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Goal-Oriented Single-Letter Codes for Lossy Joint Source-Channel Coding

A new variation of the classical point-to-point joint source-channel coding (JSCC) is studied here, which is relevant for identifying goal-oriented semantic aspects of a transmitted source message over a noisy channel. For this new formulation, coined goal-oriented JSCC, we first introduce optimality criteria followed by necessary and sufficient conditions for global optimality. The focus of our main theoretical results is on investigating the implications of a special subclass of block codes, namely, the single-letter codes, via a theorem in which we provide necessary and sufficient conditions for the probabilistic matching of a goal-oriented source message with a noisy channel. We corroborate our theoretical results with two examples, in which goal-oriented single-letter codes and uncoded transmission perform optimally. Our results further highlight the important role of multiple fidelity constraints in goal-oriented communications.

I. INTRODUCTION

Goal-oriented semantic communication has recently received a growing interest from various research communities spanning from information and communication theory [START_REF] Kountouris | Semantics-empowered communication for networked intelligent systems[END_REF], [START_REF] Gündüz | Beyond transmitting bits: Context, semantics, and task-oriented communications[END_REF], game theory [START_REF] Güler | The semantic communication game[END_REF], control theory [START_REF] Wang | Value of information in networked control systems subject to delay[END_REF] to networking [START_REF] Popovski | Semantic-effectiveness filtering and control for post-5G wireless connectivity[END_REF]. The main motivation behind this in the vast majority of the literature, at least in the area of information and communication theory, can be found in Shannon's seminal work [START_REF] Shannon | A mathematical theory of communication[END_REF]. A key claim therein is that the fundamental problem of communication ought to deliberately disregard the semantic aspects of a message and its impact. Although this argument is valid and relevant in general, a goal-oriented semantic theory of information transmission with tangible applications to communication systems is still an open quest.

In this work, we consider a variant of the classical pointto-point JSCC model in which a remote semantic source is indirectly observed by a transmitter via an observable message and conveyed across a noisy channel whereas at the destination, the goal is for both the remote and observable messages to be received as accurate as possible depending on some fidelity constraints. Here we furnish the semantic and observations sources with single-letter distortion constraints responsible to penalize their transmission rates. Our setup possess goal-oriented attributes and intrinsic representation of information (e.g., features, structural and qualitative properties, embedding) because the presence of fidelity constraints, dictates whether it makes sense to recover the remote or observable messages or both.

The fundamental study of JSCC dates back to [START_REF] Shannon | A mathematical theory of communication[END_REF]. Although a general definite solution to this problem appears to be elusive, the convenient result of source-channel separation principle for point-to-point stationary and ergodic systems enables for modularity between the source and channel coding schemes without any loss of optimality [START_REF] Shannon | A mathematical theory of communication[END_REF]- [START_REF] Csiszár | Information Theory: Coding Theorems for Discrete Memoryless Systems[END_REF]. Unfortunately, this result does not scale to networks without loss of optimality. In practice, a tandem source-channel coding necessitates non-causal knowledge of all the message signals hence entailing large coding delays and very complex coders. Surprisingly, the tandem scheme of Shannon is not unique for the fundamental communication problem. In fact, as two counterexamples suggest in [START_REF] Goblick | Theoretical limitations on the transmission of data from analog sources[END_REF], [START_REF] Jelinek | Probabilistic Information Theory: discrete and memoryless models[END_REF], single-letter codes and uncoded transmission, may provide significant gains to the end-to-end communication system in terms of coding delays, complexity and robustness. For a detailed analysis on necessary and sufficient conditions that need to be satisfied for any discrete-time memoryless point-to-point communication system to be optimal we refer to [START_REF] Gastpar | To code, or not to code: lossy source-channel communication revisited[END_REF] (and the references therein). Contributions. The goal-oriented lossy JSCC setup proposed herein is new and can be seen as a non-trivial generalization of the goal-oriented lossy source coding setup proposed in [START_REF] Liu | A rate-distortion framework for characterizing semantic information[END_REF], [START_REF] Stavrou | A rate distortion approach to goaloriented communication[END_REF]. Compared to that setup, communication takes place here over noisy instead of noiseless channels. We also define a variant of source-channel codes, which we refer to as goal-oriented codes. Additionally, we derive necessary and sufficient conditions for global optimality of the specific goaloriented JSCC scheme (Lemma 2). More importantly, we study the criteria needed for the optimality of goal-oriented single-letter codes using a known lower bound on the so called semantic rate distortion function (SRDF) (Lemma 1). Provided that SRDF is a tight bound, we derive necessary and sufficient conditions for optimality of our JSCC scheme (Theorem 1, Corollary 1). Our theoretical findings are corroborated with two application examples, in which single-letter codes and uncoded transmission perform optimally (Section V). These examples are extensions to the celebrated ones introduced for binary sources and binary symmetric channels (BSC) [START_REF] Jelinek | Probabilistic Information Theory: discrete and memoryless models[END_REF] and Gaussian i.i.d sources and additive white Gaussian noise (AWGN) channels [START_REF] Goblick | Theoretical limitations on the transmission of data from analog sources[END_REF]. The key takeaway is that in goal-oriented communications, selecting the type of individual distortion measures according to the application/task requirements can significantly affect the choice of the recovered message over noisy channels.

II. PROBLEM STATEMENT

We consider a memoryless source described by the tuple (x, z) with probability distribution p(x, z) in the product space X × Z. The semantic or intrinsic information of the source is in x, which can only be indirectly observed, whereas z is the noisy observation of the source at the encoder side. We also consider a memoryless noisy channel described by the conditional probability distribution p(b|a) where (a, b) ∈ A × B.

Formally, the generic source-channel communication model is illustrated in Fig. 1. According to this setup, we can model the information source as a sequence of n-length i.i.d random variables (x n , z n ) and we assume that we know p(x) and the transition probability distribution p(z|x). The noisy channel is assumed to be given, with known capacity and capacity achieving distribution p(a m ). Since the source and channel have different cardinality to their respective alphabets, this means that the sequence of m-length random variables (a m , b m ) and the reproduction sequence of n-length random variables ( x n , z n ) need not be i.i.d, in general. Definition 1. (Goal-oriented block source-channel codes) The source-channel encoder (E) and decoder (D), are modeled by the mappings

f E : Z n → A m g D o : B m → Z n , g D s : B m → X n (1) 
where (g D o , g D s ) denote the observations and the semantic information decoder, respectively. The coding rate κ is the number of source symbols that have to be transmitted per channel use and is given by κ = n m . We consider two per-letter distortion measures responsible to penalize the semantic and observation information source given by d

Source/Channel Encoder

s : X × X → [0, ∞) and d o : Z × Z → [0, ∞),
respectively, a cost to possibly penalize the channel given by c : A → [0, ∞), and their corresponding average per-letter distortions and cost by

d n s (x n , x n ) = 1 n n t=1 d s (x i , x i ) (2) 
d n o (z n , z n ) = 1 n n t=1 d o (z i , z i ) (3) c m (a m ) = 1 m m t=1 c(a i ). (4) 
The average distortion for the semantic information and the observations is defined as

∆ s ≜ E {d n s (x n , x n )} , ∆ o ≜ E {d n o (z n , z n )} (5) 
while the average cost for the noisy channel is defined as

Γ ≜ E {c m (a m )} . (6) 
The main objecive of this work is to study necessary and sufficient conditions for the optimality of the goal-oriented JSCC setup of Fig. 1.

III. OPTIMALITY CONDITIONS OF THE SETUP IN FIG. 1

To provide the main result of this section, we need to recall some results from [START_REF] Stavrou | A rate distortion approach to goaloriented communication[END_REF] on goal-oriented compression, and on constrained/unconstrained channel capacity [START_REF] Gallager | Information Theory and Reliable Communication[END_REF].

We start with the definition of the SRDF.

Definition 2. (SRDF) [13, Lemma 1] For a given se- mantic/observation source (p(x), p(z|x), d s , d o ), the ergodic SRDF is characterized as follows 1 R(D o , D s ) = min q( z, x|z) E[ ds(z, x)]≤Ds E[do(z, z)]≤Do I(z; z, x) (7) 
where

d s (z, x) = x∈X p(x|z)d s (x, x), D s ∈ [D min s , D max s ] ⊂ [0, ∞), D o ∈ [D min o , D max o ] ⊂ [0, ∞).
We note that (7) has similar functional and topological properties as in classical rate distortion theory [START_REF] Berger | Rate Distortion Theory: A Mathematical Basis for Data Compression[END_REF], e.g., monotonicity, continuity, convexity etc.

One interesting result that stems from ( 7) is the following lower bound. Lemma 1. (Lower Bound) [13, Lemma 2] The characterization in (7) admits the following lower bound: [START_REF] Csiszár | Information Theory: Coding Theorems for Discrete Memoryless Systems[END_REF] where (R(D s ), R(D o )) represents the standard direct [START_REF] Berger | Rate Distortion Theory: A Mathematical Basis for Data Compression[END_REF] and indirect RDFs [START_REF] Berger | Rate Distortion Theory: A Mathematical Basis for Data Compression[END_REF], [START_REF] Dobrushin | Information transmission with additional noise[END_REF] subject to their individual distortion criteria, i.e.,

R L (D o , D s ) = max {R(D s ), R(D o )} ≤ R(D o , D s ),

R(D

o ) = min q( z|z) E[do(z, z)]≤Do I(z; z), (9) 
R(D s ) = min q( x|z) E[ ds(z, x)]≤Ds I(z; x). ( 10 
)
Moreover, R L (D o , D s ) is tight if and only if (iff) z -z -x and z -x -z, (11) 
are concurrently satisfied.

Next, we define the ergodic constrained and unconstrained channel capacity. Definition 3. (Constrained/unconstrained capacity) [START_REF] Gallager | Information Theory and Reliable Communication[END_REF] (i) For a given channel (p(b|a), c), the ergodic constrained capacity is characterized as follows

C(P ) = max p(b|a) E[c(a)]≤P I(a; b) (12) 
where P ∈ [P min , P max ] = [0, ∞).

(ii) The special case of (12) at which the channel p(b|a) disregards the input cost c(•) is characterized by the ergodic unconstrained capacity as follows

C = max p(b|a) I(a; b). ( 13 
)
We note that (13) is also obtained by [START_REF] Liu | A rate-distortion framework for characterizing semantic information[END_REF] if for c(a) < ∞, a ∈ A, C = lim P -→∞ C(P ).

In the sequel, we give two definitions, one for the achievable average distortion(s)-cost triplet (∆ s , ∆ o , Γ) and one for the optimality of the setup in Fig. 1. Clearly, Definitions 4, 5 are generalizations to those considered in [START_REF] Gastpar | To code, or not to code: lossy source-channel communication revisited[END_REF]Definitions 4,[START_REF] Popovski | Semantic-effectiveness filtering and control for post-5G wireless connectivity[END_REF].

Next, we state a lemma that identifies optimality conditions for the goal-oriented JSCC model in Fig. 1.

Lemma 2. (Optimality conditions) For a semanticobservations information source (p(x), p(z|x), d o , d s ) and a channel (p(b|a), c), the transmission using a goal-oriented source-channel code (f E , g D o , g D s ) of rate κ is optimal iff the following conditions are concurrently satisfied:

(i) κR(∆ o , ∆ s ) = C(Γ);
(ii) the pair (∆ o , ∆ s ) cannot be decreased without increasing R(∆ o , ∆ s ) and Γ cannot be decreased without decreasing C(Γ).

Proof: We sketch the proof because it is a modified version of the separation theorem [START_REF] Shannon | A mathematical theory of communication[END_REF]Theorem 21]. From the convexity and concavity of SRDF and the channel capacity, respectively, and the data processing inequality of the setup in Fig. 1, i.e., x n -z n -a m -b m -( x n , z n ), we obtain a converse part of the separation theorem, i.e., κR(∆ o , ∆ s ) ≤ C(Γ). For the direct part, suppose that there exists a triplet (f E , g D o , g D s ) such that κR(∆ o , ∆ s ) = C(Γ) -ϵ, for some ϵ > 0. Then, an immediate application of the direct part of the separation principle implies that there exists a better source-channel code ( f E , gD o , gD s ) such that κR(∆ o , ∆ s ) = C(Γ) -ε for some 0 < ε < ϵ. Hence, the optimal distortion(s)-cost triplet (∆ 0 , ∆ s , Γ) implies (i). This result is only necessary as there may be cases where each or both (∆ o , ∆ s ) (resp. Γ) can be reduced without increasing R(∆ o , ∆ s ) (resp. decreasing (CΓ)). Such cases can be prohibited by condition (ii).

Remark 1. (On Lemma 2) (i) In Lemma 2, the necessary condition is κR(∆ 0 , ∆ s ) = C(Γ) as the second condition that prohibits each or both (∆ 0 , ∆ s ) (resp. Γ) to reduce their value(s) may only happen when R(∆ o , ∆ s ) = 0 (resp. C(Γ) = C). (ii) It should be noted that Lemma 2 includes the case at which the bound in Lemma 1 is tight.

IV. GOAL-ORIENTED SINGLE-LETTER CODES

In this section, we consider single-letter codes to study the optimal performance of the goal-oriented JSCC system in Fig. 1. Our results apply once the bound in Lemma 1 is tight.

We start by introducing a special class to block sourcechannel codes introduced in Definition 1. Definition 6. (Goal-oriented single-letter source-channel codes) For the system model in Fig. 1, a goal-oriented singleletter source-channel code (f E , g D o , g D s ) is specified by an encoding function f E : Z → A, the observable decoding function g D o : B → Z and the semantic decoding function g D s : B → X .

Clearly, from the definition of block source-channel codes, we obtain κ = 1 if goal-oriented single-letter codes are considered. Since in Lemma 2, the crucial condition is κR(∆ o , ∆ s ) = C(Γ), we next state a theorem where we derive necessary and sufficient conditions for that condition to hold when κ = 1. 

Theorem 1. (Conditions for R L (∆ o , ∆ s ) = C(Γ)) R L (∆ o , ∆ s ) = C(Γ)
∆ s = E[ d(z, x)], that is, I * (z; x) = R(∆ s ); (iv) the pair (f E (•), g D o (•)) results into I(z; z) = I(a; b); (v) the pair (f E (•), g D s (•)
) results into I(z; x) = I(a; b). Proof: Suppose that for some values of (∆ o , ∆ s ), R L (∆ o , ∆ s ) = R(∆ o ) holds. Then, the system model in Fig. 1 admits the following series of inequalities

R L (∆ o , ∆ s ) (⋆) = R(∆ o ) = min p( z|z) E[d(z, z)]≤∆o I(z; z) (⋆⋆) ≤ I(z; z) (⋆⋆⋆) ≤ I(a; b) (⋆⋆⋆⋆) ≤ max p(a) E[c(a)]≤Γ I(a; b) = C(Γ).
where (⋆) holds iff p( z| x, z) = p( z|z) (see condition (ii)); (⋆⋆) holds with equality iff p( z|z) achieves R(∆ o ) (see condition (ii)); (⋆ ⋆ ⋆) follows by data processing inequality that corresponds to the system in Fig. 1 and holds with equality iff condition (iv) holds; (⋆ ⋆ ⋆⋆) holds with equality iff p(a) is capacity achieving distribution (see condition (i)). Similarly, one can show that when for some value of

(∆ o , ∆ s ), R L (∆ o , ∆ s ) = R(∆ s ), R L (∆ o , ∆ s ) = R(∆ s ) = C(Γ) iff conditions (i), (iii), (v), hold. Hence R L (∆ o , ∆ s ) = C(P ) holds iff conditions (i)-(v) hold.
Theorem 1 (except from (i)) is a generalization of [11, Lemma 2]. One interesting question that stems from Theorem 1 is if one can always find, constructively, goal-oriented single-letter source-channel codes that allow R L (∆ o , ∆ s ) to be achieved despite the fact that this bound is not achievable, in general, via the separation based schemes.

Next, we state a corollary to ensure that Lemma 2, (ii), is always true when

R(∆ o , ∆ s ) = R L (∆ o , ∆ s ) = C(Γ).
Corollary 1. Suppose that for the setup in Fig. 1, the tuple (p(x), p(z|x), d o , d s ) is transmitted across a channel (p(b|a), c) using goal-oriented single-letter codes

(f E , g D o , g D s ) such that R L (∆ o , ∆ s ) = C(Γ).
Then, the following statements hold. (i) Γ cannot be decreased without decreasing C(Γ) iff one of the following two conditions is satisfied: (A) I(a; b) < C; (B) I(a; b) = C and among the possible maximizers, the capacity achieving distribution p(a) is the unique maximer that achieves the lowest Γ.

(ii) Suppose that R L (∆ o , ∆ s ) = R(∆ o ).
Then ∆ o cannot be decreased without increasing R(∆ o ) iff one of the following two conditions is satisfied: (A) I(z; z) > 0; (B) I(z; z) = 0 and among the possible achieving minimizers, the rate-distortion achieving distribution p( z|z) is the unique minimizer that achieves the lowest

∆ o . (iii) Suppose that R L (∆ o , ∆ s ) = R(∆ s ).
Then ∆ s cannot be decreased without decreasing R(∆ s ) iff one of the following two conditions is satisfied: (A) I(z; x) > 0; (b) I(z; x) = 0 and among the possible achieving minimizers, the rate-distortion achieving distribution p( x|z) is the unique minizer that achieves the lowest ∆ s .

Proof: The proof of this corollary follows using similar arguments to [START_REF] Gastpar | To code, or not to code: lossy source-channel communication revisited[END_REF]Proposition 5] with some small changes. For completeness, we give the missing part of the proof in the Appendix A.

V. EXAMPLES

In this section, we construct two examples assuming transmission using goal-oriented single-letter codes with one channel use per source symbol, i.e., κ = 1.

A. Binary sources -BSC

First, we give an example for binary alphabet sources and channels. This example is a generalization of the celebrated result by Jelinek in [START_REF] Jelinek | Probabilistic Information Theory: discrete and memoryless models[END_REF]Section 11.8].

Example 1. Consider X = Z = A = B = X = Z = {0, 1}.
Moreover, the semantic source x is uniform and the transition matrix z given x = x is doubly stochastic both modeled by

p(x) = 1 2 1 2 , p(z|x) = 1 -w 1 w 1 w 1 1 -w 1 (14) 
where w 1 ∈ 0, 1 2 . Moreover, the distortion functions d o (z, z) and d s (x, x) are given by

d o (z, z) = 0, if z = z 1, otherwise , d s (x, x) = 0, if x = x 1, otherwise .
The channel is assumed to be the BSC with transition probability matrix p(b|a) given by

p(b|a) = 1 -ϵ 1 ϵ 1 ϵ 1 1 -ϵ 1 , ϵ 1 ∈ 0, 1 2 . (15) 
Using [START_REF] Berger | Rate Distortion Theory: A Mathematical Basis for Data Compression[END_REF] under Hamming distortions, the SRDF was obtained in closed form in [13, Example 1] as follows

R(D o , D s ) = R L (D o , D s ) = max {R(D o ), R(D s )} (16)
where

R(D o ) = 1 -H b (D o ), if D o ∈ (0, 1 2 ) 0, if D o ∈ [ 1 2 , ∞) (17) 
and

R(D s ) = 1 -H b ( Ds-w1 1-2w1 ), if D s ∈ (w 1 , 1 2 ) 0, if D s ∈ [ 1 2 , ∞) (18) 
where H b (•) denotes the binary entropy function.

On the other hand, the channel capacity of the BSC is given by C = 1 -H b (ϵ 1 ) [START_REF] Cover | Elements of Information Theory[END_REF]. Following, the optimality conditions of Lemma 2, we first require R L (∆ o , ∆ s ) = C. For this criterion to be valid, we need to check the following two cases. Suppose that R L (∆ o , ∆ s ) = R(∆ o ), then, from (5), we obtain

∆ o = E[d o (z, z)] = ϵ 1 , which further means that R(∆ o ) = 1 - H b (∆ o ) = 1 -H b (ϵ 1 ), hence R(∆ o ) = C. Suppose that R L (∆ o , ∆ s ) = R(∆ s )
; then, again from (5), we obtain

∆ s = E[d s (x, x)] = E[ d s (z, x)] = ϵ 1 (1 -2w 1 ) + w 1 , which further means that R(∆ s ) = 1 -H b ( ∆s-w1 1-2w1 ) = 1 -H b (ϵ 1 ), hence R(∆ s ) = C.
The previous analysis confirms Lemma 2, (i). On top of that, one can easily see that the conditions of Theorem 1 are also satisfied. Lemma 2, (ii), is clearly satisfied as an immediate consequence of Corollary 1 because the specific choices of w 1 and ϵ 1 guarantee that the maximizer p(a) is unique and achieves C and similarly the minimizers p( z|z) and p( x|z) achieve R(∆ o ) and R(∆ s ), respectively. Hence the specific realization of this goal-oriented sourcechannel communication model in Fig. 1 using single-letter codes is optimal.

B. i.i.d Gaussian sources-AWGN channel

In the next example, we consider a jointly Gaussian semantic source and noisy observations conveyed across an AWGN channel with the cost function being a power and the distortions the standard squared error. This example is a generalization of a result by Goblick in [START_REF] Goblick | Theoretical limitations on the transmission of data from analog sources[END_REF].

Example 2. Consider a joint Gaussian i.i.d process (x n , z n ), where the semantic source is such that x ∼ N (0; σ 2

x ), σ 2

x > 0, and the conditionally Gaussian distribution p G (z|x) is modeled by z = x + n, where n ∼ N (0; σ 2 n ) is an i.i.d sequence of random variables. Moreover, d o (z, z) and d s (x, x) are given as follows

d o (z, z) = (z -z) 2 , d s (x, x) = (x -x) 2 . ( 19 
)
The source is conveyed across a standard AWGN channel with transition probability p(b|a) modeled as b = a + m, for which m ∼ N (0; σ 2 m ), σ 2 m > 0, with input power constraint E[a 2 ] ≤ P , P > 0.

For the specific class of Gaussian semantic sources and noisy observations under squared-error distortions, the SRDF is obtained in closed form in [START_REF] Liu | A rate-distortion framework for characterizing semantic information[END_REF]Proposition 3] as follows

R(D o , D s ) = R L (D o , D s ) = max {R(D o ), R(D s )} (20) where R(D o ) = 1 2 log σ 2 z Do , if D o ∈ (0, σ 2 z ) 0, otherwise (21) 
and

R(D s ) =    1 2 log σ 4 x σ 2 z (Ds-σ 2 x|z ) , if D s ∈ σ 2 x|z , σ 4 x σ 2 z 0, otherwise (22) 
where

σ 2 x|z = σ 2 x σ 2 n σ 2 x +σ 2 n
is the conditional variance of the conditionally Gaussian distribution p G (x|z).

The constrained channel capacity of AWGN is well known and is given by C

(P ) = 1 2 log 1 + P σ 2 m [16]. Following Lemma 2, (i), we first require R L (∆ o , ∆ s ) = C(Γ). Similarly to Example 1, we check if (A) R(∆ o ) = C(Γ); (B) R(∆ s ) = C(Γ).
Since we have now the presence of the cost Γ > 0, the approach is slightly different. To ensure case (A), we require (similar to [START_REF] Goblick | Theoretical limitations on the transmission of data from analog sources[END_REF])

∆ o = σ 2 z σ 2 m Γ+σ 2 m ,
which based on standard terminology we referred to as the minimum observable achievable distortion (D min o ). To achieve this operational point, we need to find a specific encoder and decoder operating at D min o . Indeed, if we define the singleletter source-channel encoder and decoder pair as follows from the choice of (24). One can observe that the above methodology verifies the iff conditions of Theorem 1. Finally, Lemma 2, (ii), is verified because of Corollary 1. Hence, the specific realization of the goal-oriented communication system in Fig. 1, using single-letter codes and uncoded transmission is optimal.

a = Γ σ 2 z z, z = σ 2 z Γ Γ Γ + σ 2 m b, (23) 
The two application examples described above, demonstrate the vital role of the fidelity constraints in goal-oriented communications over noisy channels using single-letter codes.

VI. CONCLUSIONS AND ONGOING STUDY

We studied a new variation of a JSCC problem that has natural goal-oriented features from an inference perspective. We defined a variation of block source-channel codes and gave optimality conditions for the system model to operate optimally. Our main focus was on single-letter codes for which we derived a new theorem that provides necessary and sufficient conditions for the probabilistic matching of the semantic source message with the noisy channel. Two application examples were presented to corroborate our theoretical results.

The optimality conditions of our JSCC setup can be further studied to take into account bandwidth constraints (i.e., κ < 1, κ > 1) as Lemma 2 suggests. This study will follow in the extended version of the paper. It would be interesting to use tools from the machine learning community for more complex analysis of our setup and its extensions.
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 1 Fig. 1. The proposed goal-oriented source-channel communication model.
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 4 (Average distortion(s)-cost triplet) For a given (p(x), p(z|x), d o , d s ) and a fixed channel (p(b|a), c), we write (∆ s , ∆ o , Γ) given by (5)-(6) to denote the average distortion(s)-cost triplet achieved by a fixed code (f E , g D o , g D s ). In view of Definition 4, we will denote by (D s , D o , P ) a general distortion(s)-cost triplet not necessarily achievable. Definition 5. (Optimality criterion) The transmission of a semantic/observations source (p(x), p(z|x), d s , d o ), across a noisy channel (p(b|a), c) results into a source-channel code (f E , g D o , g D s ) that is optimal if the following two conditions are concurrently satisfied: (i) the distortion(s) (∆ o , ∆ s ) caused by the choice of (f E , g D o , g D s ), correspond to the minimum achievable distortions (hereinafter denoted by D min o , D min s ) operating at an input cost Γ with the best possible source-channel code of rate κ; (ii) the cost Γ obtained by (f E , g D o , g D s ), corresponds to the minimum cost required to achieve the distortion(s) (∆ o , ∆ s ) with the best possible source-channel code of rate κ.

  holds iff the following conditions are concurrently satisfied: (i) the distribution p(a) of a = f E (z) is capacity achieving for the channel (p(b|a), c) at an average input cost Γ = E[c(a)], that is, I * (a; b) = C(Γ); (ii) the conditional independence p( x| z, z) = p( x| z) holds with z = g D o (b) given z be the achieving distribution of SRDF at R(∆ o ) for an average distortion ∆ o = E[d(z, z)], that is, I * (z; z) = R(∆ o ); (iii) the conditional independence p( z| x, z) = p( z| x) holds with x = g D o (b) given z be the achieving distribution of SRDF at R(∆ s ) for an average distortion

  Now choose the triplet (f E , g D o , g D s ) in Definition 6 such that f E (z) = z, g D o (b) = b, g D s (b) = b (i.e., identity maps), which further implies that a = z, b = z or b = x.
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 4222 then, the resulting ∆ o = E[(zz) 2 ] = D min o and case (A) is verified. To ensure case (B), we require ∆ s = σ +Γ) + σ 2 x|z , which is the minimum semantic achievable distortion D min s . To achieve D min s , we choose the following pair of single-letter encoder and decoder: where µ x|z ≡ E[x|z] = σxz σ conditional mean of p G (x|z). The choice in (24) results into an operational distortion∆ s = E[(xx) 2 ] = E[(x -µ x|z + µ x|z -x) 2 ] ( * ) = E[(x -µ x|z ) 2 ] + E[(µ x|z -x) 2 ] ( * * ) = D mins where ( * ) follows from the orthogonality principle; ( * * )

The constrained set in[START_REF] Gallager | Information Theory and Reliable Communication[END_REF] is compact (for both finite or abstract alphabets) and the mutual information in[START_REF] Gallager | Information Theory and Reliable Communication[END_REF] is lower semi-continuous on q( z, x|z). As a result, from Weierstrass' extreme value theorem, the infimum is attained by some q * ( z, x|z) and we can formally replace it with minimum.

APPENDIX A PROOF OF COROLLARY 1

We only prove statement (iii) as statements (i), (ii) are already known from [11, 

But when R(∆ s ) > 0 we know that its curve is convex and strictly decreasing with respect to ∆ s (see e.g., [START_REF] Csiszár | Information Theory: Coding Theorems for Discrete Memoryless Systems[END_REF]Chapter 8]), hence there is a unique ∆ s for each point on the curve R(∆ s ). This implies that ∆ s cannot be decreased without increasing R(∆ s ). Necessity of (A): If ∆ s ≥ ∆ max s , then, I(z; x) = 0, hence it is possible to have multiple ∆ s 's without changing the value of R(∆ s ). Sufficiency of (B): If I(z; x) = 0 and among the possible minimizers, the rate-distortion achieving distribution p( x|z) is the one that achieves the lowest ∆ s this means that it is impossible to alter ∆ s without changing R(∆ s ) because we will need to change p( x|z) (this argument is trivially obtained if p( x|z) is unique).

Necessity of (B): If I(a; b) = 0, then, ∆ s ≥ ∆ max s , hence there are multiple minimizers p( x|z) that achieve different values of ∆ s 's but not necessarily its minimum value which is ∆ max s . (again this argument is trivially obtained as long as p( x|z) is unique).