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AMENABILITY, EXACTNESS AND WEAK CONTAINMENT PROPERTY

FOR GROUPOIDS

CLAIRE ANANTHARAMAN-DELAROCHE

Dedicated to the memory of Eberhard Kirchberg

Abstract. From the mid-1970s, Eberhard Kirchberg undertook a remarkable extensive study
of C∗-algebras exactness whose applications spread out to many branches of analysis. In this
review we focus on the case of groupoid C∗-algebras for which the notion of exactness needs to be
better understood. In particular some versions of exactness play an important role in the study
of the weak containment problem (WCP), that is whether the coincidence of the full and reduced
groupoid C∗-algebras implies the amenability of the groupoid or not.

Introduction

The study of C∗-algebras exactness was initiated by Kirchberg as early as the mid-1970s. In
the short note [44] he announced several results whose proofs were published along with many
other major contributions in the 1990s [47, 45, 46].

An unexpected link was found at the end of the 1990s between the Novikov higher signatures
conjecture for a discrete group Γ and the exactness of its reduced C∗-algebra C∗r (Γ). This follows
from the discovery by Higson and Roe [33] that a finitely generated group Γ has the so-called Yu’s
property A [80] if and only if Γ admits an amenable action on a compact space X (then we say that
the group is amenable at infinity). Such a group satisfies the above mentioned Novikov conjecture
[80, 33, 32] and morever C∗r (Γ) is exact since it is a sub-C∗-algebra of the nuclear crossed product
C(X) o Γ. At the same time extensive studies of amenable actions (and amenable groupoids)
[3] and of reduced group C∗-algebras exactness [49] had just appeared. This series of results was
finally crowned by the proof of the fact that if C∗r (Γ) is exact then Γ admits an amenable action on
a compact space [31, 62, 5]. All this raised a renewed interest about various notions of exactness
for locally compact groups.

It turned out to be potentially interesting to extend these notions to the case of locally compact
groupoids. A first attempt was presented in [4]. A detailed presentation was made available in
[6]. Nowadays, some versions of groupoid exactness appear to be essential in the study of the
weak containment problem (WCP).
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2 CLAIRE ANANTHARAMAN-DELAROCHE

The purpose of this paper is to describe some of the history of this subject. It is organized
as follows. In section 1, after pointing out the fact, due to Kirchberg [45], that many full group
C∗-algebras are not exact, we focus on exactness of reduced group C∗-algebras, compared with
two other notions of exactness, namely KW-exactness introduced by Kirchberg and Wassermann
in [49], and amenability at infinity. The three notions are equivalent for discrete groups and we
describe what is known in general for locally compact groups.

In Section 2 we recall some facts about measured and locally compact groupoids and their
operator algebras and Section 3 provides a short summary about amenable groupoids. In Section
4 we introduce the notion of amenability at infinity for a locally compact groupoid. Here, compact
spaces have to be replaced by locally compact spaces that are fibred on the space of units of the
groupoid in such a way that the projection is a proper map. When the groupoid G is étale, it
has a universal fibrewise compactification βrG, called its Stone-Čech fibrewise compactification.
Then, amenability at infinity of G is equivalent to the fact that the canonical action of G on βrG
is amenable, and can be expressed in terms of positive type kernels, exactly as for groups.

In Section 5 we describe the relations between the various notions of exactness that are defined
for étale groupoids. They are equivalent when we assume the inner amenability of the groupoid.
Inner amenability is well understood in the group case, in particular all discrete groups are inner
amenable in our sense, but this notion remains mysterious for groupoids. In this section we also
introduce a weak notion of exactness for groupoids, that we call inner exactness. It is automatically
fulfilled for transitive groupoids and in particular for all locally compact groups, but it has proven
useful in other contexts.

From 2014 many remarkable results have been obtained in the study of the (WCP) for groupoids,
which crucially involve exactness. We review them in Section 6. Finally, in the last section we
recap some open problems.

1. Exact group C∗-algebras

Unlike the functor (·)⊗max A (maximal tensor product with the C∗-algebra A), the minimal
tensor product functor (·) ⊗ A is not necessarily exact, that is, given a short exact sequence of
C∗-algebras 0→ I → B → B/I → 0, the sequence

0→ I ⊗A→ B ⊗A→ (B/I)⊗A→ 0

is not always exact in the middle. When the functor (·)⊗A is exact, one says that the C∗-algebra
A is exact. This notion, so named in the pioneering paper [44], has been the subject of Kirchberg’s
major contributions from the end of the 1980s. As early as 1976, Simon Wassermann showed in
[77] that the full C∗-algebra C∗(F2) of the free group F2 on two generators is not exact. In fact,
when Γ is a finitely generated residually finite group, the full group C∗-algebra C∗(Γ) is exact if
and only if the group Γ is amenable1(see [44], and [45, Proposition 7.1] for a more general result).

1To the author’s knowledge, there is so far no example of a non-amenable group G such that C∗(G) is exact.
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This is in sharp contrast with the behaviour of the reduced group C∗-algebras. For instance,
let G be a locally compact group having a closed amenable subgroup P with G/P compact and
let H be any closed subgroup of G. Then the full crossed product C∗-algebras C(G/P ) oH and
C0(H \G) o P are Morita equivalent [69] and C0(H \G) o P is nuclear since P is amenable. It
follows that C(G/P )oH is nuclear and that the reduced crossed product C∗-algebra C(G/P )orH
is nuclear too. But the reduced group C∗-algebra C∗r (H) embeds into C(G/P ) or H since G/P
is compact and therefore C∗r (H) is an exact C∗-algebra. This well-known argument applies for
instance to closed subgroups of almost connected groups.

A locally compact group is said to be C∗-exact2 if its reduced group C∗-algebra is C∗-exact.
Most familiar groups are known to be exact. The first examples of discrete groups that are not
C∗-exact are Gromov monsters [30]. Osajda has given other examples [61], and he even built
residually finite groups that are not C∗-exact [60].

Clearly, an easy way to show that the reduced group C∗-algebra C∗r (G) of a locally compact
group G is exact is to exhibit a continuous action of G on a compact space X such that the
reduced crossed product C(X) or G is nuclear. When this property is fulfilled with G a discrete
group, it follows that the G-action on X is (topologically) amenable [2, Theorem 4.5], [5, Theorem
5.8]. This notion plays an important role the study of reduced group C∗-algebras exactness. It
will be recalled in the subsequent sections in the more general context of groupoids. It is called
amenability at infinity [3, Definition 5.2.1] (or boundary amenability).

When a locally compact group G has an amenable action on a compact space, it has a property
stronger than C∗-exactness, that was introduced by Kirchberg and Wassermann [49], and is now
often called KW-exactness (see for instance [13, Definition 5.1.9]).

Definition 1.1. A locally compact group G is KW-exact if the functor A 7→ A or G is exact,
that is, for every short exact sequence of G-C∗-algebras 0→ I → A→ A/I → 0, the sequence

0→ I or G→ Aor G→ (A/I) or G→ 0

is also exact.

The theorem below, which presents the currently known relations between the different defini-
tions of exactness for a locally compact group involves in particular the notion of inner amenability.
Following [64, page 84], we say that a locally compact group G is inner amenable if there exists
an inner invariant mean on L∞(G), that is, a state m such that m(sfs−1) = m(f) for every
f ∈ L∞(G) and s ∈ G, where (sfs−1)(y) = f(s−1ys). This is a quite weak notion (that should
deserve in fact the name of weak inner amenablity) since for instance every discrete group is
inner amenable in this sense (whereas Effros [24] excludes the trivial inner invariant mean in his
definition). Note that a locally compact group G is amenable if and only if G is inner amenable
and C∗r (G) is nuclear [55].

2This differs from the terminology used in [44] where a group was called C∗-exact if its full C∗-algebra was exact.



4 CLAIRE ANANTHARAMAN-DELAROCHE

The importance of inner amenability when studying the relations between properties of groups
and their C∗-algebras has also been highlighted by Kirchberg in [45, §7] where inner amenability
is called Property (Z).

Theorem 1.2. Let G be a locally compact group and consider the following conditions:

(1) G has an amenable action on a compact space;
(2) G is KW-exact;
(3) G is C∗-exact.

Then (1) ⇔ (2) ⇒ (3) and the three conditions are equivalent when G is an inner amenable group
or when C∗r (G) has a tracial state.

That (1) ⇒ (2) ⇒ (3) is easy (see for instance [5, Theorem 7.2]). When G is a discrete group
the equivalence between (2) and (3) is proved in [49, Theorem 5.2] and the fact that (3) implies
(1) is proved in [62]. That (2) implies (1) for any locally compact group is proved in [12, Theorem
5.6], [63, Proposition 2.5]. The fact that (3) implies (1) in the case of an inner amenable locally
compact group G was treated in [5, Theorem 7.3] where we used a property of G that we called
Property (W). Subsequently, it was proved in [21] that this property (W) is the same as inner
amenability. The fact that (3) implies (2) when C∗r (G) has a tracial state is proved in [56]. Let
us point out that this latter property is equivalent to the existence of an open amenable normal
subgroup in G as shown in [39].

Whether (3) implies (2) holds for any locally compact group is still open. Note that if KW-
exactness and C∗-exactness are equivalent for all unimodular totally disconnected second count-
able groups then they are equivalent for all locally compact second countable groups [20].

2. Background on groupoids

We assume that the reader is familiar with the basic definitions about groupoids. We use
the terminology and the notation of [3]. The unit space of a groupoid G is denoted by G(0)

and is often renamed as X. We implicitly identify G(0) to a subset of G. The structure of G is
defined by the range and source maps r, s : G → G(0), the inverse map γ 7→ γ−1 from G to G
and the multiplication map (γ, γ′) 7→ γγ′ from G(2) = {(γ, γ′) ∈ G × G : s(γ) = r(γ′)} to G. For

x ∈ G(0) we set Gx = r−1(x), Gx = s−1(x) and G(x) = Gx ∩ Gx. Given E ⊂ G(0), we write
G(E) = r−1(E) ∩ s−1(E).

One important example is given by the left action of a group G on a set X. The corresponding
semidirect product groupoid G = X o G is X × G as a set. Its unit set is X, the range and
source maps are given respectively by r(x, g) = x and s(x, g) = g−1x. The product is given by
(x, g)(g−1x, h) = (x, gh), and the inverse by (x, g)−1 = (g−1x, g−1). Equivalence relations on X
are also an interesting family of examples. If R ⊂ X ×X is an equivalence relation, it is viewed
as a groupoid with X as set of units, r(x, y) = x and s(x, y) = y as range and source maps
respectively. The product is given by (x, y)(y, z) = (x, z) and the inverse by (x, y)−1 = (y, x).
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2.1. Measured groupoids. A Borel groupoid G is a groupoid endowed with a Borel structure
such that the range, source, inverse and product maps are Borel, where G(2) has the Borel structure
induced by G × G and G(0) has the Borel structure induced by G(0). A Borel Haar system λ on
G is a family (λx)x∈G(0) of measures on the fibres Gx, wich is Borel (in the sense that for every

non-negative Borel function f on G the function x 7→ λ(f)(x) =
∫
f dλx is Borel), left invariant (in

the sense that for all γ ∈ G, γλs(γ) = λr(γ)), proper (in the sense that there exists a non-negative

Borel function f on G such that λ(f)(x) = 1 for all x ∈ G(0)). Given a measure µ on G(0), one
can integrate the measures λx with respect to µ to get a measure µ ◦ λ on G. The measure µ is
quasi-invariant with respect to the Haar system if the inverse map preserves the (µ ◦λ)-negligible
sets. A measured groupoid is a triple (G, λ, µ) satisfying the above properties. All measure spaces
are assumed to be standard and the measures are σ-finite.

Examples 2.1. (a) Semidirect product measured groupoids. Let G be a second countable locally
compact group with a left Haar measure λ, and X a standard Borel space. A Borel left action of
G on X is a left action such that the map (x, s) 7→ sx from X×G to X is Borel. Then G = XoG
is a Borel groupoid with a canonical Haar system, also denoted by λ. Indeed, identifying Gx with
G, we take λx = λ. Let µ be a measure on X. Then µ ◦ λ = µ⊗ λ. Moreover µ is quasi-invariant
with respect to the G-action if and only if (G, λ, µ) is a measured groupoid.

(b) Discrete measured equivalence relations. Let R be an equivalence relation on a Borel
standard space X which has countable equivalence classes and such that R is a Borel subset of
X×X. This groupoid has a canonical Haar system: λx is the counting measure on the equivalence
class of x, identified withRx. A measure µ on X is quasi-invariant if for every Borel subset A ⊂ X,
the saturation of A with respect to R has measure 0 when µ(A) = 0. Then (R, µ) is a measured
groupoid, called a discrete measured equivalence relation.

2.2. Topological groupoids. A locally compact groupoid is a groupoid G equipped with a locally
compact3 topology such that the structure maps are continuous, where G(2) has the topology
induced by G × G and G(0) has the topology induced by G. A continuous Haar system is a family
λ = (λx)x∈G(0) of measures on G such that λx has exactly Gx as support for every x ∈ G(0), is left
invariant and is continuous in the sense that for every f ∈ Cc(G) (the space of continuous complex
valued functions with compact support on G) the function x 7→ λ(f)(x) =

∫
f dλx is continuous.

Note that the existence of a continuous Haar system implies that the range (and therefore the
source) map is open [66, Chap. I, Proposition 2.4].

Examples 2.2. (a) Semidirect products. Let us consider a locally compact group G with Haar
measure λ acting continuously to the left on a locally compact space X. Then G = X o G is
locally compact groupoid and the Haar system defined in Example 2.1 (a) is continuous.

(b) Group bundle groupoids. A group bundle groupoid is a locally compact groupoid such that

the range and source maps are equal and open. By [67, Lemma 1.3], one can choose, for x ∈ G(0),
a left Haar measure λx on the group Gx = Gx in such a way that (λx)x∈X forms a Haar system
on G. An explicit example will be given in Section 5.4.

3By convention a locally compact space will be Hausdorff.
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(c) Étale groupoids. A locally compact groupoid is called étale when its range (and therefore

its source) map is a local homeomorphism from G into G(0). Then Gx and Gx are discrete and G(0)

is open in G. Moreover the family of counting measures λx on Gx forms a Haar system (see [66,
Chap. I, Proposition 2.8]). It will be implicitly our choice of Haar system. Groupoids associated
with actions of discrete groups are étale.

2.3. Groupoid operator algebras. For the representation theory of measured groupoids we
refer to [3, §6.1]. The von Neumann algebra V N(G, λ, µ) associated to such a groupoid is defined
by its left regular representation. For a semidirect product (X o G,µ) it is the von Neumann
crossed product L∞(X,µ) oG. For a discrete measured equivalence relation (R, µ), it is the von
Neumann algebra defined in [28].

We will now focus on the operator algebras associated with a locally compact groupoid4 G. We
set X = G(0). The space Cc(G) of continuous functions with compact support on G is an involutive
algebra with respect to the following operations for f, g ∈ Cc(G):

(f ∗ g)(γ) =

∫
f(γ1)g(γ−1

1 γ)dλr(γ)(γ1)

f∗(γ) = f(γ−1).

We define a norm on Cc(G) by

‖f‖I = max

{
sup
x∈X

∫
|f(γ)| dλx(γ), sup

x∈X

∫ ∣∣f(γ−1)
∣∣dλx(γ)

}
.

The full C∗-algebra C∗(G) of the groupoid G is the enveloping C∗-algebra of the Banach ∗-
algebra obtained by completion of Cc(G) with respect to the norm ‖·‖I .

In order to define the reduced C∗-algebra of G we need the notion of (right) Hilbert C∗-module
H over a C∗-algebra A (or Hilbert A-module) for which we refer to [53]. We shall denote by
BA(H) the C∗-algebra of A-linear adjointable maps from H into itself.

Let E be the Hilbert C∗-module5 L2
C0(X)(G, λ) over C0(X) (the algebra of continuous functions

on X vanishing to 0 at infinity) obtained by completion of Cc(G) with respect to the C0(X)-valued
inner product

〈ξ, η〉(x) =

∫
Gx
ξ(γ)η(γ) dλx(γ).

The C0(X)-module structure is given by

(ξf)(γ) = ξ(γ)f ◦ r(γ).

Let us observe that L2
C0(X)(G, λ) is the space of continuous sections vanishing at infinity of a

continuous field of Hilbert spaces with fibre L2(Gx, λx) at x ∈ X.

4Throughout this text a locally compact groupoid will be implicitly endowed with a Haar system λ which,
concerning the examples given in Examples 2.2, will be the Haar systems described there.

5When G is étale, we shall use the notation `2C0(X)(G) rather than L2
C0(X)(G, λ)
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We let Cc(G) act on E by the formula

(Λ(f)ξ)(γ) =

∫
f(γ−1γ1)ξ(γ1) dλr(γ)(γ1).

Then, Λ extends to a representation of C∗(G) in the Hilbert C0(X)-module E , called the regular
representation of (G, λ). Its range is denoted by C∗r (G) and called the reduced C∗-algebra6of the
groupoid G. Note that Λ(C∗(G)) acts fibrewise on the corresponding continuous field of Hilbert
spaces with fibres L2(Gx, λx) by the formula

(Λx(f)ξ)(γ) =

∫
Gx
f(γ−1γ1)ξ(γ1) dλx(γ1)

for f ∈ Cc(G) and ξ ∈ L2(Gx, λx). Moreover, we have ‖Λ(f)‖ = supx∈X ‖Λx(f)‖.
For a semidirect product groupoid G = X oG as in Example 2.2 (a) we get the usual crossed

products C∗(G) = C0(X) oG and C∗r (G) = C0(X) or G.

3. Amenable groupoids

3.1. Amenability of measured groupoids. The existence of actions of non-amenable groups
exhibiting behaviours reminiscent of amenability had already been observed in the 1970s by several
authors, among them Vershik [76] for the boundary action of PSL(2,Z). The original definition of
an amenable action in the measured setting is due to Zimmer [82, Definition 1.4]. It was expressed
in terms of an involved fixed point property. Later [81] it was reformulated in terms of invariant
means: an action of a discrete group Γ on a measured space (X,µ), with µ being quasi-invariant,
is amenable if there exists a norm one projection m : L∞(X o Γ, µ ◦ λ) → L∞(X,µ) such that
s.(m(f)) = m(s.f) for all f ∈ L∞(X o Γ, µ ◦ λ) and s ∈ Γ where (s.f)(x, t) = f(s−1x, s−1t) and
(s.m(f))(x) = m(f)(s−1x). In [1], this characterization was extended to the case of any second
countable locally compact group. It also holds in the case of discrete measured equivalence
relations. Clearly, the right framework that unifies this notion of amenability is that of measured
groupoids.

Definition 3.1. [3, Definition 3.2.8] A measured groupoid (G, λ, µ) is said to be amenable if there

exists a norm one projection m : L∞(G, µ ◦ λ)→ L∞(G(0), µ) such that m(ψ ∗ f) = ψ ∗m(f) for
every f ∈ L∞(G, µ ◦ λ) and every Borel function ψ on G such that supx∈G(0) λ

x(|ψ|) <∞.

Recall that (ψ ∗ f)(γ) =
∫
ψ(η)f(η−1γ) dλr(γ)(η) for f ∈ L∞(G, µ ◦ λ) and that we have

(ψ ∗ f)(x) =
∫
ψ(η)f(η−1x) dλx(η) for f ∈ L∞(X,µ).

The first definition of amenability for a measured groupoid is due to Renault [66, Chap. II,
§3]. It was expressed in different terms: as a generalisation of the classical Day condition or
equivalently as generalisations of the Reiter condition or of the Godement condition for groups.

6Very often, the Hilbert C0(X)-module L2
C0(X)(G, λ−1) is considered in order to define the reduced C∗-algebra

(see for instance [42, 43]). We pass from this setting to ours (which we think to be more convenient for our purpose)
by considering the isomorphism U : L2

C0(X)(G, λ−1) → L2
C0(X)(G, λ) such that (Uξ)(γ) = ξ(γ−1).
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Theorem 3.2. [3, Propostion 3.2.14] Let (G, λ, µ) be a measured groupoid. We endow G with the
measure µ ◦ λ. The following conditions are equivalent:

(i) (G, λ, µ) is amenable;
(ii) [Weak Day condition] There exists a sequence (gn) of non-negative Borel functions on G

such that λ(gn) = 1 and limn f ∗ gn − (λ(f) ◦ r)gn = 0 in the weak topology of L1(G) for
all f ∈ L1(G);

(iii) [Weak Reiter condition] There exists a sequence (gn) of non-negative Borel functions on G
such that λ(gn) = 1 and limn

∫ ∣∣gn(γ−1γ1)− gn(γ1)
∣∣ dλr(γ)(γ1) = 0 in the weak*-topology

of L∞(G);
(iv) [Weak Godement condition] There exists a sequence (ξn) of Borel functions on G such that

λ(|ξn|2) = 1 for all n and limn

∫
ξn(γ1)ξn(γ−1γ1) dλr(γ)(γ1) = 1 in the weak*-topology of

L∞(G).

3.2. Amenability of locally compact groupoids. The (topological) amenability7 of a locally
compact groupoid G has been introduced by Renault in [66]. In [3] it is defined as follows.

Definition 3.3. [3, Definition 2.2.1] We say that a locally compact groupoid G is amenable if
there exists a net (or a sequence when G is σ-compact) (mi), where mi = (mx

i )x∈G(0) is a family of
probability measures mx

i on Gx, continuous in the sense that x 7→ mx
i (f) is continuous for every

f ∈ Cc(G), and such that limi

∥∥∥γms(γ)
i −mr(γ)

i

∥∥∥
1

= 0 uniformly on every compact subset of G.

This notion has many equivalent definitions:

Theorem 3.4. [3, Proposition 2.2.13] Let G be a σ-compact locally compact groupoid. The fol-
lowing conditions are equivalent:

(i) G is amenable;
(ii) [Reiter condition] There exists a sequence (gn) in Cc(G)+ such that limn λ(gn) = 1 uni-

formly on every compact subset of G(0) and limn

∫ ∣∣gn(γ−1γ1)− gn(γ1)
∣∣dλr(γ)(γ1) = 0

uniformly on every compact subset of G;
(iii) There exists a sequence (hn) of continuous positive definite functions with compact support

on G whose restrictions to G(0) are bounded by 1 and such that limn hn = 1 uniformly on
every compact subset of G;

(iv) [Godement condition] There exists a sequence (ξn) in Cc(G) such that λ(|ξn|2) ≤ 1 for all

n and limn

∫
ξn(γ1)ξn(γ−1γ1) dλr(γ)(γ1) = 1 uniformly on every compact subset of G.

Recall that a function h on G is positive definite or of positive type if for every x ∈ G(0), n ∈ N
and γ1, · · · , γn ∈ Gx, the n×n matrix [h(γ−1

i γj)] is non-negative. For instance, given ξ on G such

that λ(|ξ|2) is bounded on G(0), the function γ 7→
∫
ξ(γ1)ξ(γ−1γ1) dλr(γ)(γ1) is positive definite.

7From now on, amenability will implicitly mean topological amenability.
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Remarks 3.5. (a) In [3] it is assumed that G is second countable but the proof of the above theorem
holds as well when G is σ-compact. This observation will be useful later when working with the
groupoid βrG o G.

(b) In the above characterizations, the boundedness conditions for the sequences (hn) and (ξn)
are not necessary (see [3, Propositions 2.2.13]).

Definition 3.6. [66, Chap. II, Definition 3.6],[3, Definition 3.3.1] One says that a second count-
able locally compact groupoid with Haar system (G, λ) is measurewise amenable if for every

quasi-invariant measure µ on G(0) the measured groupoid (G, λ, µ) is amenable.

Topological amenability is closely related to measurewise amenability. It is not hard to see for
instance that the Reiter condition of Theorem 3.4 implies the weak Reiter condition of Theorem
3.2 for every quasi-invariant measure µ. Therefore topological amenability implies measurewise
amenability. It is a long-standing open question whether the converse is true. This has been
proved for étale groupoids [3, Corollary 3.3.8] and recently for locally compact second countable
semidirect product groupoids [18, Corollary 3.29].

Remark 3.7. Let us consider the case of a locally compact semidirect product groupoid8 G = XoG.
Then, topological amenability is for instance spelled out as the existence of a net (mi) of weak*-
continuous maps mi : x 7→ mx

i from X into the space of probability measures on G, such that
limi ‖gmx

i −m
gx
i ‖1 = 0 uniformly on every compact subset of X × G. In this case we also say

that the G-action on X is amenable.

We set A = C0(X) and for every f ∈ Cc(X × G) we set f̃(s)(x) = f(x, s). Then f̃ is in
the space Cc(G,A) of continuous functions with compact support from G into A. It is also
an element of the Hilbert A-module L2(G,A) given as the completion of Cc(G,A) with respect
to the A-valued inner product 〈ξ, η〉 =

∫
G ξ(s)

∗η(s) dλ(s). Finally, for ξ ∈ Cc(G,A), we set

(α̃tξ)(s)(x) = ξ(t−1s)(t−1x) and we denote by the same symbol the continuous extension of α̃t to

L2(G,A). If hi(γ) =
∫
ξi(γ1)ξi(γ

−1γ1) dλr(γ)(γ1) with ξi ∈ Cc(X ×G), we have

h̃i(t)(x) =

∫
G
ξi(x, s)ξi(t

−1x, t−1s) dλ(s) =
〈
ξ̃i, α̃t(ξ̃i)

〉
(x).

It follows that the Godement condition characterizing the amenability of XoG may be interpreted
as the existence of a bounded net (ηi) in L2(G,A) such that 〈ηi, α̃t(ηi)〉 → 1 uniformly on compact
subsets of G in the strict topology of A.

The first tentative to define an amenable action of a group on a non-commutative C∗-algebra
A was presented in [2]. The solution was not satisfactory since it was limited to discrete groups
and involved the bidual of A. Since the end of the 2010s, a new interest in the subject has led
to major advances [8, 17, 18, 63] and resulted in very nice equivalent definitions of amenability.
One of the definitions is the following extension of the commutative case described above, called
the approximation property (AP), first introduced in [25, 26] in the setting of Fell bundles over
locally compact groups. An action α : Gy A of a locally compact group on a C∗-algebra A has

8For these groupoids the σ-compactness assumption is not needed [5, Proposition 2.5].
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the approximation property (AP) if there exists a bounded net (or sequence in separable cases)
(ηi) in Cc(G,A) ⊂ L2(G,A) such that 〈ηi, aα̃t(ηi)〉 → a in norm, uniformly on compact subsets
of G, for every a ∈ A. Here one sets again α̃t(η)(s) = αt(η(t−1s)) for η ∈ Cc(G,A), s, t ∈ G. For
interesting properties of amenable actions of locally compact groups on C∗-algebras we refer to
[18, 63].

4. Amenable at infinity groupoids

As already said, the property for a locally compact group G to be KW-exact is equivalent to
the existence of an amenable G-action on a compact space. In order to try to extend this fact to
a locally compact groupoid G we need some preparation.

4.1. First definitions. Let X be a locally compact space. A fibre space over X is a pair (Y, p)
where Y is a locally compact space and p is a continuous surjective map from Y on X. For x ∈ X
we denote by Y x the fibre p−1(x). We say that (Y, p) is fibrewise compact if the map p is proper
in the sense that p−1(K) is compact for every subset K of X. Note that this property is stronger
than requiring each fibre to be compact.

Let (Yi, pi), i = 1, 2, be two fibre spaces over X. We denote by Y1 p1∗p2 Y2 (or Y1 ∗ Y2 when
there is no ambiguity) the fibred product {(y1, y2) ∈ Y1 × Y2 : p1(y1) = p2(y2)} equipped with the
topology induced by the product topology. We say that a continuous map ϕ : Y1 → Y2 is a
morphism of fibre spaces if p2 ◦ ϕ = p1.

Definition 4.1. Let G be a locally compact groupoid. A left G-space is a fibre space (Y, p) over

X = G(0), equipped with a continuous map (γ, y) 7→ γy from G s ∗p Y into Y , satisfying the
following conditions:

• p(γy) = r(γ) for (γ, y) ∈ G s∗p Y , and p(y)y = y for y ∈ Y ;

• if (γ1, y) ∈ G s∗p Y and (γ2, γ1) ∈ G(2), then (γ2γ1)y = γ2(γ1y).

Given such a G-space (Y, p), we associate a groupoid Y o G, called the semidirect product
groupoid of Y by G. It is defined as in the case of group actions except that as a topological
space it is the fibred product Yp∗r G over X = G(0). Although p is not assumed to be an open
map, the range map (y, γ) 7→ y from Y o G onto Y is open since the range map r : γ 7→ r(γ)
is open. Moreover, if G has a Haar system (λx)x∈X , then Y o G has the canonical Haar system

y 7→ δy × λp(y) (identified with λp(y) on G(p(y)) (see [6, Proposition 1.4]). Note that Y o G is an
étale groupoid when G is étale.

We say that the G-space (Y, p) is amenable if the semidirect product groupoid Y oG is amenable.
Note that if G is an amenable groupoid, every G-space is amenable [3, Corollary 2.2.10].

There is a subtlety about the definition of amenability at infinity which leads us to introduce
two notions. We do not know whether they are equivalent in general.

Definition 4.2. Let G be a locally compact groupoid and let X = G(0). We say that
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(i) G is strongly amenable at infinity if there exists an amenable fibrewise compact G-space
(Y, p) with a continuous section σ : X → Y of p;

(ii) G is amenable at infinity if there exists an amenable fibrewise compact G-space;

Examples 4.3. (a) Every locally compact amenable groupoid G is strongly amenable at infinity
since the left action of G on its unit space is amenable.

(b) It is easily seen that the semidirect product groupoid G = X o G relative to an action of
a KW-exact (hence amenable at infinity) locally compact group G on a locally compact space X
is strongly amenable at infinity [6, Proposition 4.3]. This is also true for partial actions9 of exact
discrete groups [6, Proposition 4.23].

It is useful to have a criterion of amenablity at infinity which does not involve Y but only G.
Before proceeding further we need to introduce some notation and definitions. We set G ∗r G =
{(γ, γ1) ∈ G × G : r(γ) = r(γ1)}. A subset of G ∗r G will be called a tube if its image by the map
(γ, γ1) 7→ γ−1γ1 is relatively compact in G. We denote by Ct(G ∗r G) the space of continuous
bounded functions on G ∗r G with support in a tube.

We say that a function k : G ∗r G → C is a positive definite kernel if for every x ∈ X, n ∈ N
and γ1, . . . , γn ∈ Gx, the matrix [k(γi, γj)] is non-negative, that is

n∑
i,j=1

αiαjk(γi, γj) ≥ 0

for α1, . . . , αn ∈ C.

In the case of groups (for which amenability at infinity coincides with strong amenability at
infinity) let us recall the following result:

Theorem 4.4. A (second countable) locally compact group G is amenable at infinity if and only
if there exists a net (ki) of continuous positive definite kernels ki : G × G → C with support in
tubes such that limi ki = 1 uniformly on tubes.

When G is any discrete group this is proved in [62] and when G is a locally compact second
countable group this is proved in [22, Theorem 2.3, Corollary 2.9] which improves [5, Proposition
3.5]. One important ingredient in the proof of the above theorem is the use of a universal compact
G-space, namely the Stone-Čech compactification βG of G if G is discrete and an appropriate
variant of it in general.

4.2. Fibrewise compactifications of G-spaces. In order to extend Theorem 4.4 to the case of
groupoids we first need some informations about fibrewise compactifications of fibre spaces.

Definition 4.5. A fibrewise compactification of a fibre space (Y, p) over a locally compact space
X is a triple (Z,ϕ, q) where Z is a locally compact space, q : Z → X is a continuous proper map
and ϕ : Y → Z is a homeomorphism onto an open dense subset of Z such that p = q ◦ ϕ.

9For the definition see [27, §I.2, §I.5].
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We denote by C0(Y, p) the C∗-algebra of continuous bounded functions g on Y such that for
every ε > 0 there exists a compact subset K of X satisfying |g(y)| ≤ ε if y /∈ p−1(K). We denote
by βpY the Gelfand spectrum of C0(Y, p). The inclusion f 7→ f ◦p from C0(X) into C0(Y, p) defines
a surjection pβ from βpY onto X. It is easily checked that (βpY, pβ) is fibrewise compact. We

call it the Stone-Čech fibrewise compactification of (Y, p). Note that when X is compact, then
C0(Y, p) is the C∗-algebra of continuous bounded functions on Y and βpY is the usual Stone-Čech
compactification βY of Y .

We observe that even if p : Y → X is open, its extension pβ : βpY → X is not always open.
Consider for instance Y = ([0, 1]×{0})t (]1/2, 1]×{1}) ⊂ R2 and let p be the first projection on
X = [0, 1]. Then βpY = βY = ([0, 1]×{0})t (β]1/2, 1]×{1}). The fibres of βpY are the same as

those of Y except (βpY )1/2 = ({1/2}×{0})t
(
(β]1/2, 1]\]1/2, 1])×{1}

)
. Then βpY \ ([0, 1]×{0})

is open and its image by pβ is [1/2, 1].

The next proposition shows that (βpY, pβ) is the solution of a universal problem.

Proposition 4.6. [6, Proposition A.4] Let (Y, p) and (Y1, p1) be two fibre spaces over X, where
(Y1, p1) is fibrewise compact. Let ϕ1 : (Y, p) → (Y1, p1) be a morphism. There exists a unique
continuous map Φ1 : βpY → Y1 which extends ϕ1. Moreover, Φ1 is proper and is a morphism of
fibre spaces, that is, pβ = p1 ◦ Φ1.

We assume now that (Y, p) is a G-space. A G-equivariant fibrewise compactification of the G-
space (Y, p) is a fibrewise compactification (Z,ϕ, q) of (Y, p) such that (Z, q) is a G-space satisfying
ϕ(γy) = γϕ(y) for every (γ, y) ∈ G s∗p Y .

We need to extend the G-action on (Y, p) to a continuous G-action on (βpY, pβ). Even in the
case of a non-discrete group action Gy Y this is not possible in general: we have to replace βY
by the spectrum of the C∗-algebra of bounded left-uniformly continuous functions on G [5]. In
the groupoid case it is more complicated, and we will limit ourselves to the case of étale
groupoids.

Proposition 4.7. [6, Proposition 2.5] Let (Y, p) be a G-space, where G is an étale groupoid. The
structure of G-space of (Y, p) extends in a unique way to the Stone-Čech fibrewise compactification
(βpY, pβ) and makes it a G-equivariant fibrewise compactification.

Proposition 4.8. [6, Proposition 2.6] Let G be an étale groupoid and (Y, p), (Y1, p1) be two G-
spaces. We assume that (Y1, p1) is fibrewise compact. Let ϕ1 : (Y, p)→ (Y1, p1) be a G-equivariant
morphism. The unique continuous map Φ1 : βpY → Y1 which extends ϕ1 is G-equivariant.

4.3. Amenability at infinity for étale groupoids. We view the fibrewise space r : G → G(0)

in an obvious way as a left G-space. Its G-equivariant fibrewise compactification (βrG, rβ) will
play an important role in the sequel because of the following observation.

Proposition 4.9. An étale groupoid G is strongly amenable at infinity if and only if the Stone-
Čech fibrewise compactification (βrG, rβ) is an amenable G-space.
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Proof. In one direction, we note that the inclusions G(0) ⊂ G ⊂ βrG provide a continuous section
for rβ and therefore the amenability of the G-space βrG implies the strong amenability at infinity
of G. Conversely, assume that (Y, p, σ) satisfies the conditions of Definition 4.2. We define a
continuous G-equivariant morphism ϕ : (G, r)→ (Y, p) by

ϕ(γ) = γσ ◦ s(γ).

Then, by Proposition 4.8, ϕ extends in a unique way to a continuous G-equivariant morphism Φ
from (βrG, rβ) into (Y, p). Note that Φ(βrG) is a closed G-invariant subset of Y . Now, it follows
from [3, Proposition 2.2.9 (i)] that G y βrG is amenable, since G y Φ(βrG) is amenable. �

The space βrG has the serious drawback that it is not second countable in most of the cases
but however it is σ-compact when G is second countable. On the other hand, it has the advantage
of being intrinsic. Moreover it is possible to build a second countable amenable fibrewise compact
G-space out of any amenable fibrewise compact G-space, when G is second countable and étale [6,
Lemma 4.9].

Theorem 4.10. Let G be a second countable étale groupoid. The following conditions are equi-
valent:

(i) G is strongly amenable at infinity;
(ii) there exists a sequence (kn) of bounded positive definite continuous kernels on G ∗r G

supported in tubes such that
(a) for every n, the restriction of kn to the diagonal of G ∗r G is uniformly bounded by 1;
(b) limn kn = 1 uniformly on tubes.

Proof. By Theorem 3.4, the groupoid βrG o G is amenable if and only if there exists a net (hn)
of continuous positive definite functions in Cc(βrG o G), whose restriction to the set of units are
bounded by 1, such that limi hi = 1 uniformly on every compact subset of βrG o G.

For (γ1, γ2) ∈ G ∗r G we set kn(γ1, γ2) = hn(γ−1
1 , γ−1

1 γ2). Then we check that kn is a positive
definite kernel bounded by 1 on the diagonal, supported in a tube, and that limi kn = 1 uniformly
on tubes.

The converse is proved similarly (see [6, Theorem 4.13, Theorem 4.15] for details). �

As observed in [6, Remark 3.4, Remark 4.16] it suffices in (ii) (a) above to require that each kn
is bounded.

5. About exactness for groupoids

5.1. Equivalence of several definitions of exactness for étale groupoids.

Definition 5.1. Let G be a locally compact groupoid. We say that G is KW-exact if for every
G-equivariant exact sequence 0→ I → A→ B → 0 of G-C∗-algebras, the corresponding sequence

0→ C∗r (G, I)→ C∗r (G, A)→ C∗r (G, B)→ 0
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of reduced crossed products is exact. We say that G is C∗-exact if C∗r (G) is an exact C∗-algebra.

For the definition of actions of locally compact groupoids on C∗-algebras and the construction
of the corresponding crossed products we refer for instance to [43] or [6, §6.2]. As in the case
of groups we easily see that amenability at infinity implies KW-exactness which in turn implies
C∗-exactness (see for instance [5, Theorem 7.2] for groups and [6, §7] for groupoids). The main
problem is to see if C∗-exactness of an étale groupoid implies its amenability at infinity as it is
the case for discrete groups.

In this section we will adapt to the étale groupoid case our proof of the fact that an inner
amenable locally compact C∗-exact group is amenable at infinity [5, Theorem 7.3]. We need first
to define inner amenability for groupoids.

Definition 5.2. Let G be a locally compact groupoid. Following [71, Definition 2.1], we say that
a closed subset A of G × G is proper if for every compact subset K of G, the sets (K × G) ∩ A
and (G ×K) ∩ A are compact. We say that a function f : G × G → C is properly supported if its
support is proper.

Given a groupoid G, let us observe that the product G×G has an obvious structure of groupoid,
with X × X as set of units, where X = G(0). Observe that a map f : G × G → C is positive
definite if and only if, given an integer n, (x, y) ∈ X × X and γ1, . . . , γn ∈ Gx, η1, . . . , ηn ∈ Gy,
the matrix [f(γ−1

i γj , η
−1
i ηj)]i,j is non-negative.

Definition 5.3. We say that a locally compact groupoid G is inner amenable if for every compact
subset K of G and for every ε > 0 there exists a continuous positive definite function f on the
product groupoid G × G, properly supported, such that f(x, y) ≤ 1 for all x, y ∈ G(0) and such
that |f(γ, γ)− 1| < ε for all γ ∈ K.

This terminology is justified by the fact that for a locally compact group the above property
is equivalent to the notion of inner amenability introduced in Section 1. That this property for
groups implies inner amenability is proved in [21]; the reverse is almost immediate [5, Proposition
4.6].

Every amenable locally compact groupoid G is inner amenable since the groupoid G × G is
amenable and therefore Theorem 3.4 applies to this groupoid. Every closed subgroupoid of an
inner amenable groupoid is inner amenable [6, Corollary 5.6]. Every semidirect product groupoid
X oG is inner amenable as soon as G is an inner amenable locally compact group [6, Corollary
5.9]. We do not know whether every étale groupoid is inner amenable.

Theorem 5.4. Let G be a second countable inner amenable étale groupoid. Then the following
conditions are equivalent:

(1) G is strongly amenable at infinity.
(2) G is amenable at infinity.
(3) βrG o G is nuclear.
(4) βrG o G is exact.
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(5) G is KW-exact.
(6) C∗r (G) is exact.

The following implications are immediate or already known:

(1) +3

��

(2) +3 (5)

��
(3) +3 (4) +3 (6)

The implication (1) ⇒ (3) is proved in [3, Corollary 6.2.14] for second countable locally compact
groupoids, but this result extends to the groupoid βrG o G when G is second countable locally
compact and étale (see [6, Proposition 7.2]).

It remains to show that (6) implies (1). We give below an idea of the proof which is detailed
in [6, §8].

I The first step is to extend Kirchberg’s characterization of exact C∗-algebras as being nuclearly
embeddable into some B(H) as follows.

Lemma 5.5. [6, Lemma 8.1] Let A, B be two separable C∗-algebras, where B is nuclear. Let
E be a countably generated Hilbert C∗-module over B. Let ι : A → BB(E) be an embedding of
C∗-algebras. Then A is exact if and only if ι is nuclear.

The two main ingredients of the proof of this lemma are the Kasparov absorption theorem
and the Kasparov-Voiculescu theorem [38, Theorem 2, Theorem 6] that allow us to reduce the
situation to the case of Hilbert spaces.

I The second step is the following approximation theorem. Recall that a completely positive
contraction Φ : A → B between two C∗-algebras is factorable if there exists an integer n and
completely positive contractions ψ : A → Mn(C), ϕ : Mn(C) → B such that Φ = ϕ ◦ ψ. A map
Ψ : C∗r (G) → B is said to have a compact support if there exists a compact subset K of G such
that Ψ(f) = 0 for every f ∈ Cc(G) with (Supp f) ∩K = ∅.

Theorem 5.6. [6, Corollary 8.4] Let B be a C∗-algebra and let Φ : C∗r (G) → B be a nuclear
completely positive contraction. Then for every ε > 0 and every a1, . . . , ak ∈ C∗r (G) there exists a
factorable completely positive contraction Ψ : C∗r (G)→ B, with compact support, such that

‖Ψ(ai)− Φ(ai)‖ ≤ ε for i = 1, . . . , k.

I Finally we need the following result due to Jean Renault (private communication). Given
f : G × G → C, we set fγ(γ′) = f(γ, γ′).

Lemma 5.7. [6, Lemma 8.5] Let G be a locally compact groupoid.

(a) Let f ∈ Cc(G) be a continuous positive definite function. Then, f viewed as an element of
C∗r (G) is a positive element.
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(b) Let f : G × G → C be a properly supported positive definite function. Then γ 7→ fγ is a
continuous positive definite function from G into C∗r (G).

I We can now now proceed to the proof of (6) ⇒ (1) in Theorem 5.4.

Proof of (6) ⇒ (1). We fix a compact subset K of G and ε > 0. We want to find a continu-
ous bounded positive definite kernel k ∈ Ct(G ∗r G) such that k(γ, γ) ≤ 1 for all γ ∈ G and
|k(γ, γ1)− 1| ≤ ε whenever γ−1γ1 ∈ K (see Theorem 4.10).

We set E = `2C0(X)(G) with X = G(0). Recall that λx is the counting measure on Gx. We first

choose a bounded, continuous positive definite function f on G×G, properly supported, such that
|f(γ, γ) − 1| ≤ ε/2 for γ ∈ K and f(x, y) ≤ 1 for (x, y) ∈ X × X. By Lemma 5.5 the regular
representation Λ is nuclear. Then, using Theorem 5.6, we find a compactly supported completely
positive contraction Φ : C∗r (G)→ BC0(X)(E) such that10

‖Φ(fγ)− fγ‖ ≤ ε/2

for γ ∈ K. We also choose a continuous function ξ : X → [0, 1] with compact support such that
ξ(x) = 1 if x ∈ s(K) ∪ r(K).

Let (γ, γ1) ∈ G ∗r G. We choose an open bisection S such that γ ∈ S and a continuous function
ϕ : X → [0, 1], with compact support in r(S) such that ϕ(x) = 1 on a neighborhood of r(γ). We
denote by ξϕ the continuous function on G with compact support (and thus ξϕ ∈ E) such that

ξϕ(γ′) = 0 if γ′ /∈ S, ξϕ(γ′) = ϕ ◦ r(γ′)ξ ◦ s(γ′) if γ′ ∈ S.

Note that ‖ξϕ‖E ≤ 1. We define ξϕ1 similarly with respect to γ1.

Then we set

k(γ, γ1) = 〈ξϕ,Φ(fγ−1γ1)ξϕ1〉(r(γ))

= ξ ◦ s(γ)
(
Φ(fγ−1γ1)ξϕ1

)
(γ).

We observe that k(γ, γ1) does not depend on the choices of S, ϕ, S1, ϕ1.

Since γ 7→ fγ is a continuous positive definite function from G into C∗r (G) and since Φ is
completely positive, we see that k is a continuous and positive definite kernel. Moreover, there is
a compact subset K1 of G such that Φ(fγ) = 0 when γ /∈ K1, because Φ is compactly supported,
and f is properly supported. It follows that k is supported in a tube.

We fix (γ, γ1) ∈ G ∗r G such that γ−1γ1 ∈ K. Then we have

|k(γ, γ1)− 1| ≤ ε/2 +
∣∣〈ξϕ, fγ−1γ1ξϕ1〉(r(γ))− 1

∣∣,
and

〈ξϕ, fγ−1γ1ξϕ1

〉
(r(γ)) = ξ ◦ s(γ)ξ ◦ s(γ1)f(γ−1γ1, γ

−1γ1).

10We write fγ instead of Λ(fγ) for simplicity of notation.
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Observe that s(γ) ∈ r(K) and s(γ1) ∈ s(K) and therefore ξ ◦ s(γ) = 1 = ξ ◦ s(γ1). It follows
that

|k(γ, γ1)− 1| ≤ ε/2 +
∣∣f(γ−1γ1, γ

−1γ1)− 1
∣∣ ≤ ε.

To end the proof it remains to check that k is a bounded kernel. Since this kernel is positive
definite, it suffices to show that γ 7→ k(γ, γ) is bounded on G. We have

k(γ, γ) = 〈ξϕ,Φ(fs(γ))ξϕ〉(r(γ)) ≤
∥∥Φ(fs(γ))

∥∥.
Our claim follows, since Φ(fs(γ)) = 0 when s(γ) /∈ K1 ∩ X and x 7→ fx is continuous from the
compact set K1 ∩X into C∗r (G). �

Remark 5.8. Let α : Γ y X be an action of a discrete group on a locally compact space X. Since
the groupoid X o G is inner amenable, Theorem 5.4 applies. Therefore C0(X) or Γ is exact if
and only if the groupoid X o Γ is KW-exact. More generally, this holds for any partial action
such that the domains of the partial homeomorphisms αt are closed (in addition to being open).
Indeed it not difficult to show that the groupoid X o Γ is inner amenable (directly, or using the
fact that such partial actions admit a Hausdorff globalisation [27, Proposition 5.7]).

For general partial actions of Γ the situation is not clear. We do not know whether XoΓ is inner
amenable in this case. If Γ is exact the semidirect product groupoid X o Γ is strongly amenable
at infinity [6, Proposition 4.23] and therefore C∗r (XoΓ) is exact. This had been previously shown
in [7, Corollary 2.2] by using Fell bundles.

5.2. Inner exactness. We introduce now a very weak notion of exactness. First let us make
some reminders. Let G be a locally compact groupoid. Recall that a subset E of X = G(0) is
said to be invariant if s(γ) ∈ E if and only if r(γ) ∈ E. Let F be a closed invariant subset of
X and set U = X \ F . It is well-known that the inclusion ι : Cc(G(U)) → Cc(G) extends to an
injective homomorphism from C∗(G(U)) into C∗(G) and from C∗r (G(U)) into C∗r (G). Similarly,
the restriction map π : Cc(G)→ Cc(G(F )) extends to a surjective homomorphism from C∗(G) onto
C∗(G(F )) and from C∗r (G) onto C∗r (G(F )). Moreover the sequence

0→ C∗(G(U))→ C∗(G)→ C∗(G(F ))→ 0

is exact. For these facts, we refer to [66, page 102], or to [65, Proposition 2.4.2] for a detailed
proof. On the other hand, the corresponding sequence

0→ C∗r (G(U))→ C∗r (G)→ C∗r (G(F ))→ 0 (1)

with respect to the reduced groupoid C∗-algebras is not always exact, as shown in [67, Remark
4.10] (see also Proposition 5.13 below).

Definition 5.9. A locally compact groupoid such that the sequence (1) is exact for every closed
invariant subset F of X called KW-inner exact or simply inner exact.

We will see that the class of inner exact groupoids plays a role in the study of the (WCP). It is
also interesting in itself and now plays a role in other contexts (see for instance [9], [11], [15]). This
class is quite large. It includes all locally compact groups and more generally the groupoids that
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act with dense orbits on their space of units. This class is stable under equivalence of groupoids
[52, Theorem 6.1]. Of course, KW-exact groupoids are inner exact.

5.3. The case of group bundle groupoids. We first need to recall some definitions.

Definition 5.10. [48, Definition 1.1] A field (or bundle) of C∗-algebras over a locally compact
space X is a triple A = (A, {πx : A→ Ax}x∈X , X) where A, Ax are C∗-algebras, and where πx is
a surjective ∗-homomorphism such that

(i) {πx : x ∈ X} is faithful, that is, ‖a‖ = supx∈X ‖πx(a)‖ for every a ∈ A;
(ii) for f ∈ C0(X) and a ∈ A, there is an element fa ∈ A such that πx(fa) = f(x)πx(a) for

x ∈ X;
(iii) the inclusion of C0(X) into the center of the multiplier algebra of A is non-degenerate.

We say that the field is (usc) upper semi-continuous (resp. (lsc) lower semi-continuous) if the
function x 7→ ‖πx(a)‖ is upper semi-continuous (resp. lower semi-continuous) for every a ∈ A.

If for each a ∈ A, the function x 7→ ‖πx(a)‖ is in C0(X), we will say that A is a continuous field
of C∗-algebras11.

Recall that a C0(X)-algebra A is a C∗-algebra equipped with a non-degenerate homomorphism
from C0(X) into the multiplier algebra of A (see [79, Appendix C.1]). For x ∈ X we denote by
Cx(X) the subalgebra of C0(X) of functions that vanish at x. Note that a C0(X)-algebra A gives
rise to an usc field of C∗-algebras with fibres Ax = A/Cx(X)A (see [70, Proposition 1.2] or [79,
Appendix C.2]). We will use the following characterization of usc fields of C∗-algebras.

Lemma 5.11. [48, Lemma 2.3], [6, Lemma 9.4] Let A be a field of C∗-algebras on a locally
compact space X. The function x 7→ ‖πx(a)‖ is upper semi-continuous at x0 for every a ∈ A if
and only if kerπx0 = Cx0(X)A

We apply this fact to the reduced C∗-algebra of a groupoid group bundle G as defined in
Example 2.2 (b). The structure of C0(X)-algebra of the C∗-algebra C∗r (G) is defined by (fh)(γ) =
f ◦ r(γ)h(γ) for f ∈ C0(X) and h ∈ Cc(G) (see [65, Lemma 2.2.4], [54, §5]). We set Ux = X \ {x}.
Then we have C∗r (G(Ux)) = Cx(X)C∗r (G). We get that C∗r (G) is an usc field of C∗-algebras over
X with fibre C∗r (G)/Cx(X)C∗r (G) = C∗r (G)/C∗r (G(Ux)) at x.

On the other hand, (C∗r (G), {πx : C∗r (G)→ C∗r (G(x))}) is lower semi-continuous (see [65, Théorème
2.4.6] or [54, Theorem 5.5]). Then it follows from Lemma 5.11 that the function x 7→ ‖πx(a)‖ is
continuous at x0 for every a ∈ C∗r (G) if and only if the following sequence is exact:

0→ C∗r (G(Ux0))→ C∗r (G)
πx0→ C∗r (G(x0))→ 0.

Proposition 5.12. Let G be a group bundle groupoid on X. The following conditions are equi-
valent:

(i) G is inner exact;

11In [48], this is called a continuous bundle of C∗-algebras.
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(ii) for every x ∈ X the following sequence is exact:

0→ C∗r (G(X \ {x}))→ C∗r (G)→ C∗r (G(x))→ 0.

(iii) C∗r (G) is a continuous field of C∗-algebras over X with fibres C∗r (G(x)).

Proof. (i)⇒ (ii) is obvious and (ii)⇒ (iii) is a particular case of the previous observation. Assume
that (iii) holds true and, given an invariant closed subset F of X, let us show that the following
sequence is exact:

0→ C∗r (G(X \ F ))→ C∗r (G)→ C∗r (G(F ))→ 0.

Let a ∈ C∗r (G) be such that πx(a) = 0 for every x ∈ F . Let ε > 0 be given. Then K =
{x ∈ X, ‖πx(a)‖ ≥ ε} is a compact subset of X with K ∩ F = ∅. Take f ∈ C0(X), f : X → [0, 1]
with f(x) = 1 for x ∈ K and f(x) = 0 for x ∈ F . We have ‖a− fa‖ ≤ ε and fa ∈ C∗r (G(X \F )).
Therefore a ∈ C∗r (G(X \ F )). �

5.4. The case of HLS groupoids. The following class of étale group bundle groupoids (that we
call HLS-groupoids) was introduced by Higson, Lafforgue and Skandalis [34], in order to provide
examples of groupoids for which the Baum-Connes conjecture fails. We consider an infinite
discrete group Γ and a decreasing sequence (Nk)k∈N of normal subgroups of Γ of finite index. We
set Γ∞ = Γ, and Γk = Γ/Nk and we denote by qk : Γ→ Γk the quotient homomorphism for k in
the Alexandroff compactification N+ of N. Let G be the quotient of N+ × Γ with respect to the
equivalence relation

(k, t) ∼ (l, u) if k = l and qk(t) = qk(u).

Then G is the bundle of groups k 7→ Γk over N+. The range and source maps are given by
r([k, t]) = s([k, t]) = k, where [k, t] = (k, qk(t)) is the equivalence class of (k, t). We endow G with
the quotient topology. Then G is Hausdorff (and obviously an étale groupoid) if and only if for
every s 6= 1 there exists k0 such that s /∈ Nk for k ≥ k0 (hence, Γ is residually finite). We keep
this assumption. Such examples are provided by taking Γ = SLn(Z) and Γk = SLn(Z/kZ), for
k ≥ 2.

For these HLS groupoids, the exactness of C∗r (G) is a very strong condition which suffices to
imply the amenability of Γ as shown by Willett in [78].

Proposition 5.13. Let us keep the above notation. We assume that Γ is finitely generated. Then
the following conditions are equivalent:

(1) Γ is amenable; (2) G is amenable;
(3) G is KW-exact; (4) G is inner exact;
(5) the sequence 0 −→ C∗r (G(N)) −→ C∗r (G) −→ C∗r (G(∞)) −→ 0 is exact ((5’) C∗r (G) is a

continuous field of C∗-algebras with fibres C∗r (G(x)));
(6) C∗r (G) is nuclear; (7) C∗r (G) is exact.

Proof. The equivalence between (1) and (2) follows for instance from [78, Lemma 2.4]. That (2)
⇒ (3) ⇒ (4) ⇒ (5) is obvious and by Proposition 5.12 we have (5) ⇒ (5’). Let us prove that
(5’) ⇒ (1). Assume by contradiction that Γ is not amenable. We fix a symmetric probability
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measure µ on Γ with a finite support that generates Γ and we choose n0 such that the restriction
of qn to the support of µ is injective for n ≥ n0. We take a ∈ Cc(G) ⊂ C∗r (G) such that a(γ) = 0
except for γ = (n, qn(s)) with n ≥ n0 and s ∈ Supp(µ) where a(γ) = µ(s). Then πn(a) = 0
if n < n0 and πn(a) = λΓn(µ) ∈ C∗r (Γn) = C∗r (G(n)) if n ≥ n0, where λΓn is the quasi-regular
representation of Γ in `2(Γn). By Kesten’s result [40, 41] on spectral radii relative to symmetric
random walks, we have ‖λΓn(µ)‖C∗r (Γn) = 1 for N 3 n ≥ n0 and ‖λΓ∞(µ)‖C∗r (Γ∞) < 1 since Γ is

not amenable. It follows that C∗r (G) is not a continuous field of C∗-algebras with fibres C∗r (G(n))
on N+, a contradiction.

We know that (2) ⇒ (6) ⇒ (7). For the fact that (7) ⇒ (1) see [78, Lemma 3.2]. �

Given a group bundle groupoid it may happen that G(x) is a C∗-exact group for every x ∈ G(0)

whereas G is not C∗-exact. Indeed if G is an HLS groupoid associated with a group Γ that has
Kazdhan’s property (T), then the sequence

0 −→ C∗r (G(N)) −→ C∗r (G) −→ C∗r (G(∞)) −→ 0

is not exact (it is not even exact in K-theory!) [34]. As an example we can take the exact group
Γ = SL(3,Z). The previous proposition shows that C∗r (G) is not exact. Willett has given an even
more surprising example with Γ = F2, the free group with two generators (see below).

6. Weak containment, exactness and amenability

Definition 6.1. Let G be a locally compact groupoid. We say that G has the weak containment
property, (WCP) in short, if the canonical surjection from its full C∗-algebra C∗(G) onto its
reduced C∗-algebra C∗r (G) is injective, i.e., the two completions C∗(G) and C∗r (G) of Cc(G) are the
same.

A very useful theorem of Hulanicki [35, 36] asserts that a locally compact group G has the
(WCP) if and only if it is amenable. While it has long been known that every amenable locally
compact groupoid has the (WCP) [67, 3], whether the converse holds was a long-standing open
problem (see [3, Remark 6.1.9]). Remarkably, in 2015 Willett [78] published a very nice example
showing that a group bundle groupoid may have the (WCP) without being amenable. His example
is a HLS groupoid where (Γn) is a well chosen sequence of subgroups of the free group with two
generators F2. Therefore the groupoid version of Hulanicki’s theorem is not true in general.
However there are many positive results, all of which involve an additional exactness assumption.

A first result in this direction is due to Buneci [14]. She proved that a second countable
locally compact transitive groupoid G having the (WCP) is measurewise amenable. The (topo-
logical) amenability of G can also be proved by observing that it is preserved under equivalence
of groupoids [3, Theorem 2.2.17], as well as the (WCP) [73, Theorem 17], and using the fact that
G is equivalent to any of its isotropy group by transitivity [58].

It is only in 2014 that a second result appeared, linking amenability and the (WCP)
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Theorem 6.2. [57] Let Γ be a discrete group acting by homeomorphisms on a compact space.
Then the semidirect product groupoid is amenable if and only if it has the (WCP) and Γ is exact.

Note that the exactness of Γ is equivalent to the strong amenability at infinity of the groupoid
X o Γ since X is compact and Γ is discrete (see [6, Proposition 4.3 (i)]). Recently, the above
theorem has been extended by Kranz as follows.

Theorem 6.3. [51] Let G be an étale groupoid. Then G is amenable if and only if it has the
(WCP) and is strongly amenable at infinity.

Assuming that G has the (WCP) and is strongly amenable at infinity, Kranz’s strategy to prove
that G is amenable is the same as that of [57], but with additional technical difficulties. It consists
in showing that the canonical inclusion of C∗r (G) into its bidual C∗r (G)∗∗ is nuclear. Then by [13,
Proposition 2.3.8] one sees that C∗r (G) is nuclear and by [13, Theorem 5.6.18] it follows that the
groupoid G is amenable. The delicate step, which requires in a crucial way that G is étale, is to
show the existence of a completely positive map φ : C∗r (βrG o G)→ C∗r (G)∗∗ whose restriction to
C∗r (G) is the inclusion from C∗r (G) in its bidual. Since C∗r (βrG o G) is nuclear (see [6, Proposition
7.2]), this inclusion is nuclear.

By a different method the following extension of Theorem 6.2 was obtained in [18]. Note that
unlike the case where X is compact it is not true in general that G is KW-exact when X oG is
amenable.

Theorem 6.4. [18, Theorem 5.15] Let Gy X be a continuous action of a locally compact group
G on a locally compact space X. We assume that G is KW-exact and that XoG has the (WCP).
Then the groupoid X oG is amenable.

It is interesting to note that the behaviour is different for group actions on non-commutative
C∗-algebras. For instance in [18, Proposition 5.25] a surprising example of a non-amenable action
having the (WCP) of the exact group G = PSL(2,C) on the C∗-algebra of compact operators has
been constructed. It would be interesting to construct an example with an exact discrete group.

For group bundle groupoids we have the following easy result.

Proposition 6.5. Let G be a second countable locally compact group bundle groupoid over a locally
compact space X. Then G is amenable if and only if it has the (WCP) and is inner exact.

Proof. Assume that G has the (WCP) and is inner exact and let x ∈ X. We set Ux = X \ {x}.
In the commutative diagram

0 // C∗(G(Ux))

��

// C∗(G)

λ
��

// C∗(G(x)) //

λG(x)
��

0

0 // C∗r (G(Ux)) // C∗r (G)
πx // C∗r (G(x)) // 0
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both sequences are exact and λ is injective. Chasing through the diagram we see that λG(x) is
injective (i.e., the group G(x) is amenable). This ends the proof since, by [68, Theorem 3.5], the
group bundle groupoid G is amenable if and only if G(x) is amenable for every x ∈ X. �

The cases of transitive groupoids and of group bundle groupoids are included in the following
result of Bönicke. His nice elementary proof is reproduced in [6, Theorem 10.5].

Theorem 6.6. [10] Let G be a second countable locally compact groupoid such that the orbit space

G \ G(0) equipped with the quotient topology is T0. Then the following conditions are equivalent:

(i) G is amenable;
(ii) G has the (WCP) and is inner exact.

7. Open questions

7.1. About amenability at infinity and inner amenability.

(1) The notion of strong amenability at infinity has proven to be more useful than amenability
at infinity. But are the two notions equivalent? Note that by Theorem 5.4 this is true for
every second countable inner amenable étale groupoid.

(2) It would be interesting to understand better the notion of inner amenability for locally
compact groupoids. Is it invariant under equivalence of groupoids? Are there étale
groupoids that are not inner amenable? In particular, if G is a discrete group acting
partially on a locally compact space X, is it true that the corresponding partial trans-
formation groupoid is inner amenable? This is true when the domains of the partial
homeomorphisms are both open and closed but what happens in general? It would also
be interesting to study the case of HLS groupoids.

7.2. About exactness for groups.

(3) Let us denote by [InnAmen] the class of locally compact inner amenable groups and
by [Tr] the class of groups whose reduced C∗-algebra has a tracial state. Groups G in
each of these two classes and such that C∗r (G) is nuclear are amenable [5], [59]. Almost
connected groups are amenable at infinity [50, Theorem 6.8], [5, Proposition 3.3]. Their
full C∗-algebras are nuclear. So they are in [InnAmen] or in [Tr] if and only if they are
amenable. This latter observation applies also to groups of type I.

We denote by [C] the class of locally compact groups for which C∗-exactness is equivalent
to KW-exactness. It contains [InnAmen] and [Tr]. Almost connected groups are in [C]
since they are KW-exact. The case of groups of type I is not clear. Of course they are
C∗-exact but are they KW-exact? In support of this question we point out that it is
conjectured that every second countable locally compact group of type I has a cocompact
amenable subgroup [19], a property which implies amenability at infinity [3, Proposition
5.2.5].
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It would be interesting to find more examples in the class [C]. It seems difficult to find
examples not in [C]. Note that this class is preserved by extensions

0→ N → G→ G/N → 0

where N is amenable. Indeed since N is amenable, C∗r (G/N) is a quotient of C∗r (G) (see
the proof of Lemma 3.5 in [20]). Assume that G is C∗-exact and that G/N ∈ [C]. Then
the group G/N is C∗-exact and therefore KW-exact. It follows that G is KW-exact since
the class of KW-exact groups is preserved under extension [50, Proposition 5.1].

(4) There are examples of non-inner amenable groups in [Tr] (see [29, Remark 2.6 (ii)], [56,
Example 4.15]). But are there inner amenable groups which are not in [Tr]? Note that
the subclass [IN ] of [InnAmen] is contained into [Tr] [29, Theorem 2.1]. Let us recall
that a locally compact group G is in [IN ] if its identity e has a compact neighborhood
invariant under conjugacy. By [75, Proposition 4.2], this is equivalent to the existence of
a normal tracial state on the von Neumann algebra L(G) of G. Since C∗r (G) is weakly
dense into L(G) the conclusion follows.

Let us observe that the existence of a locally compact group in [InnAmen] \ [Tr] is
equivalent to the existence of a totally disconnected locally compact group in [InnAmen]\
[Tr]. Indeed let G be a locally compact group in this set. Let G0 be the connected
component of the identity. Then G0 is inner amenable as well as G/G0 (see [21, Corollary
3.3] and [55, Proposition 6.2]). Since a connected inner amenable group is amenable (by
[5, Theorem 5.8]), we see that G0 is amenable. It follows that C∗r (G/G0) is a quotient of
C∗r (G) and therefore G/G0 is not in [Tr].

As a consequence of this observation we are left with the following problem: does there
exist a totally disconnected locally compact inner amenable group without open normal
amenable subgroups?

7.3. About exactness for groupoids.

(5) In [48], Kirchberg and Wassermann have constructed examples of continuous fields of
exact C∗-algebras on a locally compact space, whose C∗-algebra of continuous sections
vanishing at infinity is not exact. Are there examples of étale group bundle groupoids G,
whose reduced C∗-algebra is not exact whereas

(C∗r (G), {πx : C∗r (G)→ C∗r (G(x))}x∈G(0) ,G
(0))

is a continuous field of exact C∗-algebras (compare with Proposition 5.13)?
A similar question is asked in [52, Question 3]: if G is an inner exact locally compact

group bundle groupoid, whose fibres are KW-exact groups, is it true that G is KW-exact?

(6) Let G be a locally compact groupoid. We have

Amenability at infinity
(1)

==⇒ KW-exactness
(2)

==⇒ C∗-exactness.

Let us recap what is known about the reversed arrows and what is still open.
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When G is an étale inner amenable groupoids, the above three notions of exactness are
equivalent (Theorem 5.4). Does this fact extend to any inner amenable locally compact
groupoid? Without the assumption of inner amenability, nothing is known.

As already said, it seems difficult to find an example of a locally compact group which
is C∗-exact but not KW-exact. Could it be easier to find an example in the context of
locally compact groupoids?

If G is a KW-exact locally compact group, every semidirect product groupoid (relative
to a global or to a partial action) is strongly amenable at infinity [6, Proposition 4.3,
Proposition 4.23], and therefore KW-exact. Does KW-exactness of X o G imply that
XoG is amenable at infinity in general? Note that the notion of exactness for a semidirect
product groupoid X o Γ, where Γ is a discrete group is not ambiguous by Theorem 5.4.

7.4. (WCP) vs amenability.

(7) Are there examples of inner exact groupoids G which have the (WCP) without being

amenable? By [10] one should look for examples for which the orbit space G \ G(0) is not
T0.

(8) We have seen that if an étale locally compact groupoid G is assumed to be strongly
amenable at infinity, the (WCP) implies its amenability (Theorem 6.3). Is it true in
general, or at least for a semidirect product groupoid XoG with X and G locally compact?
Recall that this holds when G is KW-exact [18, Theorem 5.15], a property stronger than
strong amenability at infinity.

(9) Let G be a discrete group and let X = ∂G = βG \ G be its boundary equipped with
the natural action of G. The weak containment property for ∂G o G implies that this
groupoid is amenable. Indeed the (WCP) implies that the sequence

0 −→ C∗r (GoG) −→ C∗r (βGoG) −→ C∗r (∂GoG) −→ 0

is exact. Roe and Willett have proven in [72] that this exactness property implies that G
is exact. It follows that Gy βG is amenable and therefore Gy ∂G is amenable too. Can
we replace ∂G by βG, that is, if Gy βG has the (WCP) can we deduce that Gy βG is
amenable? This is asked in [16, Remark 4.10].

Acknowledgements. I thank Julian Kranz, Jean Renault and the referee for useful remarks and
suggestions.

Addendum. A construction due to Suzuki [74] gives an example of a totally disconnected locally
compact inner amenable group without open normal amenable subgroups (or equivalently without
tracial states), thus answering the question posed in point 7.2.(4) above.

Suzuki considers a sequence (Γn, Fn) of pairs of discrete groups, where Fn is a finite group
acting on Γn is such a way that the reduced C∗-algebra of the semidirect product Γn o Fn is
simple. Let us set Γ =

⊕∞
i=1 Γi and K =

∏∞
i=1 Fi. Let K act on Γ component-wise. Then Suzuki
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shows that C∗r (G) is simple and that the Plancherel weight is the unique lsc semifinite tracial
weight on C∗r (G). Since G is not discrete this weight is not finite and therefore G in not in [Tr]
(see also [29, Remark 2.5]).

Let us show now that G ∈ [InnAmen]. We set Gn = (
⊕n

i=1 Γi)oK. Then (Gn) is an increasing
sequence of open subgroups of G with

⋃∞
n=1Gn = G. Since Gn contains an open compact normal

subgroup, namely
∏∞
i=n+1 Fi we see that there exists an inner invariant mean on L∞(Gn) and

therefore a mean mn on L∞(G) which is invariant by conjugation under the elements of Gn. Any
cluster point of the sequence (mn) in L∞(G)∗ gives an inner invariant mean on L∞(G).
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[63] Birant Ramazan, Quantification par déformation des variétés de Lie-Poisson, PhD thesis, University of Orléans,
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