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project-team), ENS Rennes - École normale supérieure, Rennes, France.

2 INRIA Paris, 2 Rue Simone Iff, 75012 Paris. CERMICS, Ecole des Ponts, 77455
Marne-la-Vallée, France.

* Correspondence: geoffrey.a.beck@inria.fr.

Abstract: This work deals with wave propagation into a coaxial cable, which can be modelled
by the 3D Maxwell equations or 1D simplified models. The usual one, called the telegrapher’s
model, is a 1D wave equation on the electrical voltage and current. We derived a more accurate
model from the Maxwell equations that takes into account dispersive effects. These two models
aim to be a good approximation of the 3D electromagnetic fields in the case where the thinness
of the cable is small. We perform some numerical simulations of the 3D Maxwell equations and
of the 1D simplified models in order to validate the usual model and the new one. Moreover,
we show that while the usual telegrapher model is of order one with respect to the thinness of
the cable, the dispersive 1D model is of order two.

Keywords: Coaxial cables, Maxwell’s equations, Telegrapher’s models, Finite elements,
Numerical simulations, Asymptotic analysis, Model’s derivation.
Mathematics Subject Classification: 35, 65, 68

1. Introduction and motivation

An electrical cable is a structure whose transverse dimensions are smaller than the longi-
tudinal one. In particular, a co-axial cable is a dielectric material that surrounds a metallic
inner-wires and is surrounded by a metallic shield. A dielectric material is characterised by
its dielectric permittivity ε and its magnetic permeability µ. The study of the propagation of
electromagnetic waves along such a cable is an important issue in many industrial applications
such as wire troubleshooting. See [2] for a general review of wire troubleshooting, [1] for the
detection of soft fault diagnosis in a simplified transmission line and [4] for reconstruction of
the underline graph of an unknown network. The simplest way to models a coaxial cable is to
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consider a 1D model called telegrapher model which deals with the propagation of the voltage
Vδ,0 and the current Iδ,0 along infinitesimal LC quadripoles:{

C(z) ∂tVδ,0(t, z) + ∂z Iδ,0(t, z) = 0,
L(z) ∂tIδ,0(t, z) + ∂z Vδ,0(t, z) = 0,

(1.1)

The variable z represents the longitudinal variable of the cable, C to the capacitance and L to
the inductance. However, the real propagation of electromagnetic waves is governed by the 3D
Maxwell equations. Solving 3D Maxwell’s equation is a not a trivial task: complex geometry
due to defaults, 3D mesh for the thin cable... Indeed, performing such 3D simulations when the
cable is thin can be a numerical challenge. One of computational difficulties comes from the
fact that the transversale scale of the mesh must be small compared to the thickness of the cable
δ whereas the longitudinal scale of the mesh must be small in regard to the typical wavelength
of input. The practical regime

δ � (typical wavelength)

implies that

(transversale scale of the mesh) � (longitudinal scale of the mesh).

In [9], we use an anisotropic prismatic spatial mesh and a hybrid implicit-explicit scheme for
the time discretization to tackle this difficulty. However, the simulations stay costly all the more
so as engineers are not usually interested in the full electromagnetic fields but in the electrical
voltage and current that are 1D quantities. In order to overcome these issues, the first author
derived several 1D simplified models by performing asymptotic analysis of the 3D Maxwell
equations as the thinness of the cable tends to zero [3]. In this asymptotic analysis, we have
assumed that the electromagnetic fields can be expand in powers of δwhere δ is the thinness pa-
rameter. The usual telegrapher model (1.1) can be obtained by considering the limit δ→ 0 (see
[5], [13]). Moreover, this derivation gives an explicit way to compute the effective inductance
L(z) and the effective capacitance C(z) at each point z from the geometry of the cross-section at
the point z and the characteristic of the dielectric material. Unfortunately, this model cannot be
used for fine wire troubleshooting since it’s blind from some geometrical defaults and neglects
some dispersive effects that are measured in practical experiments. Indeed, the coefficients L
and C are invariant under conformal mapping, that is to say that for two sections linked through
a conformal map, L and C are the same. We expect a 1D that take into account all the geomet-
rical defaults, or at least crushing. It requires further analysis so as to have a model that is as
exhaustive as necessary. A more accurate model was derived in chapter 5 of [3] by considering
the second order terms in the asymptotic expansion. In that case the electrical capacitance C
and inductance L become spatial differential operators. More precisely, (1.1) must be replaced
by {

Cδ,2(z, ∂z) ∂tVδ,2(t, z) + ∂x Iδ,2(t, z) = 0,
Lδ,2(z, ∂z) ∂tIδ,2(t, z) + ∂x Vδ,2(t, z) = 0.

(1.2)

In the particular case where the permittivity and the permeability do not depend on the longi-
tudinal variable z, the capacitance and inductance operators are second order elliptic operators
given by

Cδ,2(z, ∂z) = C
(
1 − δ2κe∂

2
z

)
and Lδ,2(z, ∂z) = L

(
1 − δ2κm∂

2
z

)
,
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where κe and κm are computed from the geometry of the cross-section at point z and the char-
acteristic of the dielectric material. Note that when κe and κm are constants, one finds the
equations of the linear ABCD-Boussinesq’s model of shallow water-wave propagation (see
[11]). We could not find any case in the classical literature on coaxial cables [17] where our
new effective coefficients are introduced. This is because in the aforementioned literature the
standard telegrapher’s model is only valid for cylindrical cables with constant permittivity and
permeability. In fact, under these hypothesis, our new effective coefficients κe and κm vanish.
The coefficient κe cannot vanish in the case where

• the cable is made of cylindrical, concentric, different layers of homogenous dielectric
material, known as onion’s like structure (from now on),
• the celerity of electromagnetic waves is not homogeneous.

In that case, the dispersion effect due to Cδ,2 cannot be neglected. From 1D models, one can
reconstruct electromagnetic fields which explicit formulae in order to make some comparisons
with the 3D Maxwell equations. In particular we will see that the usual Transverse Electro-
Magnetic (TEM) hypothesis is no longer true. This hypothesis states that the electric (and
magnetic) field lines are all restricted to normal directions to the direction of propagation. This
is widely used to justify 1D models in the classical literature [17]. The two 1D models (1.1)
and (1.2) have been justified from a mathematical point of view by error estimates in [3], but
there is no numerical validation of their accuracy. To do so, we will perform 3D simulations.
For the moment, we can only solve the 3D problem in the cylindrical case. This why, we will
only consider cylindrical cables in this paper.
The aims of the paper is threefold:

1. We will present the second order 1D model as well as the way to calculate the character-
istic coefficients involved in the equations.

2. We will give a formal derivation of this second order model in the context of onion-like
structure.

3. We perform numerical comparaisons between 1D model and 3D maxwell’s theory in a
periodic domain. More precisely we aim to show that

||(3D model) − (1D model (1.2))||L∞t L2
x

||(3D model)||L∞t L2
x

≈ δ2.

Note that, in this paper, we will assume that the inner-wire and the shield are perfect conducting
materials. That is to say the electromagnetic waves are confined in the dielectric part of the
cable so that we have neglected the skin-effect. See [6] for the derivation of the resistance from
the skin-effect in the 1D model.

Notations The usual Sobolev spaces are denoted by Hr and H1
/R refers to Sobolev space with

null average, i-e

H1
/R(S ) := {u ∈ H1(S ) |

ˆ
S

u = 0}.
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2. 3D and 1D models of waves propagation in a co-axial cable

A cylindrical co-axial cable is a waveguide

Ω = S × R

such that all cross sections S × {x3} are the equal, and such that each cross section has one
inner-hole O with non-null area and is included in a bounded disk B of R2. Therefore, the
domain S has une consequence a boundary made of two connected parts

∂−S := ∂S ∩ O and ∂+S := ∂S ∩ ∂(B/S )

that assume to be Lipschtiz continuous. The boundary ∂−S is usually called the inner boundary
whereas ∂+S is usually called the outer boundary. The cable Ω is made of a dielectric material
characterised by the electric permittivity and magnetic permeability

ε : Ω→ R and µ : Ω→ R

that are piecewise regular bounded positive functions.

2.1. Wave propagation in a thin co-axial cable

A thin co-axial cable Ωδ is a co-axial cable Ω on which we apply a transverse scaling

Gδ : B × R → B × R

(xT , x3) 7→ (δxT , x3)
(2.1)

parametrized by a small parameter δ � 1 which refers to the thinness of the cable. More
precisely one has

Ωδ = Gδ(Ω).

Moreover the characteristic coefficients of the thin cable Ωδ are obtained from the reference
cable Ω by ρδ = ρ ◦ G−1

δ where ρ = ε, µ. The notation x3 ∈ R will always refer to the longi-
tudinal variable whereas xT = (x1, x2) ∈ R2 will always refer to the transverse variables. The
propagation of electromagnetic waves along the thin cable is described by the electromagnetic
fields

(Eδ,Hδ) : Ωδ → R3

which solve the 3D Maxwell equations
εδ∂tEδ − ∇(xT ,x3) × Hδ = 0 in Ωδ

µδ∂tHδ + ∇(xT ,x3) × Eδ = 0 in Ωδ

Eδ × n = 0 at ∂Ω

(2.2)

with initial conditions
Eδ
|t=0 = Eδ

0 and Hδ
|t=0 = 0.

where ∇(xT ,x3)× stands for the usual 3D curl operator. Note that we have made the three follow-
ing simplifications:
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1. (Dielectric conductivity) We assume that there is no loss in the dielectric material. If
we want to take it into account, we shall consider εδ∂tEδ + σδEδ − ∇(xT ,x3) × Hδ instead
of εδ∂tEδ − ∇(xT ,x3) × Hδ where σδ is the electrical conductivity. For practical cable,
this conductivity is very small, i-e at order O(δ2). However, if the cable is wetted the
conductivity could be of order O(1). This work was conducted in [5] when the δ2 are
neglected.

2. (Metallic conductivity) The boundary condition Eδ×n = 0 means that we have considered
the inner-wire and the metallic shields as perfect conducting materials. A more realistic
model should consider highly conductive material instead of perfect conducting material.
See [6] where the δ2 terms are neglected.

3. (Easy data) The hypothesis on the initial conditions are not necessary, they are just given
for sake of simplicity. One could consider general initial condition.

4. (Sole inner-wire) We consider only one inner hole O. The case of several inner wires is
treated in [5].

To compare with practical experiments, one can extract the voltage Vδ(x3, t) and the current
Iδ(x3, t) from the electromagnetic fields. The way to extract it will be detailed in (6.1). Given the
difficulty in solving the Maxwell equation, one can consider a 1D model of wave propagation.
In this model, the unkowns are not the electromagnetic fields but the voltage Vδ,2(x3, t) and the
current Iδ,2(x3, t) which solve the following telegrapher’s equations

Cδ,2(x3, ∂x3) ∂tVδ,2 + ∂3 Iδ,2 = 0,

Lδ,2(x3, ∂x3) ∂tIδ,2 + ∂3 Vδ,2 = 0.
(2.3)

Here the generalised capacitance Cδ,2 and inductance Lδ,2 operators are differential operators
that will be defined later. Let us note some consequences of the four simplifications we made:

1. (Dielectric conductivity) If there is electrical conductivity at order O(1) then we shall
consider Cδ,2(x3, ∂x3 , ∂t) ∂tVδ,2 + GVδ,2 + K ∗t Vδ,2 instead of Cδ,2(x3, ∂x3) ∂tVδ,2 in the first
equation of (2.3). The operator Cδ,2(x3, ∂x3 , ∂t) becomes non-local in time but the expres-
sion is not nice. These are described in Fourier frequency space in chapter 5 of [3].

2. (Metallic conductivity) Considering highly conductive material instead of perfect perfect
conducting material leads to changing Lδ(x3, ∂x3) ∂tIδ,2 by Lδ(x3, ∂x3) ∂tIδ,2 + δR∂1/2

t Iδ,2 −
δ2LskIδ,2 where the resistance R is described in [6], the fractional derivative ∂1/2

t stands for
the Fourier multiplier associated to

√
iω in Fourier frequency space and the coefficient Lsk

is described in chapter 7 of [3] (see theorem 7.5.2).
3. (Easy data) If we consider general initial condition, we need to add a source term in the

1D model (see chapter 5 of [3]).
4. (Sole inner-wire) If we consider several inner wires, then the electrical voltage and current

become vectors whose dimension coincide with the number of inner wires.

With the electrical voltage Vδ,2 and current Iδ,2 one can reconstruct an approximation
(Eδ,2,Hδ,2) of the electromagnetic field (Eδ,Hδ) (see section 2.4). Note that if we formally
take δ = 0 into (2.3) one has the usual telegrapher equations (1.1) whose solutions are denoted
by Vδ,0 and Iδ,0. One can also reconstruct an approximation (Eδ,0,Hδ,0) of the electromagnetic
field (Eδ,Hδ) from Vδ,0 and Iδ,0. In [3], some error estimates are proved. Our aim is to illustrate
it with numerical simulations (see tables 1 and ??).
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Main result 1. Numerical simulations of (2.2), (1.1) and (2.3) illustrate that

||Vδ − Vδ,2||L∞t L2
x

||Vδ||L∞t L2
x

≈ δ2 and
||Eδ − Eδ,2||L∞t L2

x

||Eδ||L∞t L2
x

≈ δ2,

whereas
||Vδ − Vδ,0||L∞t L2

x

||Vδ||L∞t L2
x

≈ δ and
||Eδ − Eδ,0||L∞t L2

x

||Eδ||L∞t L2
x

≈ δ.

Finally, our results justify the use of 1D models instead of the full 3D Maxwell equations.
Moreover, they also justify the preference for the second order 1D model (2.3) instead of the
usual one (1.1).

2.2. Harmonic potential and description of the effective capacitance and inductance

To define the generalised capacitance and inductance operators, one needs to introduce the
harmonic potentials

ϕ(ρ), ψ(ρ) ∈ H1(S )

which are the solutions of the following elliptic equations in the reference geometry
div

(
ρ∇ϕ(ρ)

)
= 0, in S ,

ϕ(ρ) = 1, at ∂−S
ϕ(ρ) = 0, at ∂+S ,

(2.4)

and 
div

(
ρ∇ψ(ρ)

)
= 0 in S/Γ,

∂nψ(ρ) = 0, at ∂S ,

[ϕ(ρ)]Γ = 1, [ρ∂nϕ(ρ)]Γ = 0, through Γ,´
S ψ(ρ) = 0,

(2.5)

where

• the differential operator ∇ and div refer to usual 2D gradient and divergence operators on
the cross-section S ,
• the artificial cut Γ is any artificial 1D curve which links the inner Σ

1
2 to the outer ΣN+ 1

2

boundaries, and [·]Γ the jump through the cut. Even if we can take any cut, we choose
Γ := S ∩ e1 where e1 is the abscissa axis. Since the gradient of ψ(ρ) has null jump through
the cut we can extend ∇ψ(ρ) on S. Then, if the harmonic potential ψ(ρ) depends on the
artificial cut, its gradient does not. This is why we say that Γ is artificial. This property
can be seen in the fundamental example of the case where the cross section is a circular
annulus and ρ is radial. Indeed, in that case one has in polar coordinate system (r, θ)

ψ(ρ) = 1 −
θ

2π
and ∇ψ(ρ) = −

1
2πr

eθ. (2.6)

Firstly, note that neither ψ(ρ) nor ∇ψ(ρ) depend on the weight.
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We call them harmonic potentials since they span the harmonic spaces

E(ρ) :=
{
E ∈ L2(S )3

∣∣∣ div (ρ E) = 0 , rot E = 0 and E × n|∂S = 0
}

= span{∇ϕ(ρ)}, (2.7)

and

H(ρ) :=
{
H ∈ L2(S )3

∣∣∣ div (ρH) = 0 , rot H = 0 and H · n|∂S = 0
}

= span{∇ψ(ρ)}, (2.8)

where
div T = ∂1T1 + ∂2T2, rot T = ∂1T2 − ∂2T1 for 2D fields T : S → R2, (2.9)

and

T · n := T1 n1 + T2 n2, T × n := T1 n2 − T2 n1 for 2D fields T : S → R2. (2.10)

This two harmonic potentials are conjugated in the sense that they satisfy the Cauchy-
Riemann-like relationsρ∇ϕ(ρ) = C(ρ)∇⊥ψ(ρ−1)

ρ∇ψ(ρ) = −L(ρ)∇⊥ϕ(ρ−1)
with

C(ρ) =
´

S ρ|∇ϕ(ρ)|2

L(ρ) =
´

S ρ|∇ψ(ρ)|2
(2.11)

where the 2D vectorial rotational ∇⊥ stands for

∇⊥ = (∂x2 ,−∂x1).

We will use extensively this conjugation relation.

We can take as weight ρ the electric permittivity (respect. the magnetic permeability) which
yields an harmonic potential ϕe of electrostatic type (respect. ψm of magneto-static type) and
its conjugated potential ψe (respect. ϕm). More precisely, one has

ϕe = ϕ(ε), ψm = ψ(µ), ψe = ψ(ε−1) and ϕm = ϕ(µ−).

We also define the oscillating part

ψ̃m = ψm −

´
S µψm´

S µ
and ψ̃e = ψe −

´
S µψe´

S µ
.

Definition 2.1. The capacitance and inductance coefficients are defined by

C(x3) := C(ε(x3)) and L(x3) := L(µ(x3)).

The effective capacitance and inductance operators are defined by the bilinear formˆ
Rx3

(Cδ,2V) U =

ˆ
Rx3

CV U + δ2
ˆ

Ω

ε
(
(∂x3ϕe)V + (ϕe − ϕm)∂x3V

)(
(∂x3ϕe)U + (ϕe − ϕm)∂x3U

)
for all V,U ∈ H1 andˆ

Rx3

(Lδ,2I) J =

ˆ
Rx3

LI J + δ2
ˆ

Ω

µ
(
(∂x3ψ̃m)I + (ψ̃m − ψ̃e)∂x3 I

)(
(∂x3ϕ̃e)J + (ϕ̃e − ϕ̃m)∂x3 J

)
for all I, J ∈ H1.
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First, we notice that the definitions of effective capacitance and inductance operators are
still valid when there is variable cross-section, i.e. the cable is not cylindrical. In that case,
∂x3ϕe must be interpreted as the eulerian shape derivative ϕe with respect to the variation of the
shape of each cross-section. In that case, one needs to assume that the cross-sections are more
regular than Lipschitz continuous. We refer the readers to [12] for the definition of eulerian
shape derivative. The explicit computation of ∂x3ϕe is given in proposition 4.1.4 in [3].

In the particular case where the permittivity and the permeability satisfy the following prop-
erty

ε(xT , x3) = εT (xT )ε3(x3) and µ(xT , x3) = µT (xT )µ3(x3),

the capacitance and inductance operators are second order elliptic operators given by

Cδ,2(x3, ∂x3)· = C(x3) − δ2∂x
(
κe(x3)∂x3 ·

)
and Lδ,2(x3, ∂x3)· = L(x3) − δ2∂x

(
κm(x3)∂x3 ·

)
where

κe :=
ˆ

S
ε|ϕe − ϕm|

2 and κm :=
ˆ

S
µ|ψ̃m − ψ̃e|

2 (2.12)

are constants. In that case one gets ∂x3ϕe = 0 and ∂x3ψ̃m = 0. The new coefficients κe and
κm, are respectively the electric and magnetic dispersion coefficients. If the electromagnetic
wave velocity c = 1/

√
εµ is constant, then the dispersion coefficients κe and κm are null.

Indeed ϕe = ϕm and ψe = ψm (as a consequence of the conjugation relationship (2.11)). In
the following we shall be interested in cables for which dispersion occurs. One important
class of dispersive media is provided by cables whose internal structure is made of finitely
many materials structured in an onion-like manner. By this we mean that the coefficients
are piecewise constant in successive concentric layers. This is the topic of following subsection.

First of all, we want to underline that, under suitable geometric assumptions, the capacitance
C and the inductance L are bounded above and below. Indeed, in the case of a circular annulus
of inner radius r− and outer radius r+ and constant permittivity and permeability, one gets C =

ε2π/ ln(r+/r−) and L = µ ln(r+/r−)/(2π). In more general cases, see the following proposition.

Proposition 2.1. (i) Suppose that the hole O has a positive area |O|, then

min(ε)C− ≤ C and L ≤ max(µ)C−1
−

where C− := λD|O| > 0 and λD denotes the lowest eigenvalue for the Dirichlet problem
associated to the Laplace operator in the domain S ∪ O.

(ii) Suppose that there exists an ellipse E− with semi-major axis a− and semi-minor axis b−
that surround the hole O without touching the exterior boundary. We denote by

C+ :=
2π

ln
(
1 + d∗+b+−b−

a−+b−

) < +∞

where
d∗ := dist(E−, ∂+S ) + (D − a−) and b+ :=

√
2a−d∗ + d2

∗ + b2
−
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with D is the distance between the center of the ellipse E− and the point of E− which is the
closed to the exterior boundary. One gets

C ≤ max(ε)C+ and min(µ)C−1
+ ≤ L.

Proof. (i) This is a consequence of lemma 5.3 of [5]. (ii) For the higher bound of C, we need
to remark that the elliptic annulus E∗ of inner (resp. outer) ellipse E− (resp. outer ellipse E+)
characterized by semi-major axis a− (resp. a+ := a− + d∗), semi-minor axis b− (resp. b+ :=√

2a−d∗ + d2
∗ + b2

−) is included in S. Thus, by the Dirichlet principle, we have C ≤ max(ε)Cap∗

where Cap∗ =
´
E∗
|∇ϕ∗| is the capacity of the potential ϕ∗ solution of

∆ϕ∗ = 0 in E∗,
ϕ∗ = 1 on E−,
ϕ∗ = 0 on E+.

Since E− and E+ have the same focal c =
√

a2
− − b2

− =
√

a2
+ − b2

+, the Joukowsky transform

xT 7→
1
2

x1(1 + c2

|xT |2
)

x2(1 − c2

|xT |2
)


maps conformally E∗ to the circular annulus of inner radius (a−+b−) and outer radius (a+ +b+).
Thus, since the capacity is invariant by conformal mapping, we have

Cap∗ =
2π

ln
(
1 + d∗+b+−b−

a−+b−

)
which concludes the proof for the higher bound of C. The lower bound of L is a consequence
of conjugation relationship (2.11). �

It was shown in [5] that the capacitance C and the inductance L become positive-definite
matrices when we consider several inner wires.

Remark 2.1. This proposition implies that the effective capacitance and inductance operators
are non-negative:
ˆ
Rx3

(Cδ,2U) U ≥ min(ε)C−||U ||L2 and
ˆ
Rx3

(Lδ,2U) U ≥ min(µ)C−1
+ ||U ||L2 ∀U ∈ L2(R).

We can do better by showing that the operators are in fact coercive on appropriate spaces.

Proposition 2.2. One has for all V,U ∈ H1(R)
ˆ
Rx3

(Cδ,2V) U =

ˆ
Rx3

[
C + δ2(ηe − ∂x3χe)

]
V U + δ2

ˆ
Rx3

κe∂x3V ∂x3U (2.13)

where

κe :=
ˆ

S
ε|ϕe − ϕm|

2 , ηe :=
ˆ

S
ε|∂x3ϕe|

2 and χe :=
ˆ

S
ε (ϕe − ϕm)(∂x3ϕe).

9



Proof. For all V,U ∈ H1(R), one gets
ˆ
Rx3

(Cδ,2V) U =

ˆ
Rx3

(C + δ2ηe)V U + δ2
ˆ
Rx3

κe∂x3V ∂x3U

+

ˆ
Ω

ε(∂x3ϕe)(ϕe − ϕm)V∂x3U +

ˆ
Ω

ε(∂x3ϕe)(ϕe − ϕm)U∂x3V.

By integration by parts with respect to the longitudinal variable x3, one has
ˆ

Ω

ε(∂x3ϕe)(ϕe − ϕm)V∂x3U = −

ˆ
Ω

ε(∂x3ϕe)(ϕe − ϕm)∂x3V U −
ˆ

Ω

∂x3

[
ε(∂x3ϕe)(ϕe − ϕm)

]
V U.

and thus we have the expected formula. �

Remark 2.2. In order to show that Cδ,2 is a coercive operator from H1(R) to H1(R), one needs
to assume that C + δ2(ηe − ∂x3χe) ≥ 0 (which is in accordance with the smallness of δ) and
to show that κe don’t degenerate. As we will see later, this is indeed the case in the onion-like
structure.

2.3. Simplification in onion-like structure

We will assume that our cable has an onion-like structure whenever

• the cross-section S is made of N concentric layers S n such that

S =

N⋃
n=1

S n and S n ∩ S m = ∅ for n , m (2.14)

and such that 
(inner boundary) Σ

1
2
x3 := ∂−S ,

(layers separations) Σ
n+ 1

2
x3 := ∂S n ∩ ∂S n+1 for 1 < n < N,

(outer boundary) Σ
N+ 1

2
x3 := ∂+S ,

are 1D regular loops with non null perimeter that surround the inner-hole and never touch
each other,
• for any x3 ∈ R, the electric permittivity ε(xT , x3) and magnetic permeability µ(xT , x3), are

are transversely piecewise constant according to the partition (2.14), i.e. for any x3

there exist positive bounded coefficients (εn(x3), µn(x3)) such that

ε(xT , x3) = εn(x3), µ(xT , x3) = µn(x3) for xT ∈ S n, 1 ≤ n ≤ N. (2.15)

We want to show that under appropriate hypotheses, the effective telegrapher’s equation
(2.3) is well-posed and deals with dispersive media.

Hypothesis 2.1. (H1) The cable Ω has the onion-like structure as describe above.
(H2) The celerity c = 1/

√
εµ is not constant with respect to the transversal coordinate.

(H3) The hole O has a positive area and there exists an ellipse that surround the hole O without
touching the exterior boundary.
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(H4) The functions x3 7→ εn(x3) and x3 7→ µn(x3) are bounded, regular, positive and have
non-null minima.

The main result of this section is the following:

Theorem 2.1. Assume hypotheses 2.1 and that the parameter δ is small enough such that
C + δ2(ηe − ∂x3χe) ≥ 0. Let r ≥ 0 a real number, and let (Iδ,20 ,Vδ,2

0 ) ∈ Hr(R) × Hr+1(R) be initial
conditions. Then the problem (2.3) is globally well-posed in C∞(R+,Hr(R) × Hr+1(R)).

The dispersion plays a significant role. On the one hand, if the dispersion is neglected
(δ = 0), then (2.3) becomes the usual wave equation. Then, accordingly to usual Lummer-
Phillips theorem, the solution has the following regularity

r⋂
s=0

C s(R+,Hr−s(R) × Hr+1−s(R)
)

if the initial condition lies in Hr(R) × Hr+1(R). To gain one temporal regularity, one must
pay one spatial derivative. On the other hand, when there is dispersion, the solution has the
following regularity

C∞
(
R+,Hr(R) × Hr+1(R)

)
.

To prove theorem 2.1, one needs to introduce a mapping that lets us work in the simplest
geometry, which is a circular annulus. We denote by vn the volume of each layer S n and by 2r∗
the diameter of S . We construct a piecewise preserving volume elements mapping

Tv : S → B(0, r∗) (2.16)

such that the restrictions T n
v := Tv

∣∣∣∣
S n

transform each layer S n into an annulus Cn :=

C(rn− 1
2 , rn+ 1

2 ) where the radii are finding through this inductionrN+ 1
2 = r∗

rn−1+ 1
2 =

√
rn+ 1

2 − v
n

π
.

These annuli Cn are constructed such that area(S n)=area(Cn).

Proposition 2.3. In the onion-like structure, one gets

ψm = ψe = ψ̃m = ψ̃e = ψ

where ψ is the solution of the harmonic problem
∆ψ = 0 in S/Γ,

∂nψ = 0 on ∂S ,

[ψ]Γ = 1, [∂nψ]Γ = 0 on Γ,´
S ψ = 0.

11



Proof. We denote by
ψ̂ := ψ(µ ◦ Tv,TvS )

the solution of 
∆ ψ̂ = 0 in Cn/Γ,

∂nψ̂ = 0, at ∂S ,

[ψ̂]Γ = 1, [µψ̂]Γ = 0, through Γ,´
S ψ(ρ) = 0,

(2.17)

We remark that ψ̂ = (1 − θ
2π ) satisfy the system (2.17) which admit a unique solution. Conse-

quently, ψm depends only on the geometry and not on the permability µ. The same reasoning
holds for ψe. Moreover, one has

ˆ
Cn
µψ̂ =

ˆ
Cn
εψ̂ = 0.

Thus since Tv is a piecewise preserving volume elements mapping, one gets
ˆ

S
µψ =

ˆ
S
εψ = 0,

and therefore
ψ̃m = ψ̃e = ψ.

�

In particular, the effective inductance operator is just the inductance coefficient, namely

Lδ,2 = L.

Moreover, the conjugation relationship (2.11) becomesε∇ϕe = C ∇⊥ψ

µ∇ψ = −L∇⊥ϕm
(2.18)

Remark 2.3. The level set of ϕe and ϕm are always orthogonal to the level-set of ψ

∇ϕe · ∇ψ = ∇ϕm · ∇ψ = 0,

as illustrated in Figure 3.

This remark is a consequence of the previous proposition and the conjugation relation (2.11).
Indeed one has

∇ϕe · ∇ψ =
proposition 2.3

∇ϕe · ∇ψe =
(2.11)
−ε−1C−1 ∇ϕe · ∇

⊥ϕe = 0.

Proposition 2.4. Under hypotheses 2.1 and assuming C + δ2(ηe − ∂x3χe) ≥ 0, one has that for
all V ∈ H1(R)

2
ˆ
Rx3

(Cδ,2V) V ≥ min(ε)C−||V ||L2 + δ2κ0||∂x3V ||L2 ,

where C− > 0 is given in proposition (2.1) and κ0 := minx3 κe(x3) is a positive constant.
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Proof. Let V ∈ H1.

Step 1: Proposition 2.2 implies, together with C + δ2(ηe − ∂x3χe) ≥ 0,
ˆ
Rx3

(Cδ,2V) V ≥ δ2
ˆ
Rx3

κe|∂x3V |
2.

Then using proposition 2.1, one gets

2
ˆ
Rx3

(Cδ,2V) V ≥ min(ε)C−||V ||L2 + δ2
ˆ
Rx3

κe|∂x3V |
2.

Step 2: We show that there exits a positive constant κ0 such that

κe =

ˆ
S
ε|ϕe − ϕm|

2 > κ0 (2.19)

when c = 1/
√
εµ is not constant with respect to the transversal coordinate (hypothesis (H2)).

We notice that (2.19) is invariant under volume preserving maps. Thus we can work under
the easy geometry given by the transformation Tv. The harmonic potential satisfies (see step 3)

ϕ(ρ)
∣∣∣∣
TvS n

=
C(ρ)
2π ρn ln(r) + Bn(ρ) (2.20)

where the coefficients Bn(ρ) are given by the sequence

Bn+1(ρ) − Bn(ρ) =
C(ρ)
2π

(
1
ρn+1 −

1
ρn

)
ln(rn+ 1

2 )

with initialisation
B1 = 1 −

C(ρ)
2π ρ1 ln(r1− 1

2 )

is solution to (2.4) in the geometry. This will be shown in Step 3. After straightforward (but
tedious) calculations, one gets

ˆ
S
ε|ϕe − ϕm|

2 =

N∑
n=1

εn

[
1

4π2

(
C
εn −

µn

L

)2 (
rn+ 1

2 ln2 rn+ 1
2 − rn− 1

2 ln2 rn− 1
2
)

+
1
π

(
C
εn −

µn

L

) (
Bn(ε) − Bn(µ−1)

) (
rn+ 1

2 ln rn+ 1
2 − rn− 1

2 ln rn− 1
2
)

+
(
Bn(ε) − Bn(µ−1)

)2 (
rn+ 1

2 − rn− 1
2
) ]
,

which is null if and only if for all n
LC = εnµn.

Thus we conclude the desired inequality.

13



Step 3: (2.20) is indeed the solution of (2.4) in TvS .

The function
ϕ(ρ)

∣∣∣∣
TvS n

=
An(ρ)
ρn ln(r) + Bn(ρ)

satisfies ∆ϕ(ρ) = 0 on each layer TvS n. It remain to find the expression of An and Bn. Moreover
we have with the jump of the normal derivative at each rn+ 1

2

An+1(ρ) = An(ρ)

such that An(ρ) = A(ρ). Since

∇ϕ
∣∣∣∣
TvS n

=
An(ρ)
ρn

1
r

er and C(ρ) =

 1
2π

N∑
k=1

1
ρk ln

rk+ 1
2

rk− 1
2

−1

we deduce that
A(ρ) =

C(ρ)
2π

,

which is the expected expression. Taking the jump of ϕ(ρ) at rn+ 1
2 , we have

Bn+1(ρ) − Bn(ρ) +
C(ρ)
2π

(
1
ρn+1 −

1
ρn

)
ln(rn+ 1

2 )

Taking the value of ϕ(ρ) on the boundaries we have

A1(ρ) ln(r−) + B1(ρ) = 1, AN(ρ) ln(r+) + BN(ρ) = 0.

�

Proposition 2.4 with the Lax-Milgram theorem shows that Cδ,2 : Hr+2 → Hr is a linear
invertible operator for every real number r ≥ 0. This is the keystone to ensure well-posedness.

Proof of theorem 2.1. Let r ≥ 0, and initial conditions (Iδ,20 ,Vδ,2
0 ) ∈ Hr(R) × Hr+1(R).

Using the fact that (Cδ,2)−1 : Hr(R) → Hr+2(R) is a regularized operator of order 2, we can
write the telegrapher equation (2.3) as the following ODE

d
dt

(
Iδ,2

Vδ,2

)
= L

(
Iδ,2

Vδ,2

)
with L : Hr(R) × Hr+1(R) → Hr(R) × Hr+1(R) the linear Lipschitz field on Banach spaces
defined by

L1

(
Iδ,2

Vδ,2

)
= −(Lδ,2)−1∂x3V

δ,2 ∈ Hr(R) L2

(
Iδ,2

Vδ,2

)
= −(Cδ,2)−1∂x3 Iδ,2 ∈ Hr+1(R).

The local well-posedness is a consequence of the Cauchy-Lipshitz theorem.
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An energy estimate
d
dt

[
1
2

ˆ
R

(Cδ,2Vδ,2) Vδ,2 + L|Iδ,2|2
]

= 0

is obtained by multiplying the first equation of (2.3) by Vδ,2, the second by Iδ,2, summing both,
integrating over Rx3 . In particular, it imply that it is globally well-posed.

�

If we remove assumptions (H1), (H2) and C + δ2(ηe − ∂x3χe) ≥ 0, the problem (2.3) is still
well-posed in C0(R+, L2(R) × H1(R)). The proof is more complicated since κe can degenerate.
This may be found in [3].

2.4. 1D model as good approximation of 3D model

We say that the 1D model is a good approximation of the 3D Maxwell equations since we
can reconstruct the electromagnetic fields (Eδ,Hδ) from the 1D voltage Vδ,2 and current Iδ,2 and
the harmonic potentials through the formulae

Eδ,2(xδT , x
δ
3) = Vδ,2(xδ3)

∇ϕe(
xδT
δ
, xδ3)

0

 + δ

 0

(ϕe − ϕm)( xδT
δ
, xδ3) (∂x3V

δ,2(xδ3)) + Vδ,2(xδ3)(∂x3ϕe)(
xδT
δ
, xδ3))


+δ2

Eδ,2
T,R( xδT

δ
, xδ3)

0

 ,
(2.21)

and

Hδ,2(xδT , x
δ
3) = Iδ,2(xδ3)

∇ψm( xδT
δ
, xδ3)

0

 + δ2

Hδ,2
T,R( xδT

δ
, xδ3)

0

 , (2.22)

for all (xδT , x
δ
3) ∈ Ωδ whereEδ,2

T,R = Vδ,2 ∇ξe,1 + (∂x3V
δ,2)∇ξe,2 + (∂2

x3
Vδ,2)∇ξe,3

Hδ,2
T,R = (∂tVδ,2) µ−1∇⊥ζm,1 + (∂t∂x3V

δ,2) µ−1∇⊥ζm,2

while

ξe,1 := ξ[∂x3

(
ε (∂x3ϕe)

)
], ξe,2 := ξ[∂x3

(
ε (ϕe − ϕm) + ε (∂x3ϕe)

)
], ξe,3 := ξ[ε (ϕe − ϕm)]

and
ζm,1 := ζ[ε (∂x3ϕe)]ζm,2 := ζ[ε (ϕe − ϕm)]

where, for all f ∈ L2(S ), the potentials ξ[ f ] ∈ H1(S ) and ζ[ f ] ∈ H1(S ) are the solutions to the
following elliptic problems div

(
ε∇ξ[ f ]

)
= − f in S ,

ξ[ f ] = 0 on ∂S ,
and

 rot
(
µ−1∇⊥ζ[ f ]

)
= f in S ,

ζ[ f ] = 0 on ∂S .
(2.23)

An important feature for troubleshooting community is that the electromagnetic wave could
not be TEM at order O(δ), not even if the multilayer cable is cylindrical. In fact, we will see
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in the next section on the homogeneous multilayer case, that it can never be TEM if as the
characteristic coefficients are different on each layer. Taking δ = 0 in (2.21) and (2.22) one has
that for all (xδT , x

δ
3) ∈ Ωδ

Eδ,0(xδT , x
δ
3) = Vδ,0(xδ3)

∇ϕe(
xδT
δ
, xδ3)

0

 and Hδ,0(xδT , x
δ
3) = Iδ,0(xδ3)

∇ψm( xδT
δ
, xδ3)

0

 (2.24)

which are a less accurate approximation of the 3D Maxwell equations.

3. Derivation of effective telegrapher equation

It enables us to transform the 3D Maxwell’s equation (2.2) to 1D and 2D considerations. So
the reader must be careful with the differential operators: some are 3D (∇(xT ,x3),∇(xT ,x3)×) others
are 2D (∇, div,∇⊥, rot). We have postulated in [5] an Ansatz of the electromagnetic fields in
the form of a polynomial series of power δ

Eδ(xδT , x
δ
3) =

∞∑
p=0

δp Ep

(
xδT
δ
, xδ3

)
+ O(δ∞),

Hδ(xδT , x
δ
3) =

∞∑
p=0

δp Hp

(
xδT
δ
, xδ3

)
+ O(δ∞),

with (xδT , x
δ
3) ∈ Ωδ. (3.1)

where each coefficients
(Ep,Hp) : Ω→ C3

are given by injecting the Ansatz (3.1) in the Maxwell’s equations. This was done in [5]. We
will just recall the cascade of equations to determine (Ep+1,Hp+1) from (Ep,Hp). And we will
be interested only for p = 0, 1, 2. To do that, we separate for each 3D fields, the tangential
component and the longitudinal one

Ep =

(
Ep

T
Ep

3

)
with Ep

T =

(
Ep

1
Ep

2

)
and so on for Hp.

The operators (div, rot) are duals of (∇,∇⊥) in the sens of the following Green’s formulae
ˆ

S
div T ϕ = −

ˆ
S

T · ∇ϕ +

ˆ
∂S

T · n ϕ where T · n := T1 n1 + T2 n2, (3.2)

ˆ
S

rot T ϕ =

ˆ
S

T · ∇⊥ϕ −
ˆ
∂S

T × n ϕ where T × n := T1 n2 − T2 n1. (3.3)

One also gets
rot (∇ϕ) = 0 and div (∇⊥ϕ) = 0. (3.4)

We can see that the 2D rotational and gradient are linked by a rotation of π/2

e3 × ∇
⊥ϕ = ∇ϕ where e3 × T := (−T2,T1). (3.5)

The cascade of equations is the following:
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• transverse electric fields
div

(
ε Ep

T

)
= −∂x3

(
ε Ep−1

3

)
in Ω,

rot Ep
T = − µ ∂tH

p−1
3 in Ω,

Ep
T × n = 0, on ∂Ω

(3.6)

• transverse magnetic fields
div

(
µ Hp

T

)
= −∂x3

(
µ Hp−1

3

)
, in Ω,

rot Hp
T = ε ∂tE

p−1
3 , in Ω,

Hp
T · n = 0, on ∂Ω

(3.7)

• longitudinal electric fields
µ ∂tH

p
T + ∂x3

(
e3 × Ep

T
)

+ ∇⊥E(p+1)
3 = 0, in Ω,

E(p+1)
3 = 0 on ∂Ω,

(3.8)

• longitudinal magnetic fields
ε ∂tE

p
T − ∂x3

(
e3 × Hp

T
)
− ∇⊥H(p+1)

3 = 0 in Ω,

ˆ
S
µH(p+1)

3 = 0
(3.9)

with the convention
Ep = Hp = 0 for p < 0.

The equations (3.8) and (3.9) have sense if and only if we can write

ε ∂tE
p
T − ∂x3

(
e3 × Hp

T
)

and µ ∂tH
p
T + ∂x3

(
e3 × Ep

T
)

as a 2D vectorial rotational ∇⊥. Since they both be free-divergence fields, we need to prove that
every divergence-free fields can be a rotational of 1D fields. It is obvious for simply connected
domain but one need to check it in a non-symply connected domain like S .

Lemma 3.1. Any fields u ∈ L2(S ) such that div(ρu) = 0 can be written as a vectorial 2D
rotationnal

u = ρ−1 ∇⊥
[
ζ + 〈ρ u · n , 1〉

H−
1
2 (∂S∩∂O)

ψ(ρ−1)
]
,

with ψ(ρ−1) defined in (2.5) and ζ the solution of the following elliptic problem
find ζ ∈ H1

/R(S ) such that ∀ζ̃ ∈ H1
/R(S ),ˆ

S
ρ−1 ∇⊥ζ · ∇⊥ζ̃ =

ˆ
S

u · ∇⊥ζ̃.
(3.10)
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Proof. One gets

ũ := u − ρ−1 ∇⊥
[
ζ + 〈ρ u · n , 1〉

H−
1
2 (∂S∩∂O)

ψ(ρ−1)
]
∈ E(ρ) = span

{
∇ϕ(ρ)

}
such that ˆ

S
ρ ũ · ∇ϕ(ρ) = 0 ⇒ ũ = 0.

By definition of ũ, we have
ˆ

S
ρ ũ · ∇ϕ(ρ) =

ˆ
S
ρu · ∇ϕ(ρ) −

ˆ
S
∇⊥ζ · ∇ϕ(ρ)

− 〈ρ u · n , 1〉
H−

1
2 (∂−S )

ˆ
S
∇⊥ψ(ρ−1) · ∇ϕ(ρ).

From Green’s formula (3.2) and div (ρ u) = 0 one has
ˆ

S
ρu · ∇ϕ(ρ) = 〈ρ u · n , 1〉

H−
1
2 (∂S∩∂O)

and
ˆ

S
∇⊥ζ · ∇ϕ(ρ) = 0.

Moreover, one has with conjugation relationship (2.11)
ˆ

S
∇⊥ψ(ρ−1) · ∇ϕ(ρ) = C(ρ)−1

ˆ
S
ρ∇ϕ(ρ) · ∇ϕ(ρ) = 1.

Thus ˆ
S
ρ ũ · ∇ϕ(ρ) = 〈ρ u · n , 1〉

H−
1
2 (∂−S )

(
1 −
ˆ

S
∇⊥ψ(ρ−1) · ∇ϕ(ρ)

)
= 0

which conclude the proof. �

3.1. Order 0 in the polynomial series Ansatz

3.1.1. The longitudinal fields of order 0.

The equations (3.8) and (3.8) with p = −1 show that the limit electromagnetic field is
transversely polarized, namely

H0
3 = 0 and E0

3 = 0, (3.11)

as it is usually assumed in the engineering literature (see [17]).

3.1.2. Structure of the transverse fields of order 0.

The equations (3.6) and (3.7) for p = 0 show that (see (2.7) and (2.8)) there exists functions

V0 : R→ R and I0 : R→ R,

representing the electric voltage and electric current respectively, such that for all (xT , x3) ∈
S × R one has

E0
T (t, xT , x3) = V0(t, x3)∇ϕe(xT , x3) and H0

T (t, xT , x3) = I0(t, x3)∇ψ(xT ), (3.12)

where we recall that ψm = ψ (see proposition 2.3) in the Onion’s like structure.
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3.1.3. Equations for the electric voltage and current.

The first equations of (3.8) and (3.9) with p = 0 do not provide closed equations for (E0
T ,H

0
T )

due to the presence of (E1
3,H

1
3). To get rid of them, as in [5] we take the scalar product in L2(S )

of (3.8) and respectively (3.9) with ∇ϕe and respectively ∇ψ. Using the expression (3.12) of
E0

T and H0
T , the remark 2.3 and the definition (2.11) of the coefficients C and L, we then get

C ∂tV0 + ∂3I0 −

ˆ
S
∇ϕe · ∇

⊥ H1
3 = 0,

L ∂tI0 + ∂3V0 +

ˆ
S
∇ψ · ∇⊥ E1

3 = 0.
(3.13)

Finally, we remark that the terms involving E1
3 and H1

3 in the above equations vanish. Indeed,
using the Green’s formula (3.3) and the fact ϕe is constant on each connected part ∂S , one has

ˆ
S
∇ϕe · ∇

⊥ H1
3 =

ˆ
S

rot (∇ϕe)H1
3 +

ˆ
∂S

(∇ϕe × n) H1
3 = 0.

Again, using the Green’s formula (3.3) and the fact E1
3 = 0 on ∂S (see (3.8) with p = 0), one

has ˆ
S
∇ψ · ∇⊥ E1

3 =

ˆ
S

rot (∇ψ)E1
3 +

ˆ
∂S

(∇ψ × n) E1
3 = 0.

Finally, one gets the telegrapher’s equation C ∂tV0 + ∂3I0 = 0,

L ∂tI0 + ∂3V0 = 0,
(3.14)

with initial condition
V0|t=0 =

1
C

ET |t=0 · ∇ϕe and I0 = 0.

This 1D wave problem is of course well-posed. More precisely, for any r ≥ 0 if V0|t=0 ∈ Hr+1(R)
then one has

V0 ∈

r⋂
s=0

C s(R+,Hr+1−s(R)
)

and consequently I0 ∈

r⋂
s=0

C s+1(R+,Hr−s(R)
)
. (3.15)

3.2. Order 1 in the polynomial series Ansatz

3.2.1. The longitudinal fields of order 1.

The equations (3.8) and (3.8) with p = 0 and the expression of (E0
T ,H

0
T ) given in (3.12)

become
µ (∂tI0)∇ψ − ∂x3

(
V0∇

⊥ϕe
)

+ ∇⊥E1
3 = 0,

and
ε (∂tV0)∇ϕe + (∂x3 I0)∇⊥ψ − ∇⊥H1

3 = 0.

Using conjugation relationship (2.18), one has

∇⊥
(
−ϕm(L ∂tI0) − ∂x3

(
V0 ϕe

)
+ E1

3

)
= 0 and ∇⊥

(
ψ (C∂tV0 + ∂x3 I0) − H1

3

)
= 0.
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Finally, using the telegrapher’s equation (3.14), E1
3 = 0 on ∂S and

´
S µH1

3 = 0 one has

E1
3 = (ϕe − ϕm)∂x3V0 + (∂x3ϕe) V0 and H1

3 = 0. (3.16)

We can first notice that at order one the electromagnetic field cannot be transversely polar-
ized since in Onion’s like structure one has

´
S ε|ϕe − ϕm| > 0.

3.2.2. The transverse fields.

The equations (3.6) and (3.7) for p = 1 show that (see (2.7) and (2.8)) there exists functions
V1 : R→ R and I1 : R→ R such that for all (xT , x3) ∈ S × R one gets

E1
T (t, xT , x3) = V1(t, x3)∇ϕe(xT , x3) and H1

T (t, xT , x3) = I1(t, x3)∇ψ(xT ). (3.17)

Applying the same reasing of section 3.1.3 with equations (3.8) and (3.9) with p = 1 instead of
p = 0, one has  C ∂tV1 + ∂3I1 = 0,

L ∂tI1 + ∂3V1 = 0,
(3.18)

with null intial conditions. Thus one has

V1 = I1 = 0, (3.19)

and finally
E1

T = H1
T = 0. (3.20)

The structure of first order fields (E1,H1) are completely different from the one at limit order
(E0,H0). In one hand, the limit order field is transversely polarized. On the other hand, the first
order field is longitudinally polarized.

3.3. Order 2 in the polynomial series Ansatz

3.3.1. The longitudinal fields of order 2.

Using (E1
T ,H

1
T ) = (0, 0), the equations (3.8) and (3.9) with p = 1 become

∇⊥E2
3 = 0 in Ω,

E2
3 = 0,

and


∇⊥H2

3 = 0 in Ω,

ˆ
S
µH2

3 = 0.

Thus, one has
E2

3 = H2
3 = 0. (3.21)

3.3.2. Structure of transversal fields of order 2

The equations (3.6) and (3.7) for p = 1 give


div

(
ε E2

T

)
= −∂x3

(
ε (ϕe − ϕm)∂x3V0 + ε (∂x3ϕe) V0

)
in S ,

rot E0
T = 0 in S ,

E2
T × n = 0, on ∂S

(3.22)
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and 
div

(
µ H2

T

)
= 0, in S ,

rot H2
T = ε (ϕe − ϕm)∂t∂x3V0 + ε (∂x3ϕe) ∂tV0, in S ,

H2
T · n = 0, on ∂S .

(3.23)

We introduce

E2
T,R = V0 ∇ξ[∂x3

(
ε (∂x3ϕe)

)
] + (∂x3V

0)∇ξ[∂x3

(
ε (ϕe − ϕm) + ε (∂x3ϕe)] + (∂2

x3
V0)∇ξ[ε (ϕe − ϕm)]

and
H2

T,R = (∂tV0) µ−1∇⊥ζ[ε (∂x3ϕe)] + (∂t∂x3V
0) µ−1∇⊥ζ[ε (ϕe − ϕm)]

where, for all f ∈ L2(S ), the potential ξ[ f ] ∈ H1(S ) and ζ[ f ] ∈ H1(S ) are the solutions of the
elliptic problems (2.23). Thus, there exists functions

V2 : R→ R and I2 : R→ R,

representing the electric voltage and electric current respectively, such that one has

E2
T = V2∇ϕe + E2

T,R and H2
T = I2∇ψ + H2

T,R. (3.24)

3.3.3. Equations for the electric voltage and current.

The first equations of (3.8) and (3.9) with p = 2 do not provide closed equations for (E2
T ,H

2
T )

due to the presence of (E3
3,H

3
3). To get rid of them, as it wan done in section 3.1.3, we take the

scalar product in L2(S ) of (3.8) and respectively (3.9) with ∇ϕe and respectively ∇ψ. Using the
expression (3.12) of E2

T and H2
T , the remark 2.3 and the fact that (same reasoning as in section

3.1.3) ˆ
S
∇ϕe · ∇

⊥ H3
3 =

ˆ
S
∇ψ · ∇⊥ E3

3 = 0

and the fact that ˆ
S
εE2

T,R · ∇ϕe =

ˆ
S
µH2

T,R · ∇ψ = 0

we then get 
C ∂tV0 + ∂3I0 −

ˆ
S
∂x3

(
e3 × H2

T,R
)
· ∇ϕe = 0,

L ∂tI0 + ∂3V0 +

ˆ
S
∂x3

(
e3 × E2

T,R
)
· ∇ψ = 0,

(3.25)

By algebraic calculus, one gets
ˆ

S
∂x3

(
e3 × H2

T,R
)
· ∇ϕe =

ˆ
S
∂x3 H2

T,R · ∇
⊥ϕe and

ˆ
S
∂x3

(
e3 × E2

T,R
)
· ∇ψ =

ˆ
S
∂x3 E2

T,R · ∇
⊥ψ

On one hand, using Green’s formula (3.3) and equations (3.22), one gets
ˆ

S
∂x3 E2

T,R · ∇
⊥ψ =

ˆ
S
∂x3

(
rot E2

T,R
)
ψ +

ˆ
∂S
∂x3

(
E2

T,R × n
)
ψ = 0.
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On the other hand,
ˆ

S
∂x3 H2

T,R · ∇
⊥ϕe = ∂x3

(ˆ
S

H2
T,R · ∇

⊥ϕe

)
−

ˆ
S

H2
T,R · ∇

⊥∂x3ϕe

that becomes ˆ
S
∂x3 H2

T,R · ∇
⊥ϕe = ∂x3

(ˆ
S

H2
T,R · ∇

⊥(ϕe − ϕm)
)
−

ˆ
S

H2
T,R · ∇

⊥∂x3ϕe

since by the orthogonality relation and conjugation relation
ˆ

S
H2

T,R · ∇
⊥ϕm = 0.

Then using Green’s formula (3.3) and the fact that ∂x3ϕe = ϕe − ϕm = 0 on ∂S , one gets
ˆ

S
∂x3 H2

T,R · ∇
⊥ϕe = ∂x3

(ˆ
S

rot H2
T,R (ϕe − ϕm)

)
−

ˆ
S

rot H2
T,R ∂x3ϕe.

Thus with (3.23), one has
ˆ

S
∂x3 H2

T,R · ∇
⊥ϕe = ∂x3(κe∂x3∂tV0) + (∂x3χe − ηe)∂tV0 (3.26)

where κe, ηe and χe are defined in proposition 2.2. To sum up, one has one gets the telegrapher’s
equation 

C ∂tV2 + ∂3I2 = ∂x3(κe∂x3∂tV0) + (∂x3χe − ηe)∂tV0,

L ∂tI2 + ∂3V2 = 0.
(3.27)

This 1D wave problem is of course well-posed. More precisely, for any natural nimbers s ≥ 0
and r ≥ s + 2 if V0 ∈ C s(R+,Hr+1−s(R)

)
then one has

V2 ∈ C s(R+,Hr+1−s−2(R)
)

and I2 ∈ C s+1(R+,Hr−s−2(R)
)
. (3.28)

3.4. Error estimates

In the previous sections we have closed equations to compute (Ep,Hp,V p, I p) for p = 0, 1, 2.
We can then compute

Eδ,2
trunc :=

2∑
p=0

δpEp, Hδ,2
trunc :=

2∑
p=0

δpHp, Vδ,2
trunc :=

2∑
p=0

δpV p, Iδ,2trunc :=
2∑

p=0

δpI p. (3.29)

They aim at being good approximations of the approximate models (Eδ,2,Hδ,2) and the electro-
magnetic fields (Eδ,Hδ)

Eδ,2 ' Eδ,2
trunc ◦ G

−1
δ ' Eδ, Hδ,2 ' Hδ,2

trunc ◦ G
−1
δ ' Hδ, ,Vδ,2 ' Vδ,2

trunc ' Vδ, Iδ,2 ' Iδ,2trunc ' Iδ,

in the sense that we have the following error estimates

• modeling error estimation ||(Eδ,2,Hδ,2) − (Eδ,2
trunc,H

δ,2
trunc) ◦ G

−1
δ ||L∞t L2(Ω) = O(δ3), (3.30a)
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• truncature error estimation ||(Eδ,Hδ) − (Eδ,2
trunc,H

δ,2
trunc) ◦ G

−1
δ ||L∞t L2(Ω) = O(δ3), (3.30b)

• global error estimation ||(Eδ,Hδ) − (Eδ,2,Hδ,2)||L∞t L2(Ω) = O(δ3). (3.30c)

Note that since Eδ,2
trunc is defined in the reference geometry Ω whereas (Eδ, Eδ,2) are defined in

the thin geometry Ωδ, one needs the scaling Gδ to compare them. The global estimation (3.30c)
is the expected estimation and the consequence of (3.30a) and (3.30b). The proof of (3.30b) is
completely over the scope of the paper. It was shown in [3]. We only show the modeling error
estimation and illustrate with numerical simulation that one has an error in O(δ2). The main
theorem of the section is the following:

Theorem 3.1. Let natural numbers r ≥ 3 and s ∈ [1, r − 2] and initial condition V0|t=0 ∈

Hr+1(R). One has for the electrical voltage and current

||Vδ,2 −

 2∑
p=0

δpVp

 ||Cs
(
R+,Hr+1−s−2(R)

) + ||Iδ,2 −

 2∑
p=0

δpIp

 ||Cs+1
(
R+,Hr−s−2(R)

) = O(δ4).

One also has for the transverse electromagnetic fields

||Eδ,2
T −

 2∑
p=0

δpEp
T

 ◦ G−1
δ ||Cs

(
R+,L2(RxT )⊗Hr+1−s−4(Rx3 )

) = O(δ4)

and

||Hδ,2
T −

 2∑
p=0

δpHp
T

 ◦ G−1
δ ||Cs−1

(
R+,L2(RxT )⊗Hr−s−2(Rx3 )

) = O(δ4)

and for the longitudinal electromagnetic fields

||Eδ,2
3 −

 2∑
p=0

δpEp
3

 ◦ G−1
δ ||Cs

(
R+,H1(RxT )⊗Hr−s−2(Rx3 )

) = O(δ4)

and

||Hδ,2
3 −

 2∑
p=0

δpHp
3

 ◦ G−1
δ ||Cs+1

(
R+,H1(RxT )⊗Hr−s−2(Rx3 )

) = 0.

Note that if one considers more general initial conditions and source terms then one has
O(δ3) estimates instead of O(δ4).

Proof. The effective telegrapher’s equation (2.3) take into account the telegrapher’s equations
(3.14,3.18,3.27) that gives the electrical voltage and current at each order. Indeed, the combi-
nation

(2.3) −
[
(3.14) + δ(3.18) + δ2(3.27)

]
and the proposition 2.2 gives an equation on the modeling error

V := Vδ,2 −

 2∑
p=0

δpVp

 and I := Iδ,2 −

 2∑
p=0

δpIp
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which is 
Cδ,2 ∂tV + ∂3I = δ4(ηe − ∂x3χe − ∂x3(κe∂x3))∂tV2,

L ∂tI + ∂3V = 0.

Let r ≥ 3 and initial condition V0|t=0 ∈ Hr+1(R), (3.15) and (3.28) imply that V2 ∈

C s(R+,Hr+1−s−2(R)
)
. Then, since (Cδ,2)−1 is a regularized operator of order 2, one has

(Cδ,2)−1(ηe − ∂x3χe − ∂x3(κe∂x3))∂tV2 ∈ C s−1(R+,Hr+1−s−2(R)
)
,

and thus
||V||

Cs
(
R+,Hr+1−s−2(R)

) + ||I||
Cs+1

(
R+,Hr−s−2(R)

) = O(δ4).

Similarly, the combinations

(2.21, 2.22) −
[
(3.12, 3.11) + δ(3.20, 3.16) + δ2(3.27, 3.21)

]
give

Eδ,2 −
(∑2

p=0 δ
pEp

)
◦ G−1

δ = V

(
∇ϕe

0

)
+ δ

(
0

(ϕe − ϕm)(∂x3V) +V(∂x3ϕe)

)
+δ2

(
V∇ξe,1 + (∂x3V)∇ξe,2 + (∂2

x3
V)∇ξe,3

0

)
,

(3.31)

and

Hδ,2 −

 2∑
p=0

δpHp

 ◦ G−1
δ = I

(
∇ψm

0

)
+ δ2

(
(∂tV) µ−1∇⊥ζm,1 + (∂t∂x3V) µ−1∇⊥ζm,2

0

)
. (3.32)

Thus using the estimates onV, one can conclude the expected modeling error estimates.
�

4. Space-time discretization of the 3D model

An efficient numerical method that solves the 3D Maxwell’s equations (4.1) in cylindrical
coaxial cables was proposed in [9]. The method described in this section is very similar to the
one on [9]. The only purpose is to point out, in the algebraic formulation of the problem, the
matrices that are affected by the small parameter δ representing the transverse dimension of the
cable and emphasizing once more the fact that the CFL stability condition is independent of δ.
Practical cables are thin in the sense that δ � 1. As mentioned in the introduction, this imply
some numerical difficulties. In the considered applications, the wavelength is large compared
to the diameter of the cross-section, but small compared to the size of the cable. This specificity
has two impacts on the time discretization :

• an implicit scheme would be too costly given the size of the problem,
• an explicit scheme is to be avoided because the corresponding CFL condition would be

too constraining.
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To take care of it, we use an anisotropic prismatic spatial mesh and a hybrid implicit-explicit
scheme for the time discretization. This method has some similarities with the ADI schemes
proposed by Fornberg and Lee (see [19], [20] and [18] for an analysis). A prismatic spatial
mesh means that hT � h where hT is the transverse step size hT and h is the longitudinal
step size h. To implement this method, the first step is to make a longitudinal discretization
of the cable, then a transverse discretization of each section, and finally a discretization in
time. We don’t want to mesh a thin coaxial cable Ωδ. Thus, we introduce the rescaled electric
Ẽδ = (Ẽδ

T , Ẽ
δ
3) and the magnetic fields H̃δ = (H̃δ

T , H̃
δ
3) that are casted in the reference cable Ω.

They are defined by
Eδ = Ẽδ ◦ G−1

δ , Hδ = H̃δ ◦ G−1
δ .

Thus, the electric field is solution ofε ∂2
t ẼT − ∂3

(
µ−1∂3ẼT

)
+ δ−2 ∇⊥

(
µ−1rot ẼT

)
+ ∂3

(
µ−1δ−1 ∇ Ẽ3

)
= 0,

ε ∂2
t Ẽ3 + rot

(
µ−1δ−2 ∇⊥ Ẽ3

)
+ δ−1 div

(
µ−1∂3ẼT

)
= 0.

(4.1)

The details of computation from Maxwell’s equations (2.2) to the second order formulation of
the rescaled Maxwell’s equations (4.1) are given in [9]. The discretization is performed in the
reference geometry Ω.

• For the discretization in the longitudinal variables, we decomposed the cable Ω into small
cylindrical cells

C j+ 1
2

= {(xT , x3) ∈ Ω | jh ≤ x3 ≤ ( j + 1)h}, for all j ∈ Z.

These cells of size h in the x3 direction are separated by transverse cross sections S j for
all j ∈ Z, where, by definition, Sν = {(xT , νh), xT ∈ S }, For all ν ∈ R.
• For the discretization in the transverse variables, we introduced a conforming triangular

mesh T of the section S with step size hT .

The transverse field ẼT will then be approximated by Nedelec elements in each section
S j and by piecewise affine elements along the longitudinal direction. On the other hand, the
longitudinal field Ẽ3 field will be approximated by P1 elements on each S j+1/2 section and by
P0 discontinuous elements along the longitudinal direction (See Figure 1).

Figure 1. Two types of degrees of freedom.

The fully semi-discrete variational problem reads: find
(
ẼT,h, Ẽ3,h

)
∈ Vh such that for any
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(
ET,h, E3,h

)
∈ Vh,

d2

dt2 mh
(
ẼT,h, ET,h

)
+ k3

(
ẼT,h, ET,h

)
+ δ−2 kT,h

(
ẼT,h, ET,h

)
− δ−1c3T

(
Ẽ3,h, ET,h

)
= 0,

d2

dt2 m
(
Ẽ3,h, E3,h

)
+ δ−2kT

(
Ẽ3,h, E3,h

)
− δ−1c3T

(
E3,h, ẼT,h

)
= 0,

(4.2)

where the space Vh is the space of prismatic edge elements, namely,

Vh :=
{
Eh ∈ H(rot,Ω) | ∀ PK, j ∈ T3D, Eh|PK, j ∈ R

}
, (4.3)

with
R =

{
E = (ET , E3) | ET (·, x3) ∈ P1(R;N2D), E3(·, x3) ∈ P0(R;P1(R2))

}
⊂ P3

1.

To write the problem in an algebraic form, we introduced the (infinite) vector of degrees of
freedom (see Figure 1), namely,

Eh =

ET,h

E3,h

 ≡
 ET, j

E3, j+ 1
2

 ∈ Vh := Vh,T × Vh,3, (4.4)

where Vh,T and Vh,3 are respectively the Hilbert spaces

Vh,T = `2(Z,RNe
)

and Vh,3 = `2(Z,RN).

Thus (4.2) admits the following algebraic form

Mh
d2Eh

dt2 + Kh Eh = 0, (4.5)

hhere Mh and Kh are the mass and stiffness matrices in Vh. According to the decomposition
of Vh between transverse and longitudinal fields, the mass matrix Mh has the following block
diagonal form

Mh =

MT
h 0

0 M3
h

 , (4.6)

and, in particular, thanks to the numerical quadrature, MT
h (resp. M3

h) is block diagonal by
sections. The numerical quadrature correspond to a weighted trapezoidal rule, fundamental for
the efficiency of our method (partial lumping) (for more details see Remark 2.1 in [9].) On the
other hand, the stiffness matrix Kh can be written, according to (4.2), as

Kh =

K3,h + δ−2 KT,h δ−1 C3T,h

δ−1 C∗3T,h δ−2 KT,h

 . (4.7)

We used bold (normal) letters when they apply to transverse (longitudinal) fields. The
index ·T means that only transverse derivatives are involved while the index ·3 means that only
x3-derivatives are involved. Oppositely C3T,h couples the transverse and longitudinal fields and
mixes the x3 and transverse derivatives.
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The method uses a tricky decomposition of the stiffness matrix Kh = Ki
h + Ke

h where

Ki
h =

(
δ−2 KT,h 0

0 δ−2 KT,h

)
and Ke

h =

(
K3,h δ−1 C3T,h

δ−1 C∗3T,h 0

)
.

The interest of the decomposition lies in the following double observation:

• Ki
h is adapted to implicit time discretization since the matrix is positive and thanks to x3

quadrature, block diagonal by section, thus easy to invert.

• Ke
h is adapted to explicit time discretization since it corresponds to the discretization of the

differential operators in the x3 direction: this matrix couples all the interfaces and has no sign.
As a consequence, we propose the following scheme Mh

En+1
h − 2En

h + En−1
h

∆t2 + Ke
h E

n
h + Ki

h {E
n
h}θ = 0,

{En
h}θ := θ En+1

h + (1 − 2θ)En
h + θ En−1

h .

(4.8)

It was show in [9] (Theorem 2.3) that discrete scheme (4.8) is stable under θ > 1
4 and the

following CFL condition
c+∆t

h
<

√
4θ − 1

4θ
. (4.9)

where c+ := max(ε µ)−
1
2 is the maximum celerity of the electromagnetic and which is indepen-

dant of δ.

5. Numerical resolution of 1D effective telegrapher’s model

5.1. Computation of effective coefficients

This preliminary step consists in computing an approximation of the coefficients
C(x3), L(x3), κe(x3), ηe(x3), and χe(x3). To do so, one needs to solves for each x3 the elliptic
2D problems (2.4) and (2.5) whose solution are ϕ(ρ(x3)) and ψ(ρ(x3)). Since the cable is
cylindrical, x3 that plays the role of a parameter. We recall that, in the context of onion’s like
structure, one has ψ(ρ) = ψ that do not depends on x3.

The potentials ϕ(ρ(x3)) and ψ are first approximated thanks to a P1 finite-elements approx-
imation of the boundary value problems (2.4) and (2.5) with a triangular mesh of the cross
section S with step-size hT ,

(ϕhT (ρ)(·, x3), ψhT (ρ)(·, x3)) ∈ V0,hT × ṼΓ,hT ,

where V0,hT and ṼΓ,hT are the Galerkin approximation sub-spaces for H1
0(S ) and respectively

H1
/R(S/Γ). Then C(x3), L(x3), κe(x3), ηe(x3), and χe(x3) are approximated by{

ChT =
´

S ε|∇ϕe,hT |
2, LhT =

´
S µ|∇ψµ,hT |

2, κhT =
´

S ε|ϕe,hT − ϕm,hT |
2,

ηhT =
´

S ε|∂x3 ϕe,hT |
2, χhT =

´
S ε(ϕe − ϕm)(∂x3ϕe).

(5.1)
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5.2. Resolution of the 1D evolution problem

In order to compare the 3D and 1D simulations, we will also write the 1D telegrapher’s
equations (2.3) in the second order formulation

Cδ,2(x3, ∂x3) ∂
2
t Vδ,2 − ∂2

x3
L−1 Vδ,2 = 0. (5.2)

5.2.1. The semi-discretization in space

The semi-discretization in space of the 1D model (5.2) is done using 1D finite elements (for
instance continuous P1), and mass lumping with a uniform mesh of step-size h. The resulting
algebraic problem takes the form

Mδ
h

d2Vh

dt2 + Kh Vh = 0, (5.3)

where Vh(t) =
(
V j(t)

)
is the vector of degrees of freedom at time t for the semi-discrete voltage

Vh(t) ∈ H1(R) (the nodal values at the points jh),

Mδ
h := M0

h + δ2 Dh

is the effective mass-matrix and Kh is the stiffness matrix. More precisely, one has

• M0
h = diag

(
m j

)
> 0 is diagonal mass (like) matrice (divided by h for homogeneity) such

that
m j = ChT ( jh),

• Kh :=
(
ki, j

)
i, j∈Z is the stiffness (like) matrix, witch is symetric and positive, such that

(
ki, j

)
:=
ˆ
R

L−1
hT
∂x3ui ∂x3u j,

• Dh :=
(
di, j

)
i, j∈Z is the dispersive matrix witch is symmetric and non-negative defined by

(
di, j

)
:=
ˆ
R

ηhT ui u j +

ˆ
R

κhT ∂x3ui ∂x3u j +

ˆ
R

χhT ∂x3ui u j +

ˆ
R

χhT ui ∂x3u j.

where (ui)i∈Z is a basis of

P1,h := {uh ∈ C0(R) ∩ L2(R) | ∀ j ∈ Z, uh|[ jh,( j+1)h] ∈ P1}.

5.2.2. The time discretization

For time discretization, one uses a leap-frog scheme with a constant time step ∆t

Mδ
h

Vn+1
h − 2Vn

h + Vn−1
h

∆t2 + Kh V
n
h = 0, (5.4)

where Vn
h is the vector of degrees of freedom of Vn

h ∈ H1(R), approximation of Vh(n∆t). We
use the same scheme for the discretization of the zero-order model (1.1) with δ = 0, i-e

M0
h

Vδ,0,n+1
h − 2Vn

h + Vδ,0,n−1
h

∆t2 + Kh V
δ,0n
h = 0, (5.5)
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where Vδ,0,nh is the vector of degrees of freedom of Vδ,0,n
h ∈ H1(R), approximation of Vδ,0

h (n∆t).
In [7], the ODE structure explained in the proof of theorem 2.1 is used to propose another
scheme than (5.4). Indeed, by inversion of Cδ,2, one can write equations as a conservative law
with non-local flux. We have decided to not use this strategy since we want to use the same
type of scheme for the second order model and for the first order model. This is done with (5.4)
and (5.5).

5.2.3. Stability analysis of the fully discrete scheme

Theorem 5.1. The numerical scheme (5.4) is L2-stable under the sufficient CFL condition

c+
hT

∆t
h
≤ 1 + δ2 inf

x3∈R
(λ−/ChT ), (5.6)

where chT is the velocity of 1D waves such that, for all x3 ∈ R

chT (x3) = ChT (x3)−
1
2 LhT (x3)−

1
2 , c+

hT
:= sup

R

chT (x3), (5.7)

and λ− is the minimum of the eigenvalues of the matrix Dh.

Note that when δ vanishes one has the usual CFL condition for the leap-frog scheme (5.5)
adapted for the 1D waves (1.1).

Proof. We needs to introduce the factor

α2
h := sup

uh∈P1,h

´
R

L−1
hT
|∂x3uh|

2

¸
R

ChT |uh|
2
, (5.8)

where the notation
¸
R

f refers to a quadrature formula in x3. More precisely,
for f ∈ C0(R) ∩ L1(R), we set

˛
R

f = h
∑

j

f j+1 + f j

2
, f j = f ( jh). (5.9)

The proof is done in two steps using an energy approach.

Step 1: Lower bound on the dispersive matrix.

We first want to show that for Uh ∈ Ph,1 associated to the vector Uh ∈ P1, Dh satisfies(
DhUh,Uh

)
≥ β−

(
M0

hUh,Uh
)
, (5.10)

where β− = inf
x3∈R

λ−

ChT

≥ 0.

We shall introduce the notation
(
·, ·

)
for inner products in P1,(

Vh, Ṽh
)

:=
∑
j∈Z

V j · Ṽ j. (5.11)
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Let Uh ∈ Ph,1 associated to the vector Uh ∈ P1, we have Dh is a positive symmetric matrix,
which allows us to deduce the following inequality(

DhUh,Uh
)
≥ λ−

(
Uh,Uh

)
,

with, λ− ≥ 0 is the minumum of the iegenvalue of the matrix Dh.
We define

β− := inf
x3∈R

λ−

ChT

≥ 0.

We thus obtain (
DhUh,Uh

)
≥ β−

(
M0

hUh,Uh
)
.

Step 2: Discrete energy conservation.

We use this standard key identity :

Vn
h = {Vn

h} 1
4
− 1

4

(
Vn+1

h − 2Vn
h + Vn−1

h
)

with {Vn
h}θ := θVn+1

h + (1 − 2 θ)Vn
h + θVn−1

h .

This allows us to rewrite our scheme as a perturbation of the 1
4 -scheme

Mδ
h(∆t)

Vn+1
h − 2Vn

h + Vn−1
h

∆t2 + Kh {V
n
h} 1

4
= 0

where we have set
Mδ

h(∆t) = Mδ
h −

∆t2
4 Kh. (5.12)

Taking the scalar product (in P1) of the above equation with Vn+1
h −Vn−1

h
2∆t we classically deduce,

thanks to the symmetry of all matrices, the conservation of the discrete energy

E
n+ 1

2
h :=

1
2

[(
Mδ

h(∆t)
Vn+1

h − Vn
h

∆t
,
Vn+1

h − Vn
h

∆t

)
+

(
Kh

(Vn+1
h + Vn

h

2

)
,
Vn+1

h + Vn
h

2

)]
.

Step 1: Derivation of the sufficient stability condition (5.6).

This will be simply obtained from showing the positivity of the discrete energy En+ 1
2

h , that
amounts to the positivity of the modified mass matrix Mδ

h(∆t).

Since Kh is positive, using (5.10) we have for any vector Uh ∈ P1(
Mδ

hUh,Uh
)
≥

(
1 + δ2 β−

) (
M0

hUh,Uh

)
, (5.13)

where
β− = inf

x3∈R
(λ−/ChT ) ≥ 0.

We control the matrix Kh with the help of the mass matrix M0
h that appears in the lower bound

(5.13). This is where the space step h will appear via αh. More precisely, let Uh ∈ Ph,1 be
associated to the vector Uh ∈ P1, by definition of Kh(

KhUh,Uh
)

=

ˆ
Ω

L−1
hT
|∂x3U|

2.
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By definition (5.8) of αh and since each function Uh belongs to P1,h, one has(
KhUh,Uh

)
≤ α2

h

˛
R

|Uh(x3)|2 dx3,

so that (
KhUh,Uh

)
≤ α2

h
(
MhUh,Uh

)
. (5.14)

Joining (5.13) and (5.14) to definition (5.12) of M0
h(∆t), we obtain(

M0
h(∆t)Uh,Uh

)
≥

(
1 + δ2 β− − α2

h
∆t2
4

) (
MhUh,Uh

)
. (5.15)

The stability condition is obtained by writing(
1 + δ2 β− − α2

h
∆t2
4

)
≥ 0. (5.16)

In addition, for any uh ∈ P1,h and by definition (5.7) of c+
hT

we obtain
ˆ
R

L−1
hT
|u′h|

2 ≤ (c+
hT

)2
ˆ
R

ChT |u
′
h|

2.

We define :

ChT , j+ 1
2

=
1
h

ˆ ( j+1)h

jh
ChT (x3) dx3. (5.17)

Since u′h is piecewise constant, we have, with u j := uh( jh) and by definition (5.17) of ChT , j+ 1
2
,

ˆ
R

L−1
hT
|u′h|

2 ≤ (c+
hT

)2
∑
j∈Z

ChT , j+ 1
2

∣∣∣∣u j+1 − u j

h

∣∣∣∣2.
By |u j+1 − u j|

2 ≤ 2
(
|u j+1|

2 + |u j|
2), we deduce,

ˆ
R

L−1
hT
|u′h|

2 ≤
4 (c+

hT
)2

h2

∑
j∈Z

ChT , j+ 1
2

( |u j|
2 + |u j+1|

2

2

)
h =

4 (c+
hT

)2

h2

˛
R

ChT |uh|
2. (5.18)

Finally, using (5.16) and (5.18), we get the CFL condition (5.6). �

5.3. Reconstruction of the 3D electric field.

Once the discrete voltage Vn
h (x3) is computed, using the formula (2.21), one can reconstruct

the rescaled 3D electric field at time n∆t as the P1-interpolant of the following transverse fields,
defined for each j, namely,

Ẽn
T (xT , jh) = Vn

h ( jh)∇ϕe(xT , jh) + δ2 Ẽn
T,R(xT , jh).

Ẽn
3(xT , ( j +

1
2

)h) = δ (ϕe(xT , jh) − ϕm(xT , jh)) {Vn
h } j + δVn

h ( jh) {ϕe(xT , ·)} j,
(5.19)

where

Ẽn
T,R(xT , jh) = Vn

h ( jh) ∇ ξ1(xT , jh) +
{
Vn

h
}

j ∇ ξ2(xT , jh) +
{{

Vn
h
}}

j ∇ ξ3(xT , jh),

with
{{

Vn
h
}}

j :=
Vn

h (( j + 1)h) − 2 Vn
h ( jh) + Vn

h (( j − 1)h)
h2 and

{
Vn

h
}

j :=
Vn

h (( j + 1)h) − Vn
h (( j − 1)h)

2h
.
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6. Comparison between 3D and 1D calculations.

We notice that from definition (2.21) of field Ẽδ,2(x, t), one has

Vδ,2(x3, t) = C(x3)−1
ˆ

S
ε(·, x3) Ẽδ,2

T (·, x3, t) · ∇ϕe(·, x3).

This suggests to define a 1D voltage Vδ(x3, t) for the 3D problem as

Vδ(x3, t) = C(x3)−1
ˆ

S
ε(·, x3) Ẽδ

T (·, x3, t) · ∇ϕe(·, x3). (6.1)

For the comparisons of the rescaled electric field, we can compare the 3D fields, Eδ,2 (issued
for 1D effective 1D model) with Ẽδ (issued for 3D model). Or we can compare the 1D voltages,
Vδ,2 the solution of of the problem (5.2) with the voltage Vδ obtained by post-processing the
3D solution Eδ

T .

We define the relative space-time error |‖ · ‖|, that we will use for the comparison between 3D
and 1D calculations.

|‖U1D − U3D‖| :=
sup

t∈[0,T ]
‖U1D(t) − U3D(t)‖L2([0,L])

sup
t∈[0,T ]

‖U3D(t)‖L2([0,L])
, (6.2)

where T is the time of the simulations and L is the longitudinal size of the considered domain.
In the simulations of this paper, one takes T = 6 and L = 12.

6.1. Problem’s data.

For the numerical computations, one considers a finite cylindrical coaxial cable

Ω = S × [0, 12],

with periodic boundary condition at the left end x3 = 0 and right end x3 = 12.

Figure 2. Left: the domain Ω, right: the section S of the domain. Each color corre-
sponds to a different material.
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One assumes that the cross section S is made of three layers S = S 1 ∪ S 2 ∪ S 3.

Concerning the characteristic coefficients of the model, we consider an heterogeneous onion-
like structure cylindrical cable:

εn(xT , x3) = εn p(x3), and µn(xT , x3) = µn p(x3),

with (εn, µn) for n ∈ {1, 2, 3} are taken as follows,

(ε1, µ1) = (2, 3), (ε2, µ2) = (1, 2) and (ε3, µ3) = (1, 1), (6.3)

and p can be seen as a perturbation in the longitidinal direction, in the numerical experiments,
we shall take

p(x3) := (1 + 3 e−80 (x3−8)2
).

So that the velocity of electromagnetic waves, i-e c = (εµ)−
1
2 , satisfies

c(x3) = p−1(x3)/
√

6 in S 1 × R, c(x3) = p−1(x3) /
√

2 in S 2 × R, c(x3) = p−1(x3) in S 3 × R,

(6.4)
and is in particular heterogeneous (we recall that the heterogeneity of the velocity of electro-
magnetic waves is essential to have a 1D dispersive model).

We also take initial conditions that are localized near x3 = 6 and are well prepared with respect
to the expected asymptotic result (5.19) . More precisely, H̃0(xT , x3) = 0 and

Ẽ0 :=
F ∇ϕe + δ2 (

F ∇ ξ1 + (∂x3F )∇ ξ2 + (∂2
x3
F )∇ ξ3

)
δ (∂x3F ) (ϕe − ϕm)(x) + δF ∂x3ϕe

 where F (x3) = e−π
2 (x3−6)2

.

(6.5)
The time interval for the numerical experiments is [0,T ] with T = 6, so that, taking (6.4) into

account, it implies that the waves will not reach the transverse boundaries x3 = 0 and x3 = 12
before the final time T . In other words, the periodic boundary conditions in x3 will not play
any role. If one one considers longer final time such that the waves can reach the boundaries,
then one cannot use periodic boundary condition. In that case, one needs to (artificially) bound
the domain of computation. To do it, one can use perfectly matched layer (PML) techniques.
Moore precisely, one encloses the computational domain with an absorbing layer. One perfectly
matched layer is such an absorbing layer such that there is no reflexion at the interfaces between
the layer and the domain of computation. It’s easy to build such a PML for the 1D dispersive
telegrapher’s equations (2.3) if one considers κe constant for |x| > L with L finite since (2.3)
is similar to Boussinesq-Abbott equations for |x| > L. In [10] a stable PML was proposed for
Boussinesq-Abbott equations. However, we can not succeed to build a stable PML for the 3D
Maxwell’s equations (2.2) in the case of non-homogeneous celerity [8].

6.2. Discretization parameters.

6.2.1. Data for the transverse discretization.

The cross section S is meshed by a triangular mesh represented Figure 2. In particular, there
are 40 mesh points along the cut Γ and the typical diameter of each triangle in the mesh is
hT ' 0.04. This mesh is used for the 2D transverse problems (2.4) and (2.5) for computing the
potentials (ϕe, ϕm, ψm, ψe) and the coefficients

(
C, L, κe, ηe, χe

)
but also for the 3D computations

(4.8).
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6.2.2. Data for the longitudinal discretization.

One considers h = 0.06 for the longitudinal step size. This is well adapted to the discretiza-
tion of the Gaussian F . This same longitudinal mesh is used for the discretization of the 1D
problem (5.4) (cf. (5.2)) and for the 3D computations. As already said, the 3D computations are
more restrictive in term of longitudinal step size. We use the same for performing comparaison
between 1D and 3D simulations.

6.2.3. Data for the time discretization.

For facilitating the comparison between the 1D and 3D results, we shall use the same time
step ∆t for both 1D and 3D computations. The choice of ∆t will be constrained by the 3D
condition (4.9) which is more restrictive than 1D condition (see theorem 5.1). For the 3D
computations, we shall take θ = 1/3 in which case the CFL (4.9) becomes c+∆t/h ≤ 1/2. In
practice, we choose ∆t = 0.95 h/(2 c+).

7. Numerical results

7.1. The potentials.

We show in Figure 3 the computed potentials ϕe and ψm in the first cable section. The right
picture shows at the same time the level lines of ϕe (which are ”parallel” to the boundaries)
and the ones of ψm (which intersect the boundaries). This illustrates remark 2.3.

Figure 3. Potentials ϕe (left) and ψm (center), associated isolines (right).

Figure 4 shows ψe − ψm and ϕe − ϕm. The numerical results proves that κe > 0 and the two
potentials ψe and ψm are equal (this is a numerical interpretation of Proposition 2.3).

Figure 4. Left : the potential ψe − ψm. Right : the potential ϕe − ϕm.
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7.2. Comparisons of voltages.

In Figure 5, we compare the evolution of the 1D voltage Vδ,2 issued from the numerical
resolution of the 1D model (5.2) to the 1D voltage Vδ for the 3D problem, defined by (6.1).

δ = 0.15 δ = 0.1

δ = 0.075 δ = 0.05

Figure 5. The voltages Vδ (in blue) and Vδ,2 (in red) at T = 6.

More precisely, we compare the above functions in space for different values δ. The solution
Vδ,2(x3,T ) is in red while Vδ(x3,T ) is in blue. Numerical results confirm that the approxima-
tion of Vδ(x3, t) by Vδ,2(x3, t) improves with the decrease of δ. We observe that Vδ,2 and Vδ

already almost coincide for δ = 0.05. It is also important to note that the main effect of local
perturbations p is the appearance of reflection phenomena.

7.3. Comparison of the transverse electric fields.

In Figure 6 and Figure 7, we represent for different values of δ respectively the Euclidean
norms |Ẽδ

T | and |Ẽδ,2
T | at final time T = 6 on the boundary ∂Ω. We observe that the result

obtained with δ = 0.075 cannot be distinguished from the one obtained with the 1D model
(Ẽδ,2

T ), while a substantial difference exists for δ = 0.15. As found in the 1D results, we also
observe that the electric wave is reflected because of the perturbation p localized at x3 = 8.
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Figure 6. |Ẽδ
T | with δ = 0.15, δ = 0.15, δ = 0.1, δ = 0.075 at T = 6.

Figure 7. |Ẽδ,2
T | with δ = 0.15, δ = 0.1, δ = 0.075, δ = 0.05 at T = 6.

7.4. Comparison of the longitudinal electric fields.

Finally, in order to check the asymptotic transverse polarization of the electric field, we
represent in Figures 8 and 9, again along ∂Ω at time T = 6 the longitudinal electric field Ẽδ

3

and Ẽδ,2
3 . We observe that the two longitudinal fields tend to 0 when δ tends to 0. On the other

hand, for δ = 0.15 we see that these fields are really non transversely polarized.

Figure 8. Ẽδ
3 with δ = 0.15, δ = 0.1, δ = 0.075, δ = 0.05 at T = 6.

Figure 9. Ẽδ,2
3 with δ = 0.15, δ = 0.1, δ = 0.075, δ = 0.05 at T = 6.
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7.5. Error between 3D and 1D models: order of convergence.

In Figure 10, we present –in red– the relative error between the voltage Vδ obtained by the
3D computations with the voltage Vδ,2 of the second-order 1D model (5.2) for different values
of δ and at a final time T . On the same figure we display –in blue– the relative error between
the electric voltage Vδ obtained by the 3D computations with the solution voltage of the 1D
limit model Vδ,0 (is the solution of (5.2) when δ = 0).

Figure 10. In blue: |‖Vδ − V0‖|. In red: |‖Vδ − Vδ,2‖|, for T = 6. (On the ”loglog”
scale).

δ |‖Vδ − Vδ,2‖| Order of convergence |‖Vδ − V0‖| Order of convergence
0.15 0.154 0.452
0.1 0.064 2.02 0.305 1.2

0.075 0.028 0.216
0.05 0.018 0.12

Table 1. The order of convergence of the voltages according to δ.

The numerical results obtained in in Table 1 show that the second-order model is better
approximation with respect to δ than the limit model (δ = 0). More precisely, its convergence
is of order 2, whereas the convergence of the limit model is of order 1.
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In the figure 11, we present -in red- the relative error between Eδ and Eδ,2, and -in blue- the
relative error between Eδ and E0, for different values of δ at a final time T = 6.

Figure 11. In blue: |‖Ẽδ − Ẽ0‖|. In red: |‖Ẽδ − Ẽδ,2‖|, for T = 6. (On the ”loglog”
scale).

δ |‖Ẽδ − Ẽδ,2‖| Order of convergence |‖Ẽδ − Ẽ0‖| Order of convergence
0.15 0.033 0.035
0.1 0.018 2.13 0.023 1.21

0.075 0.011 0.017
0.05 0.003 0.009

Table 2. The order of convergence of the 3D electric field according to δ.

As for the electrical voltage, the simulations show that the second order is a better approx-
imation with respect to δ. The error between the electric field solution of the 3D Maxwell
equations and the reconstruction of the electric field from the second order model is of order
O(δ2) whereas, one gets only O(δ) for the limit model.

8. Conclusions

We have presented a second order effective 1D model that take into account dispersive ef-
fects. We also have developed a stable numerical scheme for its space-time discretization.
Finally, we have carried out and performed the validation of this new effective model by com-
paring its results with those obtained for the 3D Maxwell’s model for small values of δ. Our
numerical results illustrate the interest of this new dispersive 1D model compared to the usual
one. However, it is important to note that all the results obtained in this paper as well as in [9]
are only valid for cylindrical coaxial cables. For this reason, it will be interesting to study the
extension of these ideas to the case of non-cylindrical coaxial cables.
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Modélisation et simulation. Université Paris-Saclay, 2016.
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