ψ(ρ) has null jump through the cut we can extend ∇ψ(ρ) on S. Then, if the harmonic potential ψ(ρ) depends on the artificial cut, its gradient does not. This is why we say that Γ is artificial. This property can be seen in the fundamental example of the case where the cross section is a circular annulus and ρ is radial. Indeed, in that case one has in polar coordinate system (e r , e θ ) (2.6)

ψ(ρ) = 1 - θ 2π and ∇ψ(ρ) = - 1 2πr e θ .
Firstly, note that neither ψ(ρ) nor ∇ψ(ρ) depend on the weight. We call them harmonic potentials since they span the harmonic spaces. More precisely, one can show that (see chapter

1 of [3]) (2.7) E(ρ) := E ∈ L 2 (S) 2 div (ρ E) = 0 , rot E = 0 and E × n| ∂S = 0 = span{∇ϕ(ρ)}, and (2.8) H(ρ) := H ∈ L 2 (S) 2 div (ρ H) = 0 , rot H = 0 and H • n| ∂S = 0 = span{∇ψ(ρ)}, where (2.9) div T = ∂ 1 T 1 + ∂ 2 T 2 , rot T = ∂ 1 T 2 -∂ 2 T 1 for 2D fields T : S → R 2 ,

and

(2.10)

T • n := T 1 n 1 + T 2 n 2 , T × n := T 1 n 2 -T 2 n 1 for 2D fields T : S → R 2 .
This two harmonic potentials are conjugated in the sense that they satisfy the Cauchy-Riemann-like relations

(2.11) ρ ∇ϕ(ρ) = C(ρ) ∇ ⊥ ψ(ρ -1 ) ρ ∇ψ(ρ) = -L(ρ) ∇ ⊥ ϕ(ρ -1 ) with C(ρ) = ´S ρ|∇ϕ(ρ)| 2 L(ρ) = ´S ρ|∇ψ(ρ)| 2
where the 2D vectorial rotational ∇ ⊥ stands for

∇ ⊥ = (∂ x 2 , -∂ x 1 ).
We will use extensively this conjugation relation (see chapter 1 of [START_REF] Beck | Modélisation et étude mathématique de réseaux de câbles électriques[END_REF] for the proof).

We can take as weight ρ the electric permittivity (respect. the magnetic permeability) which yields an harmonic potential ϕ e of electrostatic type (respect. ψ m of magneto-static type) and its conjugated potential ψ e (respect. ϕ m ). More precisely, one has

ϕ e = ϕ(ε), ψ m = ψ(µ), ψ e = ψ(ε -1 ) and ϕ m = ϕ(µ -).
We also define the oscillating part

ψ m = ψ m - ´S µψ m ´S µ
and ψ e = ψ e -´S µψ e ´S µ .

Definition 2.1. The capacitance and inductance coefficients are defined by C(x 3 ) := C(ε(x 3 )) and L(x 3 ) := L(µ(x 3 )).

The effective capacitance and inductance operators are defined by the bilinear form

ˆRx 3 (C δ,2 V ) U = ˆRx 3 CV U + δ 2 ˆΩ ε (∂ x 3 ϕ e )V + (ϕ e -ϕ m )∂ x 3 V (∂ x 3 ϕ e )U + (ϕ e -ϕ m )∂ x 3 U for all V, U ∈ H 1 and ˆRx 3 (L δ,2 I) J = ˆRx 3 LI J + δ 2 ˆΩ µ (∂ x 3 ψ m )I + ( ψ m -ψ e )∂ x 3 I (∂ x 3 ϕ e )J + ( ϕ e -ϕ m )∂ x 3 J for all I, J ∈ H 1 .
First, we notice that the definitions of effective capacitance and inductance operators are still valid when there is variable cross-section, i.e. the cable is not cylindrical. In that case, ∂ x 3 ϕ e must be interpreted as the eulerian shape derivative ϕ e with respect to the variation of the shape of each cross-section. In that case, one needs to assume that the cross-sections are more regular than Lipschitz continuous. We refer the readers to [START_REF] Delfour | Shapes and geometries: metrics, analysis, differential calculus, and optimization[END_REF] for the definition of eulerian shape derivative. The explicit computation of ∂ x 3 ϕ e is given in proposition 4.1.4 in [START_REF] Beck | Modélisation et étude mathématique de réseaux de câbles électriques[END_REF].

In the particular case where the permittivity and the permeability satisfy the following property ε(x T , x 3 ) = ε T (x T )ε 3 (x 3 ) and µ(x T , x 3 ) = µ T (x T )µ 3 (x 3 ), the capacitance and inductance operators are second order elliptic operators given by

C δ,2 (x 3 , ∂ x 3 )• = C(x 3 ) -δ 2 ∂ x (κ e (x 3 )∂ x 3 •) and L δ,2 (x 3 , ∂ x 3 )• = L(x 3 ) -δ 2 ∂ x (κ m (x 3 )∂ x 3 •)
where (2.12) κ e := ˆS ε|ϕ e -ϕ m | 2 and κ m := ˆS µ| ψ m -ψ e | 2 are constants. Indeed, in that case one gets ∂ x 3 ϕ e = 0 and ∂ x 3 ψ m = 0 and thus with an integration by part in the definition of C δ,2 and I δ,2 , one has the expected expressions. The new coefficients κ e and κ m , are respectively the electric and magnetic dispersion coefficients. If the electromagnetic wave velocity c = 1/ √ εµ is constant, then the dispersion coefficients κ e and κ m are null. Indeed ϕ e = ϕ m and ψ e = ψ m as a consequence of div µ -1 ∇ϕ e = c 2 div ε∇ϕ e = 0 which ensure that ϕ e solves the problem satisfied by ϕ m (and so on for ψ e that solves the problem satisfied by ψ m ). In the following we shall be interested in cables for which dispersion occurs. One important class of dispersive media is provided by cables whose internal structure is made of finitely many materials structured in an onion-like manner. By this we mean that the coefficients are piecewise constant in successive concentric layers. This is the topic of following subsection.

First of all, we want to underline that, under suitable geometric assumptions, the capacitance C and the inductance L are bounded from above and below . Indeed, in the case of a circular annulus of inner radius r -and outer radius r + and constant permittivity and permeability, one gets C = ε2π/ ln(r + /r -) and L = µ ln(r + /r -)/(2π) by directly solving the equations (2.4) and (2.5) in the polar coordinate system (e r , e θ ). In more general cases, see the following proposition. (ii) Suppose that there exists an ellipse E -with semi-major axis a -and semi-minor axis b - that surround the hole O without touching the exterior boundary. We denote by

C + := 2π ln 1 + d * +b + -b - a -+b - < +∞
where

d * := dist(E -, ∂ + S) + (D -a -) and b + := 2a -d * + d 2 * + b 2 -
with D is the distance between the center of the ellipse E -and the point of E -which is the closed to the exterior boundary. One gets

C ≤ sup(ε) C + and inf(µ) C -1 + ≤ L.
Proof. (i) This is a consequence of lemma 5.3 of [START_REF] Beck | Mathematical modelling of multi conductor cables[END_REF]. (ii) For the higher bound of C, we need to remark that the elliptic annulus E * of inner (resp. outer) ellipse E -(resp. outer ellipse E + ) characterized by semi-major axis a -(resp. a

+ := a -+ d * ), semi-minor axis b -(resp. b + := 2a -d * + d 2 * + b 2 -) is included in S. Thus, by the Dirichlet principle, we have C ≤ sup(ε)Cap * where Cap * = ´E * |∇ϕ * | is the capacity of the potential ϕ * solution of      ∆ϕ * = 0 in E * , ϕ * = 1 on E -, ϕ * = 0 on E + . Since E -and E + have the same focal c = a 2 --b 2 -= a 2 + -b 2 + , the Joukowsky transform x T → 1 2 x 1 (1 + c 2 |x T | 2 ) x 2 (1 -c 2 |x T | 2
) maps conformally E * to the circular annulus of inner radius (a -+b -) and outer radius (a + +b + ). Thus, since the capacity is invariant by conformal mapping, we have

Cap * = 2π ln 1 + d * +b + -b - a -+b -
which concludes the proof for the higher bound of C. The lower bound of L is a consequence of conjugation relationship (2.11).

It was shown in [START_REF] Beck | Mathematical modelling of multi conductor cables[END_REF] that the capacitance C and the inductance L become positive-definite matrices when we consider several inner wires.

Remark 2.1. This proposition implies that the effective capacitance and inductance operators are non-negative:

ˆRx 3 (C δ,2 U ) U ≥ inf(ε) C -||U || 2 L 2 and ˆRx 3 (L δ,2 U ) U ≥ inf(µ) C -1 + ||U || 2 L 2 ∀U ∈ L 2 (R).
We can do better by showing that the operators are in fact coercive on appropriate spaces.

Proposition 2.2. One has for all V, U ∈ H 1 (R) (2.13) ˆRx 3 (C δ,2 V ) U = ˆRx 3 C + δ 2 (η e -∂ x 3 χ e ) V U + δ 2 ˆRx 3 κ e ∂ x 3 V ∂ x 3 U
where

κ e := ˆS ε |ϕ e -ϕ m | 2 , η e := ˆS ε |∂ x 3 ϕ e | 2 and χ e := ˆS ε (ϕ e -ϕ m )(∂ x 3 ϕ e ).
Proof. For all V, U ∈ H 1 (R), one gets

ˆRx 3 (C δ,2 V ) U = ˆRx 3 (C + δ 2 η e )V U + δ 2 ˆRx 3 κ e ∂ x 3 V ∂ x 3 U + ˆΩ ε (∂ x 3 ϕ e )(ϕ e -ϕ m )V ∂ x 3 U + ˆΩ ε (∂ x 3 ϕ e )(ϕ e -ϕ m )U ∂ x 3 V.
By integration by parts with respect to the longitudinal variable x 3 , one has

ˆΩ ε (∂ x 3 ϕ e )(ϕ e -ϕ m )V ∂ x 3 U = -ˆΩ ε (∂ x 3 ϕ e )(ϕ e -ϕ m ) ∂ x 3 V U -ˆΩ ∂ x 3 [ε (∂ x 3 ϕ e )(ϕ e -ϕ m )] V U.
and thus we have the expected formula.

Remark 2.2. In order to show that C δ,2 is a coercive operator from H 1 (R) to H 1 (R), one needs to assume that C + δ 2 (η e -∂ x 3 χ e ) ≥ 0 (which is in accordance with the smallness of δ) and to show that κ e don't degenerate. As we will see later, this is indeed the case in the onion-like structure.

2.3.

Simplification in onion-like structure. We will assume that our cable has an onionlike structure whenever • the cross-section S is made of N concentric layers S n such that

(2.14) S = N n=1 S n and S n ∩ S m = ∅ for n = m and such that        (inner boundary) Σ 1 2 x 3 := ∂ -S, (layers separations) Σ n+ 1 2 x 3 := ∂S n ∩ ∂S n+1 for 1 < n < N, (outer boundary) Σ N + 1 2 x 3 := ∂ + S,
are 1D regular loops with non null perimeter that surround the inner-hole and never touch each other, • for any x 3 ∈ R, the electric permittivity ε(x T , x 3 ) and magnetic permeability µ(x T , x 3 ), are are transversely piecewise constant according to the partition (2.14), i.e. for any x 3 there exist positive bounded coefficients (ε n (x 3 ), µ n (x 3 )) such that

(2.15) ε(x T , x 3 ) = ε n (x 3 ), µ(x T , x 3 ) = µ n (x 3 ) for x T ∈ S n , 1 ≤ n ≤ N.
We want to show that under appropriate hypotheses, the effective telegrapher's equation (2.3) is well-posed and deals with dispersive media.

Hypothesis 2.1. (H1)

The cable Ω has the onion-like structure as describe above.

(H2) The velocity c = 1/ √ εµ is not constant with respect to the transversal coordinate.

(H3)

The hole O has a positive area and there exists an ellipse that surround the hole O without touching the exterior boundary. (H4) The functions x 3 → ε n (x 3 ) and x 3 → µ n (x 3 ) are bounded, regular, positive and have non-null minima.

The main result of this section is the following:

Theorem 2.1. Assume hypotheses 2.1 and that the parameter δ is small enough such that C + δ 2 (η e -∂ x 3 χ e ) ≥ 0. Let r ≥ 0 be a real number , and let

(I δ,2 0 , V δ,2 0 ) ∈ H r (R) × H r+1 (R) be initial conditions. Then the problem (2.3) is globally well-posed in C ∞ (R + , H r (R) × H r+1 (R)).
The dispersion plays a significant role. On the one hand, if the dispersion is neglected (δ = 0), then (2.3) becomes the usual wave equation. Then, accordingly to usual Lummer-Phillips theorem, the solution has the following regularity

r s=0 C s R + , H r-s (R) × H r+1-s (R)
if the initial condition lies in H r (R) × H r+1 (R). To gain one temporal regularity, one must pay one spatial derivative. On the other hand, when there is dispersion, the solution has the following regularity

C ∞ R + , H r (R) × H r+1 (R) .
To prove theorem 2.1, one needs to introduce a mapping that lets us work in the simplest geometry, which is a circular annulus. We denote by v n the volume of each layer S n and by 2r * the diameter of S. We construct a piecewise volume-preserving mapping

(2.16) T v : S → B(0, r * ) such that the restrictions T n v := T v S n transform each layer S n into an annulus C n := C(r n-1 2 , r n+ 1 2
) where the radii are finding through this induction

r N + 1 2 = r * r n-1+ 1 2 = r n+ 1 2 -v n π . These annuli C n are constructed such that area(S n )=area(C n ).
Proposition 2.3. In the onion-like structure, one gets

ψ m = ψ e = ψ m = ψ e = ψ
where ψ is the solution of the harmonic problem

         ∆ψ = 0 in S\Γ, ∂ n ψ = 0 on ∂S, [ψ] Γ = 1, [∂ n ψ] Γ = 0 on Γ, ´S ψ = 0. Proof. We denote by ψ := ψ(µ • T v , T v S)
the solution of (2.17)

         ∆ ψ = 0 in C n \Γ, ∂ n ψ = 0, at ∂S, [ ψ] Γ = 1, [µ ψ] Γ = 0, through Γ, ´S ψ(ρ) = 0,
We remark that ψ = (1 -θ 2π ) satisfy the system (2.17) which admit a unique solution. Consequently, ψ m depends only on the geometry and not on the permability µ. The same reasoning holds for ψ e . Moreover, one has

ˆCn µ ψ = ˆCn ε ψ = 0.
Thus since T v is a piecewise volume-preserving mapping , one gets ˆS µ ψ = ˆS ε ψ = 0, and therefore

ψ m = ψ e = ψ.
In particular, the effective inductance operator is just the inductance coefficient, namely

L δ,2 = L.
Moreover, the conjugation relationship (2.11) becomes

(2.18) ε ∇ϕ e = C ∇ ⊥ ψ µ ∇ψ = -L ∇ ⊥ ϕ m Remark 2.3.
The level set of ϕ e and ϕ m are always orthogonal to the level-set of ψ

∇ϕ e • ∇ψ = ∇ϕ m • ∇ψ = 0,
as illustrated in Figure 3.

This remark is a consequence of the previous proposition and the conjugation relation (2.11). Indeed one has

∇ϕ e • ∇ψ = proposition 2.3 ∇ϕ e • ∇ψ e = (2.11) -ε -1 C -1 ∇ϕ e • ∇ ⊥ ϕ e = 0.
Proposition 2.4. Under hypotheses 2.1 and assuming C + δ 2 (η e -∂ x 3 χ e ) ≥ 0, one has that for all V ∈ H 1 (R)

2 ˆRx 3 (C δ,2 V ) V ≥ inf(ε) C -||V || 2 L 2 + δ 2 κ 0 ||∂ x 3 V || 2 L 2 ,
where C -> 0 is given in proposition (2.1) and κ 0 := min x 3 κ e (x 3 ) is a positive constant.

Proof. Let V ∈ H 1 .

Step 1: Proposition 2.2 implies, together with

C + δ 2 (η e -∂ x 3 χ e ) ≥ 0, ˆRx 3 (C δ,2 V ) V ≥ δ 2 ˆRx 3 κ e |∂ x 3 V | 2 .
Then using proposition 2.1, one gets

2 ˆRx 3 (C δ,2 V ) V ≥ inf(ε)C -||V || L 2 + δ 2 ˆRx 3 κ e |∂ x 3 V | 2 .
Step 2: We show that there exits a positive constant κ 0 such that (2. [START_REF] Lee | A split step approach for the 3-D Maxwell's equations[END_REF])

κ e = ˆS ε|ϕ e -ϕ m | 2 > κ 0 when c = 1/
√ εµ is not constant with respect to the transversal coordinate (hypothesis (H2)).

We notice that (2. [START_REF] Lee | A split step approach for the 3-D Maxwell's equations[END_REF]) is invariant under volume-preserving maps. Thus we can work under the simple geometry given by the transformation T v . The harmonic potential satisfies (see step 3)

(2.20) ϕ(ρ) TvS n = C(ρ) 2π ρ n ln(r) + B n (ρ)
where the coefficients B n (ρ) are given by the sequence

B n+1 (ρ) -B n (ρ) = C(ρ) 2π 1 ρ n+1 - 1 ρ n ln(r n+ 1 2 )
with the intial one

B 1 = 1 - C(ρ) 2π ρ 1 ln(r 1-1 2 )
is solution to (2.4) under this simple geometry. This will be shown in Step 3. Then, one has

ϕ e -ϕ m TvS n = 1 2π C ε n - µ n L ln(r) + B n (ε) -B n (µ -1 )
and thus after straightforward (but tedious) calculations, one gets (2.21)

´S ε|ϕ e -ϕ m | 2 = N n=1 ε n C ε n -µ n L 2 ´TvS n ln(r) 2 rdrdθ 2π + 1 π C ε n -µ n L B n (ε) -B n (µ -1 ) ´TvS n ln(r) 2 rdrdθ π + B n (ε) -B n (µ -1 ) 2 ´TvS n rdrdθ 2π , Moreover, one can show by induction that B n (ε) -B n (µ -1 ) is null if and only if C ε n -µ n L = 0. Thus (2.21) is null if and only if, for all n, one has LC = ε n µ n .
Step 3: (2.20) is indeed the solution of (2.4) in T v S.

The function ϕ(ρ)

TvS n =

A n (ρ)

ρ n ln(r) + B n (ρ)
satisfies ∆ϕ(ρ) = 0 on each layer T v S n . It remain to find the expression of A n and B n . Moreover we have with the jump of the normal derivative at each r n+ 1 2

A n+1 (ρ) = A n (ρ) such that A n (ρ) = A(ρ).
In polar coordinate (e r , e θ ), one gets,

∇ϕ TvS n = A n (ρ) ρ n 1 r e r and C(ρ) = 1 2π N k=1 1 ρ k ln r k+ 1 2 r k-1 2 -1
we deduce that

A(ρ) = C(ρ) 2π ,
which is the expected expression. Taking the jump of ϕ(ρ) at r n+ 1 2 , we have

B n+1 (ρ) -B n (ρ) + C(ρ) 2π 1 ρ n+1 - 1 ρ n ln(r n+ 1 2 )
Taking the value of ϕ(ρ) on the boundaries we have

A 1 (ρ) ln(r -) + B 1 (ρ) = 1, A N (ρ) ln(r + ) + B N (ρ) = 0.
Proposition 2.4 with the Lax-Milgram theorem shows that C δ,2 : H r+2 → H r is a linear invertible operator for every real number r ≥ 0. This is the keystone to ensure well-posedness.

Proof of theorem 2.1. Let r ≥ 0, and initial conditions (

I δ,2 0 , V δ,2 0 ) ∈ H r (R) × H r+1 (R).
Using the fact that (C δ,2 ) -1 : H r (R) → H r+2 (R) is a regularized operator of order 2, we can write the telegrapher equation (2.3) as the following ODE

d dt I δ,2 V δ,2 = L I δ,2 V δ,2 with L : H r (R) × H r+1 (R) → H r (R) × H r+1 (
R) the linear Lipschitz field on Banach spaces defined by

L 1 I δ,2 V δ,2 = -(L δ,2 ) -1 ∂ x 3 V δ,2 ∈ H r (R) L 2 I δ,2 V δ,2 = -(C δ,2 ) -1 ∂ x 3 I δ,2 ∈ H r+1 (R).
The local well-posedness is a consequence of the Cauchy-Lipshitz theorem.

An energy estimate d dt

1 2 ˆR(C δ,2 V δ,2 ) V δ,2 + L|I δ,2 | 2 = 0
is obtained by multiplying the first equation of (2.3) by V δ,2 , the second by I δ,2 , summing both, integrating over R x 3 . In particular, it implies that it is globally well-posed.

If we remove assumptions (H1), (H2) and

C + δ 2 (η e -∂ x 3 χ e ) ≥ 0, the problem (2.3) is still well-posed in C 0 (R + , L 2 (R) × H 1 (R)).
The proof is more complicated since κ e can degenerate. This may be found in [START_REF] Beck | Modélisation et étude mathématique de réseaux de câbles électriques[END_REF].

2.4. 1D model as good approximation of 3D model. We say that the 1D model is a good approximation of the 3D Maxwell equations since we can reconstruct the electromagnetic fields (E δ , H δ ) from the 1D voltage V δ,2 and current I δ,2 and the harmonic potentials through the formulae (2.22)

E δ,2 (x δ T , x δ 3 ) = V δ,2 (x δ 3 ) ∇ϕ e ( x δ T δ , x δ 3 ) 0 + δ 0 (ϕ e -ϕ m )( x δ T δ , x δ 3 ) (∂ x 3 V δ,2 (x δ 3 )) + V δ,2 (x δ 3 )(∂ x 3 ϕ e )( x δ T δ , x δ 3 )) +δ 2 E δ,2 T,R ( x δ T δ , x δ 3 ) 0 , and 
(2.23) H δ,2 (x δ T , x δ 3 ) = I δ,2 (x δ 3 ) ∇ψ m ( x δ T δ , x δ 3 ) 0 + δ 2 H δ,2 T,R ( x δ T δ , x δ 3 ) 0 , for all (x δ T , x δ 3 ) ∈ Ω δ where E δ,2 T,R = V δ,2 ∇ξ e,1 + (∂ x 3 V δ,2 ) ∇ξ e,2 + (∂ 2 x 3 V δ,2 ) ∇ξ e,3 H δ,2 T,R = (∂ t V δ,2 ) µ -1 ∇ ⊥ ζ m,1 + (∂ t ∂ x 3 V δ,2 ) µ -1 ∇ ⊥ ζ m,2 while ξ e,1 := ξ[∂ x 3 ε (∂ x 3 ϕ e ) ], ξ e,2 := ξ[∂ x 3 ε (ϕ e -ϕ m ) + ε (∂ x 3 ϕ e ) ], ξ e,3 := ξ[ε (ϕ e -ϕ m )]
and

ζ m,1 := ζ[ε (∂ x 3 ϕ e )]ζ m,2 := ζ[ε (ϕ e -ϕ m )]
where, for all f ∈ L 2 (S), the potentials ξ[f ] ∈ H 1 (S) and ζ[f ] ∈ H 1 (S) are the solutions to the following elliptic problems

   div ε ∇ξ[f ] = -f in S, ξ[f ] = 0 on ∂S, and 
   rot µ -1 ∇ ⊥ ζ[f ] = f in S, ζ[f ] = 0 on ∂S.
(2.24)

Such reconstruction formulae will be derived in section 3 and a regoures justification in Theorem 3.1.

An important feature for troubleshooting community is that the electromagnetic wave could not be TEM of order O(δ), not even if the multilayer cable is cylindrical. In fact, we will see in the next section on the homogeneous multilayer case, that it can never be TEM if as the characteristic coefficients are different on each layer. Taking δ = 0 in (2.22) and (2.23) one has that for all (x δ T , x δ 3 ) ∈ Ω δ (2.25)

E δ,0 (x δ T , x δ 3 ) = V δ,0 (x δ 3 ) ∇ϕ e ( x δ T δ , x δ 3 ) 0 and H δ,0 (x δ T , x δ 3 ) = I δ,0 (x δ 3 ) ∇ψ m ( x δ T δ , x δ 
3 ) 0 which are a less accurate approximation of the 3D Maxwell equations.

Derivation of effective telegrapher equation

It enables us to transform the 3D Maxwell's equation (2.2) to 1D and 2D considerations. So the reader must be careful with the differential operators: some are 3D (∇ (x T ,x 3 ) , ∇ (x T ,x 3 ) ×) others are 2D (∇, div, ∇ ⊥ , rot). We have postulated in [START_REF] Beck | Mathematical modelling of multi conductor cables[END_REF] an Ansatz of the electromagnetic fields in the form of a polynomial series of power δ

(3.1)            E δ (x δ T , x δ 3 ) = ∞ p=0 δ p E p x δ T δ , x δ 3 + O(δ ∞ ), H δ (x δ T , x δ 3 ) = ∞ p=0 δ p H p x δ T δ , x δ 3 + O(δ ∞ ), with (x δ T , x δ 3 ) ∈ Ω δ .
where each coefficients (E p , H p ) : Ω → C 3 are given by injecting the Ansatz (3.1) in the Maxwell's equations. This was done in [START_REF] Beck | Mathematical modelling of multi conductor cables[END_REF]. We will just recall the cascade of equations to determine (E p+1 , H p+1 ) from (E p , H p ). And we will be interested only for p = 0, 1, 2. To do that, we separate for each 3D fields, the tangential component and the longitudinal one

E p = E p T E p 3 with E p T = E p 1 E p 2
and so on for H p .

We consider the fields T in H(div, S) and ϕ in H 1 (S). In this context, the operators (div, rot) are duals of (∇, ∇ ⊥ ) in the sens of the following Green's formulae :

(3.2) ˆS div T ϕ = -ˆS T • ∇ϕ + ˆ∂S T • n ϕ where T • n := T 1 n 1 + T 2 n 2 , (3.3 
)

ˆS rot T ϕ = ˆS T • ∇ ⊥ ϕ - ˆ∂S T × n ϕ where T × n := T 1 n 2 -T 2 n 1 .
One also gets (3.4) rot (∇ϕ) = 0 and div (∇ ⊥ ϕ) = 0.

We can see that the 2D rotational and gradient are linked by a rotation of π/2

(3.5) e 3 × ∇ ⊥ ϕ = ∇ϕ where e 3 × T := (-T 2 , T 1 ).

The cascade of equations is the following:

• transverse electric fields            div ε E p T = -∂ x 3 ε E p-1 3 in Ω, rot E p T = -µ ∂ t H p-1 3 in Ω, E p T × n = 0, on ∂Ω (3.6) 
• transverse magnetic fields

           div µ H p T = -∂ x 3 µ H p-1 3 , in Ω, rot H p T = ε ∂ t E p-1 3 , in Ω, H p T • n = 0, on ∂Ω (3.7) 
• longitudinal magnetic fields

(3.8)        ε ∂ t E p T -∂ x 3 e 3 × H p T -∇ ⊥ H (p+1) 3 = 0 in Ω, ˆS µH (p+1) 3 = 0 • longitudinal electric fields (3.9)    µ ∂ t H p T + ∂ x 3 e 3 × E p T + ∇ ⊥ E (p+1) 3 = 0, in Ω, E (p+1) 3 
= 0 on ∂Ω, with the convention E p = H p = 0 for p < 0. The equations (3.9) and (3.8) have sense if and only if we can write

ε ∂ t E p T -∂ x 3 e 3 × H p T and µ ∂ t H p T + ∂ x 3 e 3 × E p T
as a 2D vectorial rotational ∇ ⊥ . Since they both be free-divergence fields, we need to prove that every divergence-free fields can be a rotational of 1D fields as consequence of (3.6) and (3.7) .

It is obvious for simply connected domain but one need to check it in a non-symply connected domain like S.

Lemma 3.1. Any fields u ∈ L 2 (S) such that div(ρu) = 0 can be written as a vectorial 2D rotationnal

u = ρ -1 ∇ ⊥ ζ + ρ u • n , 1 H -1 2 (∂S∩∂O) ψ(ρ -1 ) ,
with ψ(ρ -1 ) defined in (2.5) and ζ the solution of the following elliptic problem

(3.10)    find ζ ∈ H 1 /R (S) such that ∀ ζ ∈ H 1 /R (S), ˆS ρ -1 ∇ ⊥ ζ • ∇ ⊥ ζ = ˆS u • ∇ ⊥ ζ. Proof. One gets ũ := u -ρ -1 ∇ ⊥ ζ + ρ u • n , 1 H -1 2 (∂S∩∂O) ψ(ρ -1 ) ∈ E(ρ) = span ∇ϕ(ρ) such that ˆS ρ ũ • ∇ϕ(ρ) = 0 ⇒ ũ = 0.
By definition of ũ, we have

ˆS ρ ũ • ∇ϕ(ρ) = ˆS ρu • ∇ϕ(ρ) -ˆS ∇ ⊥ ζ • ∇ϕ(ρ) -ρ u • n , 1 H -1 2 (∂ -S) ˆS ∇ ⊥ ψ(ρ -1 ) • ∇ϕ(ρ).
From Green's formula (3.2) and div (ρ u) = 0 one has

ˆS ρu • ∇ϕ(ρ) = ρ u • n , 1 H -1 2 (∂S∩∂O) and ˆS ∇ ⊥ ζ • ∇ϕ(ρ) = 0.
Moreover, one has with conjugation relationship (2.11)

ˆS ∇ ⊥ ψ(ρ -1 ) • ∇ϕ(ρ) = C(ρ) -1 ˆS ρ ∇ϕ(ρ) • ∇ϕ(ρ) = 1. Thus ˆS ρ ũ • ∇ϕ(ρ) = ρ u • n , 1 H -1 2 (∂ -S) 1 -ˆS ∇ ⊥ ψ(ρ -1 ) • ∇ϕ(ρ) = 0
which conclude the proof.

3.1. Order 0 in the polynomial series Ansatz.

3.1.1.

The longitudinal fields of order 0. The equations (3.9) and (3.9) with p = -1 show that the limit electromagnetic field is transversely polarized, namely (3.11) H 0 3 = 0 and E 0 3 = 0, as it is usually assumed in the engineering literature (see [START_REF] Paul | Analysis of Multiconductor Transmission Lines[END_REF]).

3.1.2. Structure of the transverse fields of order 0. The equations (3.6) and (3.7) for p = 0 show that (see (2.7) and (2.8)) there exists functions V 0 : R → R and I 0 : R → R, representing the electric voltage and electric current respectively, such that for all (x T , x 3 ) ∈ S × R one has (3.12) E 0 T (t, x T , x 3 ) = V 0 (t, x 3 )∇ϕ e (x T , x 3 ) and H 0 T (t, x T , x 3 ) = I 0 (t, x 3 )∇ψ(x T ), where we recall that ψ m = ψ (see proposition 2.3) in the onion-like structure.

3.1.3. Equations for the electric voltage and current. The first equations of (3.8) and (3.9) with p = 0 do not provide closed equations for (E 0 T , H 0 T ) due to the presence of (E 1 3 , H 1 3 ). To get rid of them, as in [START_REF] Beck | Mathematical modelling of multi conductor cables[END_REF] we take the scalar product in L 2 (S) of (3.9) and respectively (3.8) with ∇ϕ e and respectively ∇ψ. Using the expression (3.12) of E 0

T and H 0 T , the remark 2.3 and the definition (2.11) of the coefficients C and L, we then get

(3.13)        C ∂ t V 0 + ∂ 3 I 0 -ˆS ∇ϕ e • ∇ ⊥ H 1 3 = 0, L ∂ t I 0 + ∂ 3 V 0 + ˆS ∇ψ • ∇ ⊥ E 1 3 = 0.
Finally, we remark that the terms involving E 1 3 and H 1 3 in the above equations vanish. Indeed, using the Green's formula (3.3) and the fact ϕ e is constant on each connected part ∂S, one has

ˆS ∇ϕ e • ∇ ⊥ H 1 3 = ˆS rot (∇ϕ e )H 1 3 + ˆ∂S (∇ϕ e × n) H 1 3 = 0.
Again, using the Green's formula (3.3) and the fact E 1 3 = 0 on ∂S (see (3.9) with p = 0), one has

ˆS ∇ψ • ∇ ⊥ E 1 3 = ˆS rot (∇ψ)E 1 3 + ˆ∂S (∇ψ × n) E 1 3 = 0.
Finally, one gets the telegrapher's equation

(3.14) C ∂ t V 0 + ∂ 3 I 0 = 0, L ∂ t I 0 + ∂ 3 V 0 = 0, with initial condition V 0 | t=0 = 1 C E T | t=0
• ∇ϕ e and I 0 = 0. This 1D wave problem is of course well-posed. More precisely, for any r ≥ 0 if

V 0 | t=0 ∈ H r+1 (R) then one has (3.15) V 0 ∈ r s=0 C s R + , H r+1-s (R) and consequently I 0 ∈ r s=0 C s+1 R + , H r-s (R) .
3.2. Order 1 in the polynomial series Ansatz.

3.2.1.

The longitudinal fields of order 1. The equations (3.9) and (3.8) with p = 0 and the expression of (E 0 T , H 0 T ) given in (3.12) become µ

(∂ t I 0 )∇ψ -∂ x 3 V 0 ∇ ⊥ ϕ e + ∇ ⊥ E 1 3 = 0, and ε (∂ t V 0 )∇ϕ e + (∂ x 3 I 0 ) ∇ ⊥ ψ -∇ ⊥ H 1 3 = 0. Using conjugation relationship (2.18), one has ∇ ⊥ -ϕ m (L ∂ t I 0 ) -∂ x 3 V 0 ϕ e + E 1 3 = 0 and ∇ ⊥ ψ (C∂ t V 0 + ∂ x 3 I 0 ) -H 1 3 = 0.
Finally, using the telegrapher's equation (3.14), E 1 3 = 0 on ∂S and ´S µH 1 3 = 0 one has (3.16)

E 1 3 = (ϕ e -ϕ m )∂ x 3 V 0 + (∂ x 3 ϕ e ) V 0 and H 1 3 = 0.
We can first notice that of order one the electromagnetic field cannot be transversely polarized since in onion-like structure one has ´S ε|ϕ e -ϕ m | > 0.

3.2.2. The transverse fields. The equations (3.6) and (3.7) for p = 1 show that (see (2.7) and (2.8)) there exists functions V 1 : R → R and I 1 : R → R such that for all (x T , x 3 ) ∈ S × R one gets (3.17)

E 1 T (t, x T , x 3 ) = V 1 (t, x 3
)∇ϕ e (x T , x 3 ) and H 1 T (t, x T , x 3 ) = I 1 (t, x 3 )∇ψ(x T ). Applying the same reasoning as in section 3.1.3 with equations (3.9) and (3.8) with p = 1 instead of p = 0, one has

(3.18) C ∂ t V 1 + ∂ 3 I 1 = 0, L ∂ t I 1 + ∂ 3 V 1 = 0,
with null intial conditions. Thus one has

(3.19) V 1 = I 1 = 0,
and finally

(3.20) E 1 T = H 1 T = 0.
The structure of first order fields (E 1 , H 1 ) are completely different from the one at limit order (E 0 , H 0 ). On one hand, the limit order field is transversely polarized. On the other hand, the first order field is longitudinally polarized.

3.3.

Order 2 in the polynomial series Ansatz.

The longitudinal fields of order 2. Using (E 1

T , H 1 T ) = (0, 0), the equations (3.9) and (3.8) with p = 1 become

   ∇ ⊥ E 2 3 = 0 in Ω, E 2 3 = 0,
and 

     ∇ ⊥ H 2 3 = 0 in Ω, ˆS µH 2 3 = 0.
           div ε E 2 T = -∂ x 3 ε (ϕ e -ϕ m )∂ x 3 V 0 + ε (∂ x 3 ϕ e ) V 0 in S, rot E 2 T = 0 in S, E 2 T × n = 0, on ∂S (3.22) and            div µ H 2 T = 0, in S, rot H 2 T = ε (ϕ e -ϕ m )∂ t ∂ x 3 V 0 + ε (∂ x 3 ϕ e ) ∂ t V 0 , in S, H 2 T • n = 0, on ∂S. (3.23)
We introduce

E 2 T,R = V 0 ∇ξ[∂ x 3 ε (∂ x 3 ϕ e ) ]+(∂ x 3 V 0 ) ∇ξ[∂ x 3 ε (ϕ e -ϕ m )+ε (∂ x 3 ϕ e )]+(∂ 2 x 3 V 0 ) ∇ξ[ε (ϕ e -ϕ m )] and H 2 T,R = (∂ t V 0 ) µ -1 ∇ ⊥ ζ[ε (∂ x 3 ϕ e )] + (∂ t ∂ x 3 V 0 ) µ -1 ∇ ⊥ ζ[ε (ϕ e -ϕ m )]
where, for all f ∈ L 2 (S), the potential ξ[f ] ∈ H 1 (S) and ζ[f ] ∈ H 1 (S) are the solutions of the elliptic problems (2.24). Thus, there exists functions V 2 : R → R and I 2 : R → R, representing the electric voltage and electric current respectively, such that one has

(3.24) E 2 T = V 2 ∇ϕ e + E 2 T,R and H 2 T = I 2 ∇ψ + H 2 T,R .
3.3.3. Equations for the electric voltage and current. The first equations of (3.8) and (3.9) with p = 2 do not provide closed equations for (E 2 T , H 2 T ) due to the presence of (E 3 3 , H 3 3 ). To get rid of them, as it wan done in section 3.1.3, we take the scalar product in L 2 (S) of (3.9) and respectively (3.8) with ∇ϕ e and respectively ∇ψ. Using the expression (3.12) of E 2

T and H 2 T , the remark 2.3 and the fact that (same reasoning as in section 3.1.3)

ˆS ∇ϕ e • ∇ ⊥ H 3 3 = ˆS ∇ψ • ∇ ⊥ E 3 3 = 0
and the fact that

ˆS εE 2 T,R • ∇ϕ e = ˆS µH 2 T,R • ∇ψ = 0 we then get (3.25)        C ∂ t V 0 + ∂ 3 I 0 -ˆS ∂ x 3 e 3 × H 2 T,R • ∇ϕ e = 0, L ∂ t I 0 + ∂ 3 V 0 + ˆS ∂ x 3 e 3 × E 2 T,R • ∇ψ = 0,
By algebraic calculus, one gets

ˆS ∂ x 3 e 3 ×H 2 T,R •∇ϕ e = ˆS ∂ x 3 H 2 T,R •∇ ⊥ ϕ e and ˆS ∂ x 3 e 3 ×E 2 T,R •∇ψ = ˆS ∂ x 3 E 2 T,R •∇ ⊥ ψ
On one hand, using Green's formula (3.3) and equations (3.22), one gets

ˆS ∂ x 3 E 2 T,R • ∇ ⊥ ψ = ˆS ∂ x 3 rot E 2 T,R ψ + ˆ∂S ∂ x 3 E 2 T,R × n ψ = 0.
On the other hand,

ˆS ∂ x 3 H 2 T,R • ∇ ⊥ ϕ e = ∂ x 3 ˆS H 2 T,R • ∇ ⊥ ϕ e -ˆS H 2 T,R • ∇ ⊥ ∂ x 3 ϕ e that becomes ˆS ∂ x 3 H 2 T,R • ∇ ⊥ ϕ e = ∂ x 3 ˆS H 2 T,R • ∇ ⊥ (ϕ e -ϕ m ) -ˆS H 2 T,R • ∇ ⊥ ∂ x 3 ϕ e
since by the orthogonality relation and conjugation relation

ˆS H 2 T,R • ∇ ⊥ ϕ m = 0.
Then using Green's formula (3.3) and the fact that ∂ x 3 ϕ e = ϕ e -ϕ m = 0 on ∂S, one gets

ˆS ∂ x 3 H 2 T,R • ∇ ⊥ ϕ e = ∂ x 3 ˆS rot H 2 T,R (ϕ e -ϕ m ) -ˆS rot H 2 T,R ∂ x 3 ϕ e .
Thus with (3.23), one has

(3.26) ˆS ∂ x 3 H 2 T,R • ∇ ⊥ ϕ e = ∂ x 3 (κ e ∂ x 3 ∂ t V 0 ) + (∂ x 3 χ e -η e )∂ t V 0
where κ e , η e and χ e are defined in proposition 2.2. To sum up, one has one gets the telegrapher's equation

(3.27)    C ∂ t V 2 + ∂ 3 I 2 = ∂ x 3 (κ e ∂ x 3 ∂ t V 0 ) + (∂ x 3 χ e -η e )∂ t V 0 , L ∂ t I 2 + ∂ 3 V 2 = 0.
This 1D wave problem is of course well-posed. More precisely, for any natural nimbers s ≥ 0 and r ≥ s

+ 2 if V 0 ∈ C s R + , H r+1-s (R) then one has (3.28) V 2 ∈ C s R + , H r+1-s-2 (R) and I 2 ∈ C s+1 R + , H r-s-2 (R) .
3.4. Error estimates. In the previous sections we have closed equations to compute (E p , H p , V p , I p ) for p = 0, 1, 2. We can then compute

(3.29) E δ,2 trunc := 2 p=0 δ p E p , H δ,2 trunc := 2 p=0 δ p H p , V δ,2 trunc := 2 p=0 δ p V p , I δ,2 trunc := 2 p=0 δ p I p .
They aim at being good approximations of the approximate models (E δ,2 , H δ,2 ) and the electromagnetic fields (E δ , H δ )

E δ,2 E δ,2 trunc •G -1 δ E δ , H δ,2 H δ,2 trunc •G -1 δ H δ , , V δ,2 V δ,2 trunc V δ , I δ,2 I δ,2 trunc I δ ,
in the sense that we have the following error estimates

• modeling error estimation ||(E δ,2 , H δ,2 ) -(E δ,2 trunc , H δ,2 trunc ) • G -1 δ || L ∞ t L 2 (Ω) = O(δ 3 ), (3.30a) • truncature error estimation ||(E δ , H δ ) -(E δ,2 trunc , H δ,2 trunc ) • G -1 δ || L ∞ t L 2 (Ω) = O(δ 3 ), (3.30b) • global error estimation ||(E δ , H δ ) -(E δ,2 , H δ,2 )|| L ∞ t L 2 (Ω) = O(δ 3 ). (3.30c) Note that since E δ,2
trunc is defined in the reference geometry Ω whereas (E δ , E δ,2 ) are defined in the thin geometry Ω δ , one needs the scaling G δ to compare them. The global estimation (3.30c) is the expected estimation and the consequence of (3.30a) and (3.30b). The proof of (3.30b) is completely over the scope of the paper. It was shown in [START_REF] Beck | Modélisation et étude mathématique de réseaux de câbles électriques[END_REF]. We only show the modeling error estimation and illustrate with numerical simulation that one has an error in O(δ 2 ). The main theorem of the section is the following: Theorem 3.1. Let natural numbers r ≥ 3 and s ∈ [1, r -2] and initial condition V 0 | t=0 ∈ H r+1 (R). One has for the electrical voltage and current

||V δ,2 -   2 p=0 δ p V p   || C s R + ,H r+1-s-2 (R) + ||I δ,2 -   2 p=0 δ p I p   || C s+1 R + ,H r-s-2 (R) = O(δ 4 ).
One also has for the transverse electromagnetic fields

||E δ,2 T -   2 p=0 δ p E p T   • G -1 δ || C s R + ,L 2 (Rx T )⊗H r+1-s-4 (Rx 3 ) = O(δ 4 )
and

||H δ,2 T -   2 p=0 δ p H p T   • G -1 δ || C s-1 R + ,L 2 (Rx T )⊗H r-s-2 (Rx 3 ) = O(δ 4 )
and for the longitudinal electromagnetic fields

||E δ,2 3 -   2 p=0 δ p E p 3   • G -1 δ || C s R + ,H 1 (Rx T )⊗H r-s-2 (Rx 3 ) = O(δ 4 )
and

||H δ,2 3 -   2 p=0 δ p H p 3   • G -1 δ || C s+1 R + ,H 1 (Rx T )⊗H r-s-2 (Rx 3 ) = 0.
Note that if one considers more general initial conditions and source terms then one has O(δ 3 ) estimates instead of O(δ 4 ).

Proof. The effective telegrapher's equation (2.3) take into account the telegrapher's equations (3.14,3.18,3.27) that gives the electrical voltage and current at each order. Indeed, the combination 

V := V δ,2 -   2 p=0 δ p V p   and I := I δ,2 -   2 p=0 δ p I p   which is    C δ,2 ∂ t V + ∂ 3 I = δ 4 (η e -∂ x 3 χ e -∂ x 3 (κ e ∂ x 3 ))∂ t V 2 , L ∂ t I + ∂ 3 V = 0.
Let r ≥ 3 and initial condition V 0 | t=0 ∈ H r+1 (R), (3.15) and (3.28) imply that V 2 ∈ C s R + , H r+1-s-2 (R) . Then, since (C δ,2 ) -1 is a regularized operator of order 2, one has

(C δ,2 ) -1 (η e -∂ x 3 χ e -∂ x 3 (κ e ∂ x 3 ))∂ t V 2 ∈ C s-1 R + , H r+1-s-2 (R) ,

and thus ||V||

C s R + ,H r+1-s-2 (R) + ||I|| C s+1 R + ,H r-s-2 (R) = O(δ 4 ).
Similarly, the combinations 

E δ,2 - 2 p=0 δ p E p • G -1 δ = V ∇ϕ e 0 + δ 0 (ϕ e -ϕ m )(∂ x 3 V) + V(∂ x 3 ϕ e ) +δ 2 V ∇ξ e,1 + (∂ x 3 V) ∇ξ e,2 + (∂ 2 x 3 V) ∇ξ e,3 0 
, and

(3.32) H δ,2 -   2 p=0 δ p H p   •G -1 δ = I ∇ψ m 0 +δ 2 (∂ t V) µ -1 ∇ ⊥ ζ m,1 + (∂ t ∂ x 3 V) µ -1 ∇ ⊥ ζ m,2 0 .
Thus using the estimates on V, one can conclude the expected modeling error estimates.

Space-time discretization of the 3D model

For the 1D-3D comparisons, we will use the method that we introduced in [START_REF] Beni Hamad | An efficient numerical method for time domain electromagnetic wave propagation in co-axial cables[END_REF]. The only purpose is to point out that, in the algebraic formulation of the problem, the matrices are affected by the small parameter δ representing the transverse dimension of the cable and to emphasize once more the fact that the CFL stability condition is independent of δ. Practical cables are thin in the sense that δ 1. As mentioned in the introduction, this impies some numerical difficulties. In the considered applications, the wavelength is large compared to the diameter of the cross-section, but small compared to the size of the cable. This feature has two impacts on the time discretization :

• an implicit scheme would be too costly given the size of the problem,

• an explicit scheme is to be avoided because the corresponding CFL condition would be too constraining. To take care of it, we use an anisotropic prismatic spatial mesh and a hybrid implicit-explicit scheme for the time discretization. This method has some similarities with the ADI schemes proposed by Fornberg and Lee (see [START_REF] Lee | A split step approach for the 3-D Maxwell's equations[END_REF], [START_REF] Lee | Some unconditionally stable time stepping methods for the 3D Maxwell's equations[END_REF] and [START_REF] Hochbruck | Convergence of an ADI splitting for Maxwell's equations[END_REF] for an analysis). A prismatic spatial mesh means that h T h where h T is the transverse step size h T and h is the longitudinal step size h. To implement this method, the first step is to make a longitudinal discretization of the cable, then a transverse discretization of each section, and finally a discretization in time. We don't want to discretize a thin coaxial cable Ω δ . Thus, we introduce the rescaled electric

E δ = ( E δ
T , E δ 3 ) and the magnetic fields H δ = ( H δ T , H δ 3 ) that are casted in the reference cable Ω. They are defined by

E δ = E δ • G -1 δ , H δ = H δ • G -1 δ . Thus, the electric field is solution of (4.1) ε ∂ 2 t E T -∂ 3 µ -1 ∂ 3 E T + δ -2 ∇ ⊥ µ -1 rot E T + ∂ 3 µ -1 δ -1 ∇ E 3 = 0, ε ∂ 2 t E 3 + rot µ -1 δ -2 ∇ ⊥ E 3 + δ -1 div µ -1 ∂ 3 E T = 0.
The details of computation from Maxwell's equations (2.2) to the second order formulation of the rescaled Maxwell's equations (4.1) are given in [START_REF] Beni Hamad | An efficient numerical method for time domain electromagnetic wave propagation in co-axial cables[END_REF]. The discretization is performed in the reference geometry Ω.

• For the discretization in the longitudinal variables, we decomposed the cable Ω into small cylindrical cells

C j+ 1 2 = {(x T , x 3 ) ∈ Ω | jh ≤ x 3 ≤ (j + 1)h}, for all j ∈ Z.
These cells of size h in the x 3 direction are separated by transverse cross sections S j for all j ∈ Z, where, by definition, S ν = {(x T , νh), x T ∈ S}, For all ν ∈ R. • For the discretization in the transverse variables, we introduced a conforming triangular mesh T of the section S with step size h T .

The transverse field E T will then be approximated by Nedelec elements in each section S j and by piecewise affine elements along the longitudinal direction. On the other hand, the longitudinal field E 3 field will be approximated by P 1 elements on each S j+1/2 section and by P 0 discontinuous elements along the longitudinal direction (See Figure 1). The fully semi-discrete variational problem reads: find E T,h , E 3,h ∈ V h such that for any

E T,h , E 3,h ∈ V h , (4.2)        d 2 dt 2 m h E T,h , E T,h + k 3 E T,h , E T,h + δ -2 k T,h E T,h , E T,h -δ -1 c 3T E 3,h , E T,h = 0, d 2 dt 2 m E 3,h , E 3,h + δ -2 k T E 3,h , E 3,h -δ -1 c 3T E 3,h , E T,h = 0,
where the space V h is the space of prismatic edge elements, namely,

(4.3) V h := E h ∈ H(rot, Ω) | ∀ P K,j ∈ T 3D , E h | P K,j ∈ R , with P K,j = K × [jh, (j + 1)h],
where K is a triangle in the triangular mesh T ,

T 3D := P K,j / K ∈ T , j ∈ Z , such that Ω = K,j P K,j , R = E = (E T , E 3 ) | E T (•, x 3 ) ∈ P 1 (R; N 2D ), E 3 (•, x 3 ) ∈ P 0 (R; P 1 (R 2 )) ⊂ P 3 1 .
To write the problem in an algebraic form, we introduce the (infinite) vector of degrees of freedom (see Figure 1), namely, (4.4)

E h = E T,h E 3,h ≡ E T,j E 3,j+ 1 2 ∈ V h := V h,T × V h,3 ,
where V h,T and V h,3 are respectively the Hilbert spaces

V h,T = 2 Z, R Ne and V h,3 = 2 (Z, R N ).
Thus (4.2) admits the following algebraic form

(4.5) M h d 2 E h dt 2 + K h E h = 0
, where M h and K h are the mass and stiffness matrices in V h . According to the decomposition of V h between transverse and longitudinal fields, the mass matrix M h has the following block diagonal form

(4.6) M h = M T h 0 0 M 3 h ,
and, in particular, thanks to the numerical quadrature, M T h (resp. M 3 h ) is block diagonal by sections. The numerical quadrature corresponds to a weighted trapezoidal rule, which is fundamental to the efficiency of our method (partial lumping) (for more details see Remark 2.1 in [START_REF] Beni Hamad | An efficient numerical method for time domain electromagnetic wave propagation in co-axial cables[END_REF].) On the other hand, the stiffness matrix K h can be written, according to (4.2), as (4.7)

K h = K 3,h + δ -2 K T,h δ -1 C 3T,h δ -1 C * 3T,h δ -2 K T,h .
We used bold (normal) letters when they apply to transverse (longitudinal) fields. The index • T means that only transverse derivatives are involved while the index • 3 means that only x 3 -derivatives are involved. Oppositely C 3T,h couples the transverse and longitudinal fields and mixes the x 3 and transverse derivatives.

The method uses a tricky decomposition of the stiffness matrix

K h = K i h + K e h where K i h = δ -2 K T,h 0 0 δ -2 K T,h and K e h = K 3,h δ -1 C 3T,h δ -1 C * 3T,h 0 .
The interest of the decomposition lies in the following double observation:

• K i h is adapted to implicit time discretization since the matrix is positive and thanks to x 3 quadrature, block diagonal by section, thus easy to invert.

• K e h is adapted to explicit time discretization since it corresponds to the discretization of the differential operators in the x 3 direction: this matrix couples all the interfaces and has no sign.

As a consequence, we propose the following scheme (4.8)

     M h E n+1 h -2 E n h + E n-1 h ∆t 2 + K e h E n h + K i h {E n h } θ = 0, {E n h } θ := θ E n+1 h + (1 -2θ) E n h + θ E n-1 h .
It was show in [START_REF] Beni Hamad | An efficient numerical method for time domain electromagnetic wave propagation in co-axial cables[END_REF] (Theorem 2.3) that discrete scheme (4.8) is stable under θ > 1 4 and the following CFL condition (4.9)

c + ∆t h < 4θ -1 4θ .
where c + := sup(ε µ) -1 2 is the maximum velocity of the electromagnetic wave and is independant of δ.

5.

Numerical resolution of 1D effective telegrapher's model 5.1. Computation of effective coefficients. This preliminary step consists in computing an approximation of the coefficients C(x 3 ), L(x 3 ), κ e (x 3 ), η e (x 3 ), and χ e (x 3 ). To do so, one needs to solve for each x 3 the 2D elliptic problems (2.4) and (2.5) whose solutions are ϕ(ρ(x 3 )) and ψ(ρ(x 3 )), respectively. Since the cable is cylindrical, x 3 that plays the role of a parameter. We recall that, in the context of onion-like structure, one has ψ(ρ) = ψ that do not depends on x 3 .

The potentials ϕ(ρ(x 3 )) and ψ are first approximated as a result of a P 1 finite-elements approximation of the boundary value problems (2.4) and (2.5) with a triangular mesh of the cross section S with step-size h T ,

(ϕ h T (ρ)(•, x 3 ), ψ h T (ρ)(•, x 3 )) ∈ V 0,h T × V Γ,h T ,
where V 0,h T and V Γ,h T are the Galerkin approximation sub-spaces for H 1 0 (S) and respectively H 1 /R (S\Γ). Then C(x 3 ), L(x 3 ), κ e (x 3 ), η e (x 3 ), and χ e (x 3 ) are approximated by (5.1)

     C h T = ˆS ε|∇ϕ e,h T | 2 , L h T = ˆS µ|∇ψ µ,h T | 2 , κ h T = ˆS ε|ϕ e,h T -ϕ m,h T | 2 , η h T = ˆS ε|∂ x 3 ϕ e,h T | 2 , χ h T = ˆS ε(ϕ e -ϕ m )(∂ x 3 ϕ e ).
5.2. Resolution of the 1D evolution problem. In order to compare the 3D and 1D simulations, we will also write the 1D telegrapher's equations (2.3) in the second order formulation

(5.2) C δ,2 (x 3 , ∂ x 3 ) ∂ 2 t V δ,2 -∂ 2 x 3 L -1
V δ,2 = 0. 5.2.1. The semi-discretization in space. The semi-discretization in space of the 1D model (5.2) is done using 1D finite elements (for instance continuous P 1 ), and mass lumping with a uniform mesh of step-size h. The resulting algebraic problem takes the form

(5.3) M δ h d 2 V h dt 2 + K h V h = 0, where V h (t) = V j (t)
is the vector of degrees of freedom at time t for the semi-discrete voltage V h (t) ∈ H 1 (R) (the nodal values at the points jh), M δ h := M 0 h + δ 2 D h is the effective mass matrix and K h is the stiffness matrix. More precisely, one has

• M 0 h = diag m j > 0 is diagonal mass (like) matrice (divided by h for homogeneity) such that m j = C h T (jh), • K h := k i,j i,j∈Z is the stiffness (like) matrix, which is symmetric and positive, such that k i,j := ˆR L -1

h T ∂ x 3 u i ∂ x 3 u j ,
• D h := d i,j i,j∈Z is the dispersive matrix witch is symmetric and non-negative defined by

d i,j := ˆR η h T u i u j + ˆR κ h T ∂ x 3 u i ∂ x 3 u j + ˆR χ h T ∂ x 3 u i u j + ˆR χ h T u i ∂ x 3 u j .
where (u i ) i∈Z is the basis of

P 1,h := {u h ∈ C 0 (R) ∩ L 2 (R) | ∀ j ∈ Z, u h | [jh,(j+1)h] ∈ P 1 }.

5.2.2.

The time discretization. For the time discretization, one uses a leap-frog scheme with a constant time step ∆t

(5.4) M δ h V n+1 h -2 V n h + V n-1 h ∆t 2 + K h V n h = 0,
where V n h is the vector of degrees of freedom of V n h ∈ H 1 (R), an approximation of V h (n∆t). We use the same scheme for the discretization of the zero-order model (1.1) with δ = 0, i-e (5.5)

M 0 h V δ,0,n+1 h -2 V δ,0,n h + V δ,0,n-1 h ∆t 2 + K h V δ,0,n h = 0,
where V δ,0,n h is the vector of degrees of freedom of V δ,0 h ∈ H 1 (R) ( an approximation of V δ,0 h (n∆t)). In [START_REF] Beck | On a surprising instability result of Perfectly Matched Layers for Maxwell's equations in 3D media with diagonal anisotropy[END_REF], the ODE structure explained in the proof of theorem 2.1 is used to propose a scheme different from (5.4). Indeed, by inversion of C δ,2 , one can write equations as a conservative law with non-local flux. We have decided not to use this strategy since we want to use the same type of scheme for the second order model and the first order model. This is done with (5.4) and (5.5).

5.2.3.

Stability analysis of the fully discrete scheme.

Theorem 5.1. The numerical scheme (5.4) is L 2 -stable under the sufficient CFL condition

(5.6) c + h T ∆t h ≤ 1 + δ 2 inf x 3 ∈R (λ -/C h T ),
where c h T is the velocity of 1D waves such that, for all x 3 ∈ R (5.7)

c h T (x 3 ) = C h T (x 3 ) -1 2 L h T (x 3 ) -1 2 , c + h T := sup R c h T (x 3 ),
and λ -is the minimum of the eigenvalues of the matrix D h .

Note that when δ vanishes one has the usual CFL condition for the leap-frog scheme (5.5) adapted for the 1D waves (1.1).

Proof. We needs to introduce the factor (5.8)

α 2 h := sup u h ∈P 1,h ´R L -1 h T |∂ x 3 u h | 2 ¸R C h T |u h | 2 ,
where the notation ¸R f refers to a quadrature formula in x 3 . More precisely, for f ∈ C 0 R ∩ L 1 R , we set (5.9)

˛R f = h j f j+1 + f j 2 , f j = f (jh).
The proof is done in two steps using an energy approach.

Step 1: Lower bound on the dispersive matrix.

We first want to show that for U h ∈ P h,1 associated to the vector U h ∈ P 1 , D h satisfies (5.10)

D h U h , U h ≥ β -M 0 h U h , U h ,
where β -= inf

x 3 ∈R λ - C h T ≥ 0.
We shall introduce the notation •, • for inner products in P 1 ,

(5.11)

V h , V h := j∈Z V j • V j .
Let U h ∈ P h,1 associated to the vector U h ∈ P 1 , we have D h is a positive symmetric matrix, which allows us to deduce the following inequality

D h U h , U h ≥ λ -U h , U h ,
with, λ -≥ 0 is the minumum of the iegenvalue of the matrix D h . We define

β -:= inf x 3 ∈R λ - C h T ≥ 0.
We thus obtain

D h U h , U h ≥ β -M 0 h U h , U h .
Step 2: Discrete energy conservation.

We use this standard key identity :

V n h = {V n h } 1 4 -1 4 V n+1 h -2 V n h + V n-1 h with {V n h } θ := θ V n+1 h + (1 -2 θ) V n h + θ V n-1 h .
This allows us to rewrite our scheme as a perturbation of the 1 4 -scheme

M δ h (∆t) V n+1 h -2 V n h + V n-1 h ∆t 2 + K h {V n h } 1 4 = 0
where we have set (5.12)

M δ h (∆t) = M δ h -∆t 2 4 K h .
Taking the scalar product (in P 1 ) of the above equation with

V n+1 h -V n-1 h 2∆t
we classically deduce, thanks to the symmetry of all matrices, the conservation of the discrete energy

E n+ 1 2 h := 1 2 M δ h (∆t) V n+1 h -V n h ∆t , V n+1 h -V n h ∆t + K h V n+1 h + V n h 2 , V n+1 h + V n h 2 .
Step 1: Derivation of the sufficient stability condition (5.6).

This will be simply obtained from showing the positivity of the discrete energy E

n+ 1 2 h
, that amounts to the positivity of the modified mass matrix M δ h (∆t).

Since K h is positive, using (5.10) we have for any vector

U h ∈ P 1 (5.13) M δ h U h , U h ≥ 1 + δ 2 β -M 0 h U h , U h , where β -= inf x 3 ∈R (λ -/C h T ) ≥ 0.
We control the matrix K h with the help of the mass matrix M 0 h that appears in the lower bound (5.13). This is where the space step h will appear via α h . More precisely, let U h ∈ P h,1 be associated to the vector

U h ∈ P 1 , by definition of K h K h U h , U h = ˆΩ L -1 h T |∂ x 3 U| 2 .
By definition (5.8) of α h and since each function U h belongs to P 1,h , one has

K h U h , U h ≤ α 2 h ˛R |U h (x 3 )| 2 dx 3 , so that (5.14) K h U h , U h ≤ α 2 h M h U h , U h .
Joining (5.13) and (5.14) to definition (5.12) of M 0 h (∆t), we obtain (5.15)

M 0 h (∆t) U h , U h ≥ 1 + δ 2 β --α 2 h ∆t 2 4 M h U h , U h .
The stability condition is obtained by writing

(5.16) 1 + δ 2 β --α 2 h ∆t 2 4 
≥ 0.

In addition, for any u h ∈ P 1,h and by definition (5.7) of c + h T we obtain ˆR L -1

h T |u h | 2 ≤ (c + h T ) 2 ˆR C h T |u h | 2 .
We define :

(5.17)

C h T ,j+ 1 2 = 1 h ˆ(j+1)h jh C h T (x 3 ) dx 3 .
Since u h is piecewise constant, we have, with u j := u h (jh) and by definition (5.17

) of C h T ,j+ 1 2 , ˆR L -1 h T |u h | 2 ≤ (c + h T ) 2 j∈Z C h T ,j+ 1 2 u j+1 -u j h 2 . By |u j+1 -u j | 2 ≤ 2 |u j+1 | 2 + |u j | 2 , we deduce, (5.18) ˆR L -1 h T |u h | 2 ≤ 4 (c + h T ) 2 h 2 j∈Z C h T ,j+ 1 2 |u j | 2 + |u j+1 | 2 2 h = 4 (c + h T ) 2 h 2 ˛R C h T |u h | 2 .
Finally, using (5.16) and (5.18), we get the CFL condition (5.6).

5.3.

Reconstruction of the 3D electric field. Once the discrete voltage V n h (x 3 ) is computed, using the formula (2.22), one can reconstruct the rescaled 3D electric field at time n∆t as the P 1 -interpolant of the following transverse fields, defined for each j, namely, (5.19)

E n T (x T , jh) = V n h (jh) ∇ ϕ e (x T , jh) + δ 2 E n T,R (x T , jh). E n 3 (x T , (j + 1 2 )h) = δ (ϕ e (x T , jh) -ϕ m (x T , jh)) {V n h } j + δ V n h (jh) {ϕ e (x T , •)} j , where E n T,R (x T , jh) = V n h (jh) ∇ ξ 1 (x T , jh) + {V n h } j ∇ ξ 2 (x T , jh) + {{V n h }} j ∇ ξ 3 (x T , jh), with {{V n h }} j := V n h ((j + 1)h) -2 V n h (jh) + V n h ((j -1)h) h 2 and {V n h } j := V n h ((j + 1)h) -V n h ((j -1)h) 2h . 

Comparison between 3D and 1D calculations.

We notice that from definition (2.22) of field E δ,2 (x, t), one has

V δ,2 (x 3 , t) = C(x 3 ) -1 ˆS ε(•, x 3 ) E δ,2 T (•, x 3 , t) • ∇ ϕ e (•, x 3 ).
This suggests to define a 1D voltage V δ (x 3 , t) for the 3D problem as (6.1)

V δ (x 3 , t) = C(x 3 ) -1 ˆS ε(•, x 3 ) E δ T (•, x 3 , t) • ∇ ϕ e (•, x 3 ).
For the comparisons of the rescaled electric field, we can compare the 3D fields, E δ,2 (issued for 1D effective 1D model) with E δ (issued for 3D model). Or we can compare the 1D voltages, V δ,2 the solution of of the problem (5.2) with the voltage V δ obtained by post-processing the 3D solution E δ T .

We define the relative space-time error | • |, that we will use for the comparison between 3D and 1D calculations.

(6.2) | U 1D -U 3D | := sup t∈[0,T ] U 1D (t) -U 3D (t) L 2 ([0,L]) sup t∈[0,T ] U 3D (t) L 2 ([0,L]) ,
where T is the time of the simulations and L is the longitudinal size of the considered domain.

In the simulations of this paper, one takes T = 6 and L = 12. Concerning the characteristic coefficients of the model, we consider an heterogeneous onion-like structure cylindrical cable:

ε n (x T , x 3 ) = ε n p(x 3 ), and µ n (x T , x 3 ) = µ n p(x 3 ), with (ε n , µ n ) for n ∈ {1, 2, 3} are taken as follows, (6.3) (ε 1 , µ 1 ) = (2, 3), (ε 2 , µ 2 ) = (1, 2) and (ε 3 , µ 3 ) = (1, 1), and p can be seen as a perturbation in the longitidinal direction, in the numerical experiments, we shall take p(x 3 ) := (1 + 3 e -80 (x 3 -8) 2 ).

So that the velocity of electromagnetic waves, i-e c = (εµ) -1 2 , satisfies (6.4)

c(x 3 ) = p -1 (x 3 )/ √ 6 in S 1 × R, c(x 3 ) = p -1 (x 3 ) / √ 2 in S 2 × R, c(x 3 ) = p -1 (x 3 ) in S 3 × R,
and is in particular heterogeneous (we recall that the heterogeneity of the velocity of electromagnetic waves is essential to have a 1D dispersive model).

We also take initial conditions that are localized near x 3 = 6 and are well prepared with respect to the expected asymptotic result (5.19) . More precisely, H 0 (x T , x 3 ) = 0 and (6.5)

E 0 := F ∇ ϕ e + δ 2 F ∇ ξ 1 + (∂ x 3 F) ∇ ξ 2 + (∂ 2 x 3 F) ∇ ξ 3 δ (∂ x 3 F) (ϕ e -ϕ m )(x) + δ F ∂ x 3 ϕ e
where F(x 3 ) = e -π 2 (x 3 -6) 2 .

The time interval for the numerical experiments is [0, T ] with T = 6, so that, taking (6.4) into account, it implies that the waves will not reach the transverse boundaries x 3 = 0 and x 3 = 12 before the final time T . In other words, the periodic boundary conditions in x 3 will not play any role. If one considers longer final time such that the waves can reach the boundaries, then one cannot use periodic boundary condition. In that case, one needs to (artificially) bound the domain of computation. To do it, one can use perfectly matched layer (PML) techniques. More precisely, one encloses the computational domain with an absorbing layer. One perfectly matched layer is such an absorbing layer such that there is no reflexion at the interfaces between the layer and the domain of computation. It's easy to build such a PML for the 1D dispersive telegrapher's equations (2.3) if one considers κ e constant for |x| > L with L finite since (2.3) is similar to Boussinesq-Abbott equations for |x| > L. In [START_REF] Besse | Perfectly Matched Layers Methods for Mixed Hyperbolic Dispersive Equations[END_REF] a stable PML was proposed for Boussinesq-Abbott equations. However, we can not succeed to build a stable PML for the 3D Maxwell's equations (2.2) in the case of non-homogeneous velocity [8]. 6.2. Discretization parameters.

6.2.1. Data for the transverse discretization. The cross section S is meshed by a triangular mesh represented Figure 2. In particular, there are 40 mesh points along the cut Γ and the typical diameter of each triangle in the mesh is h T 0.04. This mesh is used for the 2D transverse problems (2.4) and (2.5) for computing the potentials (ϕ e , ϕ m , ψ m , ψ e ) and the coefficients C, L, κ e , η e , χ e but also for the 3D computations (4.8). 6.2.2. Data for the longitudinal discretization. One considers h = 0.06 for the longitudinal step size. This is well adapted to the discretization of the Gaussian F. This same longitudinal mesh is used for the discretization of the 1D problem (5.4) (cf. (5.2)) and for the 3D computations. As already said, the 3D computations are more restrictive in term of longitudinal step size. We use the same for performing comparaison between 1D and 3D simulations. 6.2.3. Data for the time discretization. For the comparison between the 1D and 3D results, we shall use the same time step ∆t for both 1D and 3D computations. The choice of ∆t will be constrained by the 3D condition (4.9) which is more restrictive than 1D condition (see theorem 5.1). For the 3D computations, we shall take θ = 1/3 in which case the CFL (4.9) becomes c + ∆t/h ≤ 1/2. In practice, we choose ∆t = 0.95 h/(2 c + ).

Numerical results

7.1. The potentials. We show in Figure 3 the computed potentials ϕ e and ψ m in the first cable section. The right picture shows at the same time the level lines of ϕ e (which are "parallel" to the boundaries) and the ones of ψ m (which intersect the boundaries). This illustrates remark 2.3. Figure 4 shows (ψ e -ψ m ) and (ϕ e -ϕ m ). The numerical results proves that κ e > 0 and values δ. The solution V δ,2 (x 3 , T ) is in red while V δ (x 3 , T ) is in blue. Numerical results confirm that the approximation of V δ (x 3 , t) by V δ,2 (x 3 , t) improves with the decrease of δ. We observe that V δ,2 and V δ already almost coincide for δ = 0.05. It is also important to note that the main effect of local perturbations p is the appearance of reflection phenomena. 1. The order of convergence of the voltages according to δ.

7.5.

Error between 3D and 1D models: order of convergence. In Figure 10, we showin red-the relative error between the voltage V δ obtained by the 3D computations with the voltage V δ,2 of the second-order 1D model (5.2) for different values of δ and at a final time T . On the same figure we display -in blue-the relative error between the electric voltage V δ obtained by the 3D computations with the solution voltage of the 1D limit model V δ,0 (is the solution of (5.2) when δ = 0).

The numerical results obtained in in Table 1 show that the second-order model is better approximation with respect to δ than the limit model (δ = 0). More precisely, its convergence is of order 2, whereas the convergence of the limit model is of order 1. In the figure 11, we show -in red-the relative error between E δ and E δ,2 , and -in blue-the relative error between E δ and E 0 , for different values of δ at a final time T = 6. As for the electrical voltage, the simulations show that the second order is a better approximation with respect to δ. The error between the 2. The order of convergence of the 3D electric field according to δ. electric field solution of the 3D Maxwell equations and the reconstruction of the electric field from the second order model is of order O(δ 2 ) whereas, one gets only O(δ) for the limit model.

Conclusions

We have presented a second order effective 1D model that take into account dispersive effects. We also have developed a stable numerical scheme for its space-time discretisation. Finally, we have carried out and performed the validation of this new effective model by comparing its results with those obtained for the 3D Maxwell's model for small values of δ. Our numerical results illustrate the interest of this new dispersive 1D model compared to the usual one. However, it is important to note that all the results obtained in this paper are only valid for cylindrical coaxial cables. For this reason, it will be interesting to study the extension of these ideas to the case of non-cylindrical coaxial cables.
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 1 Figure 1. Two types of degrees of freedom.
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 12 Figure 2. Left: the domain Ω, right: the section S of the domain. Each color corresponds to a different material.
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 3 Figure 3. Potentials ϕ e (left) and ψ m (center), associated isolines (right).
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 45 Figure 4. Left : the potential ψ e -ψ m . Right : the potential ϕ e -ϕ m .
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 3 Comparison of the transverse electric fields. In Figure6and Figure7, we represent for different values of δ respectively the Euclidean norms | E δ T | and | E δ,2 T | at final time T = 6 on the boundary ∂Ω. We observe that the result obtained with δ = 0.075 cannot be distinguished from the one obtained with the 1D model ( E δ,2 T ), while a substantial difference exists for δ = 0.15.
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 9 Figure 9. E δ,2 3 with δ = 0.15, δ = 0.1, δ = 0.075, δ = 0.05 at T = 6.

Figure 10 .

 10 Figure 10. In blue | V δ -V δ,0 | and in red | V δ -V δ,2 |, for T = 6. (On the "loglog" scale).

Figure 11 .

 11 Figure 11. In blue | E δ -E 0 | and in red | E δ -E δ,2 |, for T = 6. (On the "loglog" scale).δ| E δ -E δ,2 | Order of convergence | E δ -E δ,0 | Order of convergence 0.15 0.033 0.035 0.1 0.018 2.13 0.023 1.21 0.075 0.011 0.017 0.05 0.003 0.009 Table2. The order of convergence of the 3D electric field according to δ.

As found in the 1D results, we also observe that the electric wave is reflected because of the perturbation p localized at x 3 = 8. 3 . We observe that the two longitudinal fields tend to 0 when δ tends to 0. On the other hand, for δ = 0.15 we see that these fields are really non transversely polarized.