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Introduction

The task of classification, be it in its supervised or unsupervised versions, has acquired substantial importance thanks to its potential application for the most of scientific and technological areas, as well as for its respectively implied challenges implied by the presence of outliers and overlap between the constituent groups (e.g. [START_REF] Jain | Statistical pattern recognition: a review[END_REF][START_REF] Fukunaga | Statistical Pattern Recognition[END_REF][START_REF] Da | Supervised and unsupervised pattern recognition and their performance[END_REF][START_REF] Da | Shape Classification and Analysis: Theory and Practice[END_REF][START_REF] Koutrombas | Pattern Recognition[END_REF]).

The present work describes an approach to data classification which is based on the recently reported [START_REF] Da | Similarity means: Seeking for robustness to outliers[END_REF] concept of similarity between a value and a set of values. This definition applies to several types of similarity indices, including the Jaccard (e.g. [START_REF]Jaccard index[END_REF][START_REF] Da | Further generalizations of the Jaccard index[END_REF]) and coincidence (e.g. [START_REF] Da | Further generalizations of the Jaccard index[END_REF][START_REF] Da | On similarity[END_REF][START_REF] Da | Multiset neurons[END_REF][START_REF] Da | Coincidence complex networks[END_REF]). That definition consists of taking the maximum similarity between the value and the set of values as the respective resulting similarity. The above concept is also generalized to the quantification of the similarity between a vector and a set of vectors as suggested in [START_REF] Da | Similarity means: Seeking for robustness to outliers[END_REF].

The main motivation for the reported approach stems from the fact that the Jaccard, and particularly the coincidence, similarity indices have been verified to provide several interesting characteristics, including enhanced se-lectivity and sensitivity while comparing values, incorporation of normalization of the data values, as well as marked robustness to data perturbations and presence of outliers (e.g. [START_REF] Da | Further generalizations of the Jaccard index[END_REF][START_REF] Da | On similarity[END_REF][START_REF] Da | Multiset neurons[END_REF][START_REF] Da | Coincidence complex networks[END_REF]).

As indicated by the results described in this work, which are respective to an adaptation of the traditional nearest neighbor method for supervised classification, the Jaccard similarity between a value and a set of values allowed substantially enhanced stability and consistency of the identified clusters even in presence of intense overlap between the original groups.

Two main types of data have been considered in the present work, respective to symmetric and asymmetric distributions. While the former case tended to promote enhanced robustness to data overlap, the latter case has been found to lead to substantial shifts of the arithmetic means and center of mass, with the Jaccard mean providing a markedly more stable approach.

The considered alternative approach involving the minimum sum of Euclidean distances also resulted robust to overlaps and outliers, but the Jaccard mean has been observed, at least for the considered cases, to provide more stable identification of the center of the main groups.

A distance-limited version of the minimum sum of Euclidean distances and maximum Jaccard similarity have also been suggested and illustrated, with good potential for classification problems involving non-convex original groups.

The present work starts by describing the similaritybased methodology to classification, which is then illustrated respectively to an array of circularly-symmetric gaussian groups in presence of increasing overlap.

Methodology

The Jaccard similarity between a single scalar value x and a set S of scalar values y y y has been defined [START_REF] Da | Similarity means: Seeking for robustness to outliers[END_REF] in terms of the multiset (e.g. [START_REF] Da | Multisets[END_REF]) operations of union (max) and intersection (min) as follows:

J(x, y y y) = N i=1 min {x, y i } N i=1 max {x, y i } (1)
where N is the number of points in the set S (i.e. its size or cardinality) , M is the number of elements (features) of the vectors. All values are assumed to be positive.

In the case of x corresponding to a a single M × 1 vector [y 1 , y 2 , . . . , y M ]

T , and a respective set of N vectors organized in terms of an N × M matrix y, the above equation can be rewritten (as suggested in [START_REF] Da | Similarity means: Seeking for robustness to outliers[END_REF]) as:

J(x x x, y y y) = = N i=1 min {x 1 , y i,1 } + . . . + N i=1 min {x M , y i,M } N i=1 max {x 1 , y i,1 } + . . . + N i=1 max {x M , y i,M } = = M j=1 N i=1 min {x j , y i,j } M j=1 N i=1 max {x j , y i,j } (2) 
with 0 ≤ J(x x x, y y y) ≤ 1. The two equations above provide a means for developing respective classification methods involving the comparison of one data elements with a set of other data elements.

In the following, we illustrate the application of these two similarity approaches respectively to the traditional and widely employed supervised classification method known as nearest neighbors (e.g. [START_REF] Duda | Pattern Classification[END_REF][START_REF] Fukunaga | Statistical Pattern Recognition[END_REF][START_REF] Koutrombas | Pattern Recognition[END_REF][START_REF] Da | Shape Classification and Analysis: Theory and Practice[END_REF]).

More specifically, we identify the classes of new elements by taking as result the category of the trained data element that yields not the minimum Euclidean distance, but the largest respective similarity.

Experiments: Symmetric Case

The potential of the suggested methodology is illustrated in this section respectively to an orthogonal array of circularly-symmetric gaussian clusters with increasing dispersions.

Figures 1 illustrates a set of such clusters for σ = 1 (a), as well as the classification results obtained by using the traditional nearest neighbor approach (b), as well as by using the Jaccard similarity. Observe that the clusters have been distributed with a positive translation in order to obtain a more symmetric similarity comparison (e.g. [START_REF] Da | Similarity means: Seeking for robustness to outliers[END_REF]).

Figure 2 presents the results obtained for increasing dispersions of the original clusters.

Remarkably stable clusters, which are also consistent with the original group distribution, have systematically been obtained in all cases by the similarity approach, while increasing intermixed groups have obtained as the dispersion, and therefore overlap, between the original groups increase.

Though the stability of the groups obtained by the nearest neighbor approach can be improved by considering more than 1 neighbor, it will still be markedly jagged, noisy, and likely to present discontinuities and/or incorrect group classifications, and to miss and/or merge groups, as illustrated in Figure 3 respectively to σ = 9 when considering K = 7 and 21 neighbors.

Figure 4 illustrates the application of the same classification methods as above respectively to a irregularly distributed original groups (with σ = 9), again with stable results.

It is also interesting to consider an alternative approach to the above considered methods, which adopted nearest neighbors, arithmetic mean, and similarity indices. This alternative approach corresponds to defining the mean of a set of values as corresponding to the value x that minimizes the sum of distances from itself to the points in the reference set. Interestingly, when applied to the same data sets considered above (as illustrated in Fig. 5), this approach has been verified to yield results which are comparable to those obtained by the Jaccard mean though, as indicated in the following section, tending to be less robust to the present of skewed secondary groups.

Yet another method related to the minimum sum of Euclidean distances can be obtained by substituting the similarity in Equation 2 by squares of coordinate differences (the square root does not need to be taken into account since we are aimed at identifying the minimum overall distance, which is the same for the Euclidean distance or its squared value). In other words, in a manner that is analogue to that adopted while expressing the overall similarity between a data element and a set of data elements, we replicate the former point and use it in a higher dimensional formula for the squared Euclidean distance, yielding:

D(x x x, y y y) = N i=1 (x 1 -y i,1 ) 2 + . . . + (x M -y i,M ) 2 (3) 
Figure 6 exemplifies the application of this minimum overall Euclidean distance method to orthogonally distributed groups with σ = 5.

It can be readily verified that, unlike with the Jaccard similarity, this overall method does not yield satisfactory results even for this relatively moderate dispersion of the original points. This is a consequence of the geometry of the comparisons implemented by the Euclidean distance and Jaccard similarity (e.g. [START_REF] Da | Further generalizations of the Jaccard index[END_REF][START_REF] Da | On similarity[END_REF][START_REF] Da | Multiset neurons[END_REF]).

Several other similar classification methods considering combinations of distances and similarities between each data element and the data elements in the reference set can be conceived. For instance, it would be possible to maximize the sum of the pairwise similarities between the data element to each of the reference data elements, instead of taking the similarity in a higher dimensional space.

Experiments: Asymmetric Case

All data considered in the previous section involved symmetric distribution of points implied by the circularly symmetric dispersion characterizing each original group. This type of symmetry favors the stability of the position (e.g. center of mass) of the detected groups.

In the present section, we consider data with asymmetric distribution. More specifically, we will still resource to groups of normal distribution of points organized as an orthogonal lattice. However, small enough dispersion, implied by σ, is adopted so as to completely avoid any overlap between the groups. This is achieved by taking the distance L between adjacent points in the orthogonal grid to be much. larger than the groups dispersion as quantified by σ, i.e. L ≫ σ.

The comparison of the arithmetic and Jaccard means obtained for a set of uniformly distributed groups with σ = 3, but presenting overlap only with one of the 4neighbors between the group regions, is illustrated in Figure 7, which indicates greater accuracy of the latter approach at least for this particular case.

As in the previous section, comparable results have also been obtained by considering the total sum of distances instead of the k-closest distances. This tendency of the Jaccard mean and and the minimum sum of distances mean to present similar results is illustrated in Figure 8.

While both approaches are markedly robust to the outlier group, the Jaccard mean (obtained for maximum Jaccard similarity) resulted closer to the center of the larger group {10, 11, . . . , 15}, being therefore less susceptible from the influence of the secondary (smaller) group (see also [START_REF] Da | Similarity means: Seeking for robustness to outliers[END_REF]).

Non-Convex Patterns

In the case of data types more general than those used so far in the present work, it would be interesting to consider the maximum Jaccard similarity between each point to be classified respectively to a set of trained points within a distance-limited region(e.g. circular) around the former point, which would pave the way to classification of nonconvex groups of points. More specifically, only the data elements in the reference set that are closer than R to the compared data element are taken into consideration during the classification of each new point. This approach paves the way to more effective classification to be performed in the case of non-convex groups by adapting to the local convexity of the data distribution, therefore allowing more accurate results.

Figure 10 illustrates this possibility (with R = 22) respectively to the two categories (red and blue) of points distributed as shown in (a). Each of these groups was obtained by normally distributing points along a half section of a circle, with the two circles then being interleaved, therefore yielding an S-shaped separation border. The backbone around which the points belonging to the two categories have been distributed is shown in Figure 9(a), while the respectively expected separation border is presented in (b). (a) (b) (c)

Figure 6: Comparison of the Jaccard mean and the minimum Euclidean distances (in a higher dimensional space, in analogy to the similarity approach) respectively to the uniformly distributed normal groups with σ = 5. This method can be readily verified not to lead to satisfactory results as a consequence of the type of geometry underlying comparison by Euclidean distance.

The result of first nearest neighbor classification, presented in (b), yields a separation border that is highly jagged and noisy. The results obtained by the sum of distances and Jaccard similarity approaches, illustrated in (c) and (d) respectively, are comparable and substantially more accurate, smooth and stable than the result obtained with nearest neighbors.

Though the two classification methods considered in this section provide a good estimation of the separation border between the two groups, relatively small isolated 'islands' of incorrect classification(e.g. red region within the blue region) can appear as a consequence of unbalanced number of reference points taken in a specific similarity comparison. These regions can be potentially identified and removed by considering that the have much smaller area than the two largest one, and also by considering the fact that they do not include any of the original data elements having the same identified category.

Another interesting possibility to avoid the above mentioned isolated groups consists of weighting the overall similarity Equation 2 in order to be weighted by the respective number of points in the reference set, i.e.:

J(x x x, y y y) = N M j=1 N i=1 min {x j , y i,j } M j=1 N i=1 max {x j , y i,j } (4) 
which, however, is no longer characterized by having 0 ≤ J(x x x, y y y) ≤ 1.

The possibility is illustrated in Figure 12(d) for R = 12, which resulted in two separated classification regions that are now fully convex. Observe that the groups are organized as an orthogonal lattices, but have small dispersion which is not enough to imply overlap (a). Asymmetric overlap is incorporated by changing the category of some of the points in each group by the category of one of its 4-adjacent neighbors in the respective orthogonal lattice structure. This type of overlap implies a substantial shift of the respective arithmetic mean (a) when compared to the Jaccard mean (b), which is substantially more robust to this type of asymmetry.

(a) (b) (c) Figure ?? depicts the maximum Jaccard similarity mean values obtained for each of the points in the considered domain. Observe the marked gap of similarity resulting between the two C-shaped groups, which has been obtained thanks to the selectivity of the adopted approach.

An alternative adaptation, when comparing between k reference groups, is to weight the above expression not by N , but by the relative mass probability P k given as:

P k =
number of elements in group k total number of elements in all groups [START_REF] Koutrombas | Pattern Recognition[END_REF] When formulated in this manner, the suggested criterion for deciding the category of a new data element while performing similarity-based comparison with the elements in the reference groups can be understood to have an analogy with Bayesian decision theory (e.g. [START_REF] Duda | Pattern Classification[END_REF][START_REF] Da | Shape Classification and Analysis: Theory and Practice[END_REF]).

Concluding Remarks

This work has reported a similarity-based approach to classification, which considers the recently described [START_REF] Da | Similarity means: Seeking for robustness to outliers[END_REF] concept of similarity between a value and a set of values, here extended to take into account multidimensional data elements (feature vectors).

The obtained results, obtained respectively to the traditional nearest neighbor method as well as a respectively adaptation to similarity value, support the potential of the proposed approach to provide groups that are stable and consistent with the original data even in presence of intense overlap between the groups.

The alternative approach of considering the minimum sum of distances from a point to a set of points has been found to yield results comparable to those obtained by the Jaccard similarity, though the latter approach has also been verified, at least for the considered cases, to allow a more stable characterization of the groups and respective centers.

The possibility to constrain the minimum sum of Eu- clidean distances and maximum Jaccard similarity has also been described as a means to more effectively classify data involving non-convex groups. This approach has been verified to allow noticeable performance in the case of two interleaved concave groups. Enhanced results are expected to be obtained by using the coincidence similarity.

The described developments and results are respective to the adopted data sets and parameter configurations. Additional further evaluation of the proposed methodology is required respectively to other types of data, overlaps, dimensions, and parameter configurations, among other possibilities.

The encouraging described results pave the way to several further applications of the concept of the similarity between a vector and a set of vectors to many other problems in pattern recognition and deep learning (e.g. [START_REF] Hinton | Training products of experts by minimizing contrastive divergence[END_REF][START_REF] Schmidhuber | Deep learning in neural networks:an overview[END_REF]), including other supervised and nonsupervised (clustering) methods and applications. An-other promising research venue consists of adapting the concepts and methods described in the current work to classify nodes in respective complex networks, which can lead to new methods for community detection and identification of the origin of spreading dynamics in complex networks (e.g. [START_REF] Comin | Identifying the starting point of a spreading process in complex networks[END_REF]). net/publication/371852653_Similarity_Means_ Seeking_for_Robustness_to_Outliers, 2023.
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 1 Figure 1: The original set of clusters (a), each with standard deviation σ = 3, as well as the classification results obtained by using the traditional nearest neighbor method (b) and the Jaccard similarity approach described in the present work (c).

Figure 2 :

 2 Figure2: Results obtained for increasing dispersions σ = 3, 5, 7 and 9 by using traditional nearest neighbor method method (second column) as well as the and the Jaccard similarity approach described in the present work (third column).

Figure 3 :

 3 Figure 3: The result of classification respective to σ = 9 with the nearest neighbor method considering 7 and 21 neighbors instead of 1 neighbor. The black dots in (c) indicate the center of mass of the respective original groups.
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 4 Figure 4: The result of classification respective to irregularly distributed original groups with σ = 9. The black dots in (c) indicate the center of mass of the respective original groups.

Figure 5 :

 5 Figure 5: Comparison of the Jaccard mean and the minimum sum of Euclidean distances respectively to the uniformly distributed normal groups with σ = 7. Both approaches result markedly robust to the overlaps. Further enhanced robustness has been verified when adopting the coincidence similarity index [6].

Figure 7 :

 7 Figure 7: A uniform distribution of groups with σ = 3 (a) and the respective arithmetic means (centers of mass) (b) and Jaccard means (c).Observe that the groups are organized as an orthogonal lattices, but have small dispersion which is not enough to imply overlap (a). Asymmetric overlap is incorporated by changing the category of some of the points in each group by the category of one of its 4-adjacent neighbors in the respective orthogonal lattice structure. This type of overlap implies a substantial shift of the respective arithmetic mean (a) when compared to the Jaccard mean (b), which is substantially more robust to this type of asymmetry.

Figure 8 :

 8 Figure 8: Comparison of the Jaccard mean and the minimum sum of Euclidean distances mean respectively to a data containing a cluster of equally spaces points, namely the set {10, 11, . . . , 15} together with three outlier points {1, 2, 3}. The sum of Euclidean distances and the Jaccard similarity values are shown in green and salmon, respectively, with their extreme being identified by a respective point.

Figure 9 :

 9 Figure 9: Backboned around which the two categories have been distributed in order to generate the data sets considered for classification in the current section. The respectively expected separation region is shown in (b).

Figure 10 :

 10 Figure 10: Comparison of the classification methods based on first nearest neighbor (b), minimum sums of distances (c) and maximum Jaccard similarity (c) respectively to the supervised classification while taking into account the two groups (red and blue) in (a). The two latter methods considered R = 22.

Figure 11 :

 11 Figure 11: Comparison of the classification methods based on first nearest neighbor (b), minimum sums of distances (c) and maximum weighted Jaccard similarity (c) respectively to the supervised classification while taking into account the two groups (red and blue) in (a).Fully convex classification regions can now be observed and the identified separation border also resulted more similar to that implied by the original backbone in Fig.9. The two latter methods considered R = 12.

Figure 12 :

 12 Figure 12: The maximum similarity mean values obtained respectively to the classification result shown in Fig. 12(d).
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