Modelling and Simulation of PCB Embedded Power Electronic Layouts

ECPE Workshop "Embedding and Advanced Integration Technologies in Power Electronics"

Cyril BUTTAY^A, Bahaeddine BEN HAMED^M, Ahmed AHMED^M, Guillaume REGNAT^M, Rémi PERRIN^M

^A Laboratoire Ampère, Lyon, France ^M Mitsubishi Electric R&D Centre Europe, Rennes, France

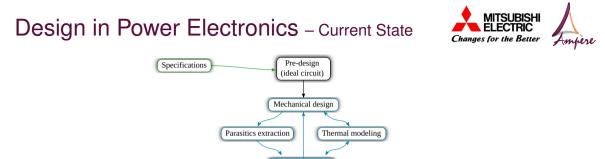
- 1 Current design tools for power electronics
- 2 Proposition for PCB-embedded electronics
- 8 Export from eCAD
- 4 Electrical model
- 5 Thermal model

1 Current design tools for power electronics

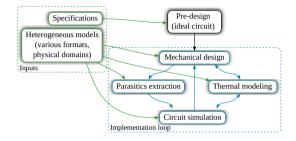
- 2 Proposition for PCB-embedded electronics
- B Export from eCAD
- 4 Electrical model
- 5 Thermal model

Design in Power Electronics - Current State

Specifications



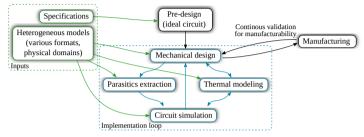
Design in Power Electronics - Current State



Circuit simulation

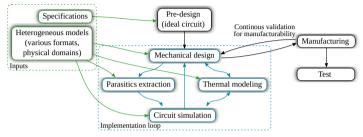
• Implementation is a complex affair:

Design in Power Electronics - Current State



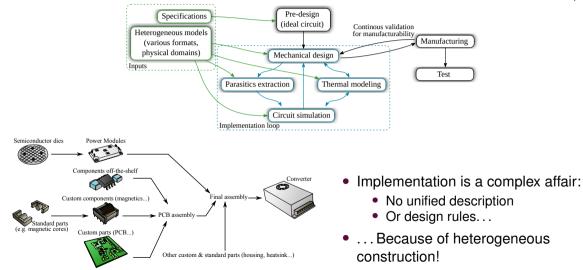
- Implementation is a complex affair:
 - No unified description

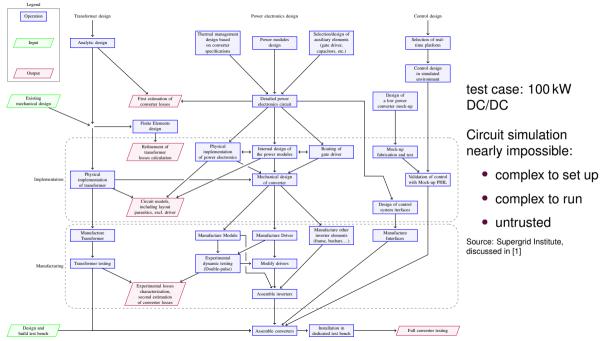
Design in Power Electronics – Current State



- Implementation is a complex affair:
 - No unified description
 - Or design rules...

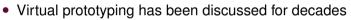
Design in Power Electronics - Current State




- Implementation is a complex affair:
 - No unified description
 - Or design rules...

Design in Power Electronics - Current State

Cyril BUTTAY



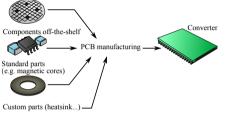
- · Virtual prototyping has been discussed for decades
 - + Fostered by more powerful computers, more capable software
 - Hampered by lack of unified description, poor models

- Virtual prototyping has been discussed for decades
 - + Fostered by more powerful computers, more capable software
 - Hampered by lack of unified description, poor models
- It is needed more than ever!
 - · Integration means costlier prototypes, with longer lead times
 - Integrated systems cannot be debugged/repaired!

- + Fostered by more powerful computers, more capable software
- Hampered by lack of unified description, poor models
- It is needed more than ever!
 - Integration means costlier prototypes, with longer lead times
 - Integrated systems cannot be debugged/repaired!

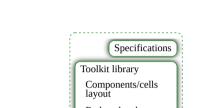
→ Can we generate virtual prototypes for PCB embedded-electronics?

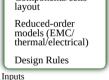
Current design tools for power electronics


2 Proposition for PCB-embedded electronics

3 Export from eCAD

- 4 Electrical model
- 5 Thermal model


Design in Power Electronics – Proposition



PCB (embedding) can bring:

Semiconductor dies

- more rationalized manufacturing:
 - fewer packaging levels
 - single-board-converters
- one-stop design tool (eCAD):
 - complete description of a design
 - design-rules validation (design for manufacturing)

MITSUBISHI

Changes for the Better

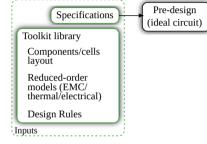
Cyril BUTTAY

7/26 23/11/2022

PCB (embedding) can bring:

Standard parts

(e.g. magnetic cores)

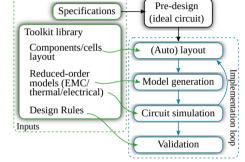

Custom parts (heatsink...

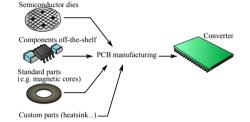
Semiconductor dies

Components off-the-shelf

- more rationalized manufacturing:
 - fewer packaging levels
 - single-board-converters
- one-stop design tool (eCAD):
 - complete description of a design
 - design-rules validation (design for manufacturing)

PCB manufacturing


Cvril BUTTAY


Simulation of PCB-embedded layouts

23/11/2022 7 / 26

PCB (embedding) can bring:

- more rationalized manufacturing:
 - fewer packaging levels
 - single-board-converters
- one-stop design tool (eCAD):
 - complete description of a design
 - design-rules validation (design for manufacturing)

Design in Power Electronics – Proposition

23/11/2022

2 7/26

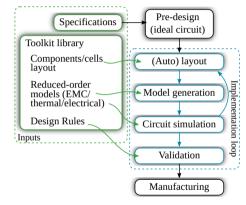
Design in Power Electronics – Proposition

PCB manufacturing

Converter

Simulation of PCB-embedded layouts

Standard parts

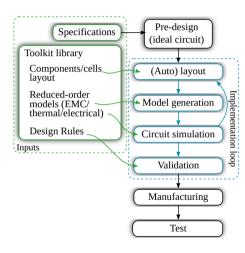

(e.g. magnetic cores)

Custom parts (heatsink...

Semiconductor dies

Components off-the-shelf

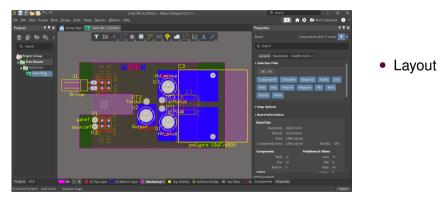
- more rationalized manufacturing:
 - fewer packaging levels
 - single-board-converters
- one-stop design tool (eCAD):
 - complete description of a design
 - design-rules validation (design for manufacturing)

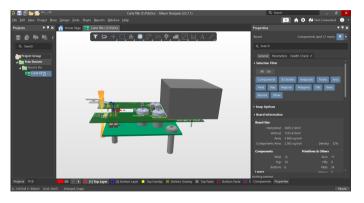


Design in Power Electronics – Proposition

- Components off-the-shelf PCB manufacturing Standard parts (e.g. magnetic cores) Custom parts (heatsink...)
- PCB (embedding) can bring:

Semiconductor dies


- more rationalized manufacturing:
 - fewer packaging levels
 - single-board-converters
- one-stop design tool (eCAD):
 - complete description of a design
 - design-rules validation (design for manufacturing)



Cyril BUTTAY

- Layout
- Component location
- Z-positionning

		rte fille (1) PcbDoc		 	Proper	C43	
lis lit 4		r 10 +	Bill of Materials for		Board		112 more)
in a la CMO VA	ariations) 💌						 0
					Properties		
					General Columns		
					+ BOM Hems		
					- DOM HEMS		Arcs
					 Supply Chain 		
						usp	
					Supply Chain Data		
					Cached		
					Cathed		
					Export Options		
						Add to Project	

- Layout
- Component location
- Z-positionning
- Components info

••× 🐴	Home Page 🔜 Car		1 uh 🗰 🕫 o	n o 🗆)	Proper			
100. a			Bill of Materials for I			Board		and 12 m	cre)
Ji INo Va	riations] 💌							0	
mmeril	Description	Designator							
0n1/630V	Capacité plastiqu.	C1	2220	CAP		Properties			
E1630V	Capacité plastiqu.		2220						
hypro 10uF/650V	Capacité plastiqu.		CAPA CANOCIU			< BOM Items			
her	Connecteur 2 pol.								
teT.	Pastile		PAD100						
						 Supply Chain 			
							1 00		
						Supply Chain Data			
						Cached	Real-time		
						+ Export Options			
							MS-Excel (*als. *alise, *alism)	• I I	
							No Template		

- Layout
- Component location
- Z-positionning
- Components info
- And much more: schematic, materials...

••× 🐴	Home Page 🔜 Car		1 uh 🗰 🕫 o	n o 🗆)	Proper			
100. a			Bill of Materials for I			Board		and 12 m	cre)
Ji INo Va	riations] 💌							0	
mmeril	Description	Designator							
0n1/630V	Capacité plastiqu.	C1	2220	CAP		Properties			
E1630V	Capacité plastiqu.		2220						
hypro 10uF/650V	Capacité plastiqu.		CAPA CANOCIU			< BOM Items			
her	Connecteur 2 pol.								
teT.	Pastile		PAD100						
						 Supply Chain 			
							1 00		
						Supply Chain Data			
						Cached	Real-time		
						+ Export Options			
							MS-Excel (*als. *alise, *alism)	• I I	
							No Template		

- Layout
- Component location
- Z-positionning
- Components info
- And much more: schematic, materials...

Can we generate a virtual prototype from that description?

Cyril BUTTAY

To demonstrate systematic generation of electric and thermal models from eCAD

• Does the eCAD really contain all needed data? can they be exported?

To demonstrate systematic generation of electric and thermal models from eCAD

- Does the eCAD really contain all needed data? can they be exported?
- Are manual adjustments needed somewhere?

To demonstrate systematic generation of electric and thermal models from eCAD

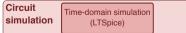
- Does the eCAD really contain all needed data? can they be exported?
- Are manual adjustments needed somewhere?
- Are the generated models actually usable? (and if not, can automatic model simplification be implemented?)

Selection of commercial software

- eCAD: Altium
 - Already in use in our team

PCB Layout (Altium Designer)	eCAD
	,

Finite element simulation	
Thermal simulation (Ansys icepak)	Circuit parasitics calculation (Q3D)
	,



Selection of commercial software

- eCAD: Altium
 - · Already in use in our team
- Modelling of circuit parasitics: Ansys Q3D Extractor
 - Already in use in our team
 - Can directly generate SPICE models of multiport layout

Finite element simulation	
Thermal simulation (Ansys icepak)	Circuit parasitics calculation (Q3D)
Circuit	

simulation

Simulation of PCB-embedded layouts

Selection of commercial software

- eCAD: Altium
 - · Already in use in our team
- Modelling of circuit parasitics: Ansys Q3D Extractor
 - Already in use in our team
 - Can directly generate SPICE models of multiport layout
- Thermal modelling: Ansys Icepak
 - Geometry import similar to that of Q3D
 - · Here we only consider heat conduction

Finite element simulation	
Thermal simulation (Ansys icepak)	Circuit parasitics calculation (Q3D)
Circuit Time dam	sis simulation

(LTSpice)

(LTSpice)

Selection of commercial software

- eCAD: Altium
 - Already in use in our team
- Modelling of circuit parasitics: Ansys Q3D Extractor
 - Already in use in our team
 - Can directly generate SPICE models of multiport layout

Simulation of PCB-embedded layouts

- Thermal modelling: Ansys Icepak
 - Geometry import similar to that of Q3D
 - Here we only consider heat conduction
- Circuit simulation: LTSpice (and PSIM)

Finite elemer simulation	nt		
Thermal simi (Ansys ice		Circuit parasitics calculation (Q3D	
Circuit		ain simulation	

simulation

Simulation of PCB-embedded layouts

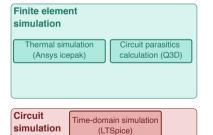
Selection of commercial software

- eCAD: Altium
 - Already in use in our team
- Modelling of circuit parasitics: Ansys Q3D Extractor
 - · Already in use in our team
 - Can directly generate SPICE models of multiport layout
- Thermal modelling: Ansys Icepak
 - · Geometry import similar to that of Q3D
 - Here we only consider heat conduction
- Circuit simulation: LTSpice (and PSIM)
 - Models available for many power devices

Finite element simulation	
Thermal simulation (Ansys icepak)	Circuit parasitics calculation (Q3D)
Circuit Time-dom	pain simulation

(LTSpice)

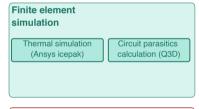
10/26

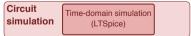

Selection of commercial software

- eCAD: Altium
 - Already in use in our team
- Modelling of circuit parasitics: Ansys Q3D Extractor
 - · Already in use in our team
 - Can directly generate SPICE models of multiport layout

Simulation of PCB-embedded layouts

- Thermal modelling: Ansys Icepak
 - · Geometry import similar to that of Q3D
 - Here we only consider heat conduction
- Circuit simulation: LTSpice (and PSIM)
 - Models available for many power devices
 - Free to use




10/26

Selection of commercial software

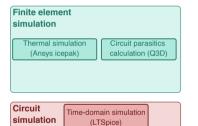
- eCAD: Altium
 - Already in use in our team
- Modelling of circuit parasitics: Ansys Q3D Extractor
 - Already in use in our team
 - Can directly generate SPICE models of multiport layout
- Thermal modelling: Ansys Icepak
 - · Geometry import similar to that of Q3D
 - Here we only consider heat conduction
- Circuit simulation: LTSpice (and PSIM)
 - · Models available for many power devices
 - Free to use
 - Probably not so powerful

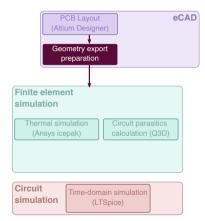
Current design tools for power electronics

2 Proposition for PCB-embedded electronics

8 Export from eCAD

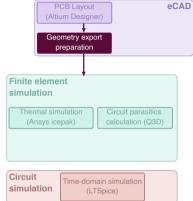
- 4 Electrical model
- 5 Thermal model




PCB Layout (Altium Designer)	eCAD

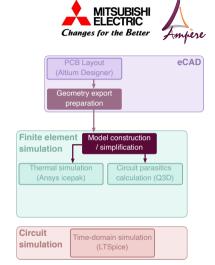
Many file format available for export;

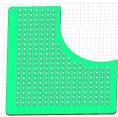
File formats - [2]

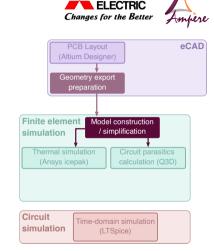

Many file format available for export;

In practice, when imported in Ansys:

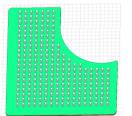
· · · · ·				
	Gerber	ODB++	IPC-2581	EDB
3D-model		-	_	++
Layout details		_	+	++
(materials,Nets)				
Components details		_	+	++

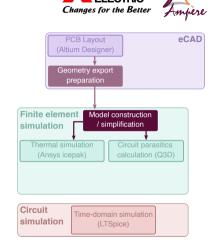

Geometry import




- Geometry import
- Reconstruction of embedded chips (not properly exported)

- Geometry import
- Reconstruction of embedded chips (not properly exported)
- 3 Simplification of the geometry
 - Faceting of round shapes (feature of Ansys)
 - Grouping of vias (custom routine)





MITSUBISHI

- Geometry import
- Reconstruction of embedded chips (not properly exported)
- 3 Simplification of the geometry
 - Faceting of round shapes (feature of Ansys)
 - Grouping of vias (custom routine)

MITSUBISHI

FI ECTRIC

Ø Further simulation-dependent pre-processing

Cyril BUTTAY

Simulation of PCB-embedded layouts

23/11/2022 13 / 26

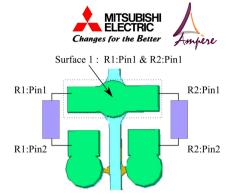
Current design tools for power electronics

Proposition for PCB-embedded electronics

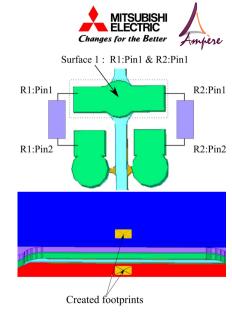
3 Export from eCAD

5 Thermal model

Computation of circuit parasitics


• Pre-processing:

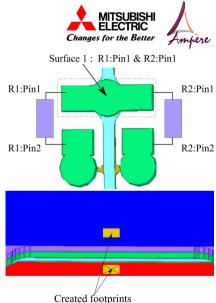
Simulation of PCB-embedded layouts


Computation of circuit parasitics

- Pre-processing:
 - Merge pads when too close (model simplification)

Computation of circuit parasitics

- Pre-processing:
 - Merge pads when too close (model simplification)
 - Create contact points on large surfaces


23/11/2022

15/26

- Pre-processing:
 - Merge pads when too close (model simplification)
 - Create contact points on large surfaces

Computation of circuit parasitics

• Automatically place terminals for computation ("sinks" and "source" in Q3D)

Simulation of PCB-embedded layouts

23/11/2022 15 / 26

Computation of circuit parasitics

• Pre-processing:

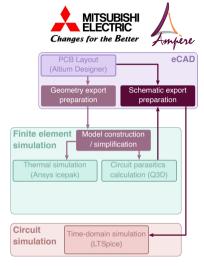
- Merge pads when too close (model simplification)
- Create contact points on large surfaces
- Automatically place terminals for computation ("sinks" and "source" in Q3D)

• Run calculation of stray R, L, C between all terminals

(A	PCB Layout tium Designe	er)	Ampe
	+		
	eometry expo preparation	ont -	
Finite elem		l constructio	n
simulation	/ si	mplification	
Thermal si (Ansys i		Circuit pa	
(,	Jopany		(0.0.0)

Pre-processing:

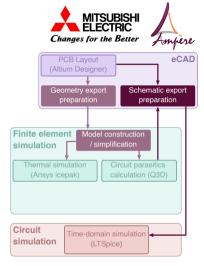
- Merge pads when too close (model simplification)
- Create contact points on large surfaces
- Automatically place terminals for computation ("sinks" and "source" in Q3D)
- Run calculation of stray R, L, C between all terminals
- Generate a SPICE model (Q3D feature)

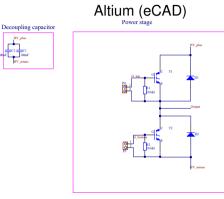

Computation of circuit parasitics

MITSUBISHI FI ECTRIC Chanaes for the Better Ampere eCAD Schematic export Geometry export preparation **Finite element** Model construction / simplification simulation Circuit Time-domain simulation simulation

Computation of circuit parasitics

• Pre-processing:

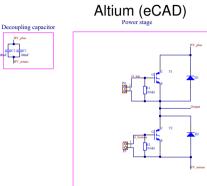

- Merge pads when too close (model simplification)
- Create contact points on large surfaces
- Automatically place terminals for computation ("sinks" and "source" in Q3D)
- Run calculation of stray R, L, C between all terminals
- Generate a SPICE model (Q3D feature)
- Return model and list of terminals to eCAD


Computation of circuit parasitics

• Pre-processing:

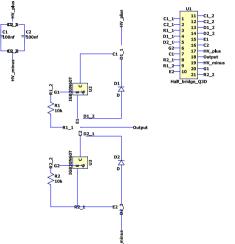
- Merge pads when too close (model simplification)
- Create contact points on large surfaces
- Automatically place terminals for computation ("sinks" and "source" in Q3D)
- Run calculation of stray R, L, C between all terminals
- Generate a SPICE model (Q3D feature)
- Return model and list of terminals to eCAD
- Generate LTSpice schematic

Circuit schematics

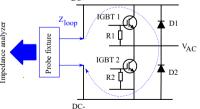


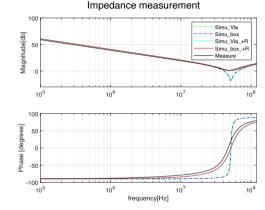
LTSpice (circuit simulation)

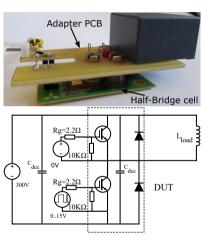
Circuit schematics

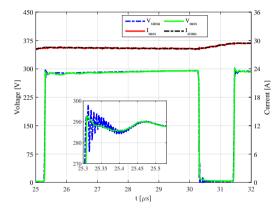


- Reproduce location of symbols
- Layout model as a single block
- Connections generated automatically




Experimental validation - Layout Impedance


- No negative effect of via simplification
- Measurement accuracy limited (2-wire, contact probe...)
- Good simulation/experiment agreement overall


Impedance analyzer

Cyril BUTTAY

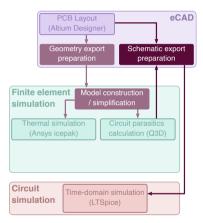
Experimental validation - Double-pulse test

- · Proof of concept for systematic model generation
 - No manual modification of Half Bridge PCB model
- No LTSpice model available for used IGBTs and diodes

Current design tools for power electronics

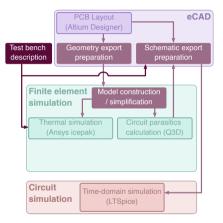
Proposition for PCB-embedded electronics

3 Export from eCAD


4 Electrical model

6 Thermal model

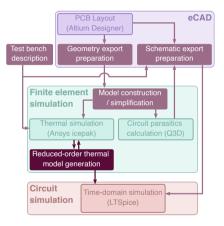
Generation of a thermal model



Starting from imported geometry:

- Define heat sources
 - Manual selection of the components to be considered in the eCAD export stage

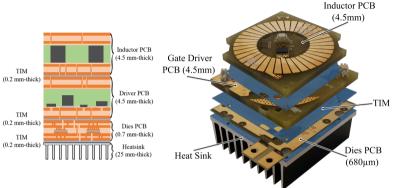
Generation of a thermal model



Starting from imported geometry:

- Define heat sources
 - Manual selection of the components to be considered in the eCAD export stage
- 2 Application of boundary conditions
 - · Not implemented yet for electrical simulations
 - Approach similar to that of the VHDL "test benches"

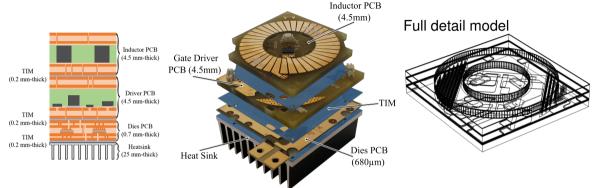
Generation of a thermal model



Starting from imported geometry:

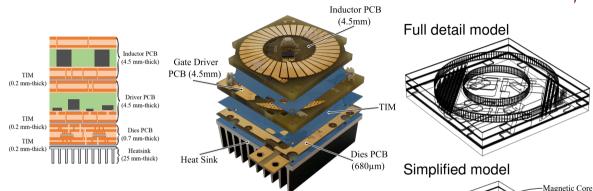
- Define heat sources
 - Manual selection of the components to be considered in the eCAD export stage
- Application of boundary conditions
 - · Not implemented yet for electrical simulations
 - Approach similar to that of the VHDL "test benches"
- 3 Reduced-order thermal model generation
 - Sequentially "activate" each power source
 - Perform a FEM simulation (Ansys Icepak)
 - Export transient temp. rise of each component
 - Identify R_{Th}C_{Th} models and generate Spice Netlist

Geometry simplification – Description [3]



Two approaches investigated:

Geometry simplification – Description [3]



Two approaches investigated:

No simplification (inc. vias)

Geometry simplification – Description [3]

Two approaches investigated:

- No simplification (inc. vias)
- "Layer-based Homogenization" (uniform conductivity on each layer)

Cyril BUTTAY

Die HF

Die LF

Geometry Simplification – Results [3]

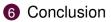
Simulations performed with Comsol **Full detail model:**

- 1.5 M elements
- thinest tracks had to be removed

Simplified model:

- 0.3 M elements
- Anisotropic conductivity for
 - via-filled areas
 - Cu layers with low copper filling

Validation of simulation results with experiments


RTD location	Exp.	Simplified	Full
HF Die RTD	37 ℃	35 ℃	38 ℃
LF Die RTD	34 ℃	34 ℃	34 °C
Outer Ind. RTD	27 ℃	32 ℃	31 ℃
Inner Ind. RTD	30 ℃	33 ℃	31 ℃

(ΔT with ambient temperature for embedded sensors)

- Current design tools for power electronics
- Proposition for PCB-embedded electronics
- B Export from eCAD
- 4 Electrical model
- 5 Thermal model

Cyril BUTTAY

Conclusion

Progress so far

- Electrical model:
 - Full workflow demonstrated on simple circuit (half bridge)
 - "Test bench" to be implemented
 - automatic connection of input/outputs
 - modeling of external metal planes (such as heatsinks)
 - Validation to be performed on more complex boards
- Thermal model:
 - eCAD export / FEM import done (inc. selection of relevant components)
 - Currently working Zth calculations and reduced RC model generation

To demonstrate systematic generation of electric and thermal models from eCAD

- Does the eCAD really contain all needed data? can they be exported?
 - Export is possible with minimum losses
 - Special scripts required in addition to EDB export
 - Interface with outside world not included in eCAD

To demonstrate systematic generation of electric and thermal models from eCAD

- Does the eCAD really contain all needed data? can they be exported?
 - Export is possible with minimum losses
 - Special scripts required in addition to EDB export
 - Interface with outside world not included in eCAD
- Are manual adjustments needed somewhere?
 - ✓ No manual adaptation of the models required so far
 - Manual selection of components to be considered for thermal analysis

To demonstrate systematic generation of electric and thermal models from eCAD

- Does the eCAD really contain all needed data? can they be exported?
 - Export is possible with minimum losses
 - Special scripts required in addition to EDB export
 - Interface with outside world not included in eCAD
- Are manual adjustments needed somewhere?
 - ✓ No manual adaptation of the models required so far
 - Manual selection of components to be considered for thermal analysis
- Are the generated models actually usable?
 - Simplification required for vias (but can be done automatically)
 - ? Test on larger circuits will show if this approach works

Bibliography I

- T. Lagier, P. Dworakowski, L. Chédot, F. Wallart, B. Lefebvre, J. Maneiro, J. Páez, p. ladoux, and C. Buttay, "How Good are the Design Tools in Power Electronics?," in *EPE'20 ECCE Europe*, (Lyon (Virtual conference), France), Sept. 2020.
- [2] B. Ben Hamed, G. Regnat, G. Lefèvre, and C. Buttay, "Automatic Model Generation for PCB-based Power Electronics," in *Conference on Integrated Power Electronics Systems (CIPS)*, (Berlin, Germany), Mar. 2022.
- [3] R. Caillaud, C. Buttay, R. Mrad, J. Le Lesle, F. Morel, N. Degrenne, and S. Mollov, "Thermal Considerations of a Power Converter with Components Embedded in Printed Circuit Boards," *IEEE Transactions on Components, Packaging and Manufacturing Technology*, 2019.

Thanks for your attention

This work has been supported by Mitsubishi Electric R&D Centre Europe

cyril.buttay@insa-lyon.fr

