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Université Claude Bernard Lyon 1,
Ecole Centrale de Lyon, CNRS,

Ampère, UMR5505
69621 Villeurbanne, France
damien.eberard@insa-lyon.fr

Abstract—The position of the center of mass of a vehicle
is an important parameter as it significantly affects vehicle
loads distribution and vehicle dynamics. This article proposes
an approach to estimate the longitudinal position of the center
of mass and the inertial parameters from offline batches. The
proposed algorithm is based on the dynamical modelling of
the vehicle and on the measurements of cheap gyroscopes and
accelerometers. The estimation procedure uses the Box–Jenkins
method for system identification to estimate the parameters given
the noisy measurements. Prior knowledge of the vehicle is used
to filter the output measurement and simplify the estimation
problem. The approach is tested on simulations when one or
more gyroscopes and accelerometers are used.

Index Terms—System identification, vehicle dynamics, position
of the center of mass, measurement noise, Box-Jenkins model.

I. INTRODUCTION

The wear and tear of the road due to heavy traffic is
mainly related to the load on each wheel and each axle of
the vehicle rather than to the overall vehicle weight [1] [2].
For this reason, it is of practical interest to estimate such
load during the different phases of heavy vehicle operations,
considering unloading and distribution routines, even if a
weighing scale is not available. It is possible to estimate the
load distribution using displacement measurements of the air
suspensions [3], but unfortunately not all vehicles feature this
kind of suspensions.

Axle loads mainly depend on the total mass of the vehicle
and the position of its center of mass. It has been shown
that it is possible to estimate accurately the total mass of the
vehicle based on inertial measurements such as those provided
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by gyroscopes and accelerometers [4] [9]. Considering the
total mass known, this article aims to introduce a simple
procedure to estimate the position of the center of mass. We
do not assume the presence of strain sensors or displace-
ment sensors, but only inertial measurements from gyroscopes
and accelerometers. In the literature, these measurements are
typically fed to a Kalman filter based on a pitch and roll
model in order to estimate online the load distribution [3]
[5]. In this article, we rely on batch identification instead of
Kalman filtering. In fact, the online estimation is useful for
estimating time-varying parameters, whereas for this problem
the load distribution is mainly related to the center of mass
position, which is constant during the vehicle’s ride. Batch
identification algorithms like the Box-Jenkins methods [6] are
less restrictive than online algorithms, as they allow better
parameters estimation and better noise filtering [7].

The estimation of the longitudinal and lateral loads distribu-
tion can be done using the same approach and modeling. Since
the amplitudes of the pitch and roll motions are very small,
the coupling effects are often negligible. This article only
discusses the estimation of the longitudinal load distribution,
but the same approach is applicable for lateral loads. We
focus on heavy two-axle vehicles, like a 19 ton truck used
for commodities delivery.

II. MODELLING AND PROBLEM FORMULATION
A. Dynamical longitudinal model

The vehicle is modeled by a simple longitudinal planar
model, as shown in Fig. 1. The model includes heave and
pitch motions of the sprung mass of the vehicle, and the
longitudinal displacement of the vehicle [8]. We assume that



the vehicle is symmetrical with respect to the vertical plane
passing through its longitudinal axis; together with this, we
assume that the contact forces and the suspensions are the
same for two wheels of the same axle. We also assume that
pitch angles, pitch velocity, and pitch acceleration are small.

Considering the longitudinal movement of the vehicle on
a plane, according the balance of forces and torques at the
center of mass G (see Fig. 1), the motion of the sprung mass
can be described as:

−Msg + F1 + F2 =Msz̈,

−F1a1 + F2a2 −MsẍH = Iyyψ̈,
(1)

where Ms is the sprung mass, Iyy the moment of inertia of
the sprung mass with respect to the roll axis, F1 the vertical
force applied on the front axle, F2 the vertical force applied
on the rear axle, a1 the horizontal distance between the front
axle and center of mass, a2 the horizontal distance between
the rear axle and the center of mass, H the height of the
center of mass, ψ the pitch angle, z the vertical displacement
of the sprung mass, and x the longitudinal displacement of the
vehicle. Equation (1) leads directly to an explicit expression
of the forces F1 and F2:

F1 = a2

a1+a2
Msg − H

a1+a2
Msẍ+ a2

a1+a2
Msz̈ − Iyy

a1+a2
ψ̈,

F2 = a1

a1+a2
Msg +

H
a1+a2

Msẍ+ a1

a1+a2
Msz̈ +

Iyy

a1+a2
ψ̈.

(2)
The load is composed of static terms and load transfer terms;
the static load is a1,2

a1+a2
Msg and the load transfer is composed

of the other terms. The load transfer is actually very small
compared the static one, it often represents at most 5% of
total load.

The suspensions are modeled with a parallel spring damper.

Z1

Fig. 1. Longitudinal planar model

The forces F1 and F2 can then be expressed as:

F1 = −k1(z − a1ψ)− b1(ż − a1ψ̇) + C1,

F2 = −k2(z + a2ψ)− b2(ż + a2ψ̇) + C2,
(3)

where k1 is the overall stiffness of the front suspensions, k2
the overall stiffness of the rear suspensions, b1 the overall
damping of the front suspensions, b2 the overall damping of
the rear suspensions, and C1 and C2 are constants that are not
relevant for the follow-up.

The unsprung mass and suspensions parameters are usually
provided by the vehicle manufacturer, although there may be
some uncertainties on the parameters. The sprung mass is
assumed to be known since previous works [4] [9] propose
efficient approaches to estimate it.

The model resulting from equations (2) and (3) shows a link
between the vehicle’s longitudinal acceleration and the pitch
motion through a number of parameters. These displacements
can be measured with gyroscopes and accelerometers. Using
an adequate formulation, the modeling and the measurement
allow the estimation of the unknown parameters, and then (2)
can later be used to estimate the axle loads.

The set of the unknown parameters is noted
θ = {a1, H, Iyy}. Since the wheelbase L = a1 + a2 is
a known parameter, only a1 appears in θ.

B. Measurements

We consider two different cases of instrumentation.
Case 1: A gyroscope and an accelerometer measure the

longitudinal accelerations ẍ and the angular velocities ψ̇ of
the vehicle.

Case 2: A couple of gyroscopes and accelerometers are
placed each above the two axles. The longitudinal accelera-
tions ẍ and the angular velocities ψ̇ measured in the front
and rear of the vehicle are the same assuming that the vehicle
is a rigid body. Using vertical acceleration measured on the
front axle z̈1 and the one measured on the rear axle z̈2, we
can obtain the angular acceleration ψ̈ as: ψ̈ = z̈2−z̈1

L . This
redundancy allows reducing the measurement noise effects on
the estimations.

C. Measurements noises

The gyroscope and accelerometer measurements are noisy
[10]. These measurements are usually modeled as:

xm(t) = x(t) + w(t) where: w(t) = v(t) + b(t),

where xm(t) is the measured signal with a gyroscope or an
accelerometer, x(t) the is the real signal, w(t) an additive
noise composed of v(t), a white noise, and b(t), a bias. The
bias changes over time, but for small time scales it can be
considered constant.

D. Transfer functions

Equations (2) and (3) allow the modeling of the pitch and
heave motions of a vehicle, the model input is u = ẍ and
its outputs are y1 = ψ̇ and y2 = ψ̈. Let us note P1(s) the
transfer function from u to y1 and P2(s) the one from u to



y2. The second output y2 is the derivative of the first one y1,
so the transfer function P2(s) from u to y2 can be found as
P2(s) = sP1(s). We can express P1(s) as:

P1(s) =
−HMss(k1 + k2 + (b1 + b2)s+Mss

2)

(k1a
2
1+k2a

2
2+(b1a

2
1 + b2a

2
2)s+Iyys

2)(k1+. . .

+k2+(b1 + b2)s+Mss2)+R

,

(4)
with R = (a1k1 − a2k2)

2 + ((2a1a2(k1b2 + k2b1) − (a21 +
a22)(k1b1+k2b2))s− (a1b1−a2b2)2s2. This term R is due to
the coupling between the pitch motion and the heave motion,
and it is equal to zero when there is no coupling effect. It turns
out that this term is often negligible. In fact, heave motion is
uncomfortable for the passengers and in order to reduce it, the
manufacturers usually design the vehicles so that there is no
coupling between pitch and heave motions. This appears on
the transfer function as two close pairs of poles and zeros.

The identification of a transfer function with close poles
and zeros is actually a hard task, especially when the signals
are noisy. To have a reliable estimate, the system input signal
needs to be rich enough in a very specific frequency band,
which is unlikely for our specific application.

E. Simplifying the identification problem

An alternative approach is possible for our problem. For the
modeled vehicle, the transfer function zeros depends only on
known parameters. These known zeros can be used to filter
the output signal, leading to a simpler identification problem.

Let us note Y1(s) the Laplace transform of the first output,
U(s) the Laplace transform of the input, and for notation
simplicity let us also note Den(s) the denominator of the
transfer function P1(s) in equation (4).

The transfer function numerator can be factored with s(k1+
k2+(b1+b2)s+Mss

2), this term depends only on suspension
parameters and the unsprung mass, which are known. Conse-
quently, the input-output relation Y1(s) = P1(s)U(s) can be
rearranged as:

Y1f (s) = T (s)U(s),

where Y1f (s) = F1(s)Y1(s) is the Laplace transform of the

filtered output y1f , F1(s) =
1

s(k1 + k2 + (b1 + b2)s+Mss2)

is the filter, and T (s) =
−HMs

Den(s)
is the transfer function from

the input to the filtered output y1f .
The filtered output y1f can easily be computed from the

measured output signal. Since the filter is a low-pass one, an
additional advantage is the filtering of high-frequency noise
on the output signal. The transfer function T (s) is a 4th

order transfer function with two pairs of complex conjugate
poles, without the close pole-zero couple, which makes its
identification simpler.

On the other hand, the second output y2 is the derivative of
the first one y1. Using the filter F2(s) = sF1(s) leads to the
same transfer function T (s):

Y2f (s) = T (s)U(s),

with Y2f (s) the Laplace transform of the filtered output y2f .
The transfer function from the input to the filtered first

output and to the filtered second output is the same, so during
the identification procedure we can concatenate the signal and
estimate the transfer function from both outputs at once.

The second output y2 = ψ̈ is considered only in case 2
where this signal is measured.

The unknown parameters θ can be obtained either from an
estimate of P1(s) or P2(s) using directly the measured signals,
or from an estimate of T (s) using filtered outputs.

In addition, there are 7 parameters in P1(s) and P2(s) (resp.
5 in T (s)), whereas there are only 3 unknown parameters
θ = {a1, H, Iyy}. It is always possible to recover θ from the
parameters of P1(s) and P2(s) but there is no unique approach.

F. Problem formulation

To conclude this section, let us state again that the goal of
this work is to find a reliable estimate of the parameters θ given
noisy measurements from gyroscopes and accelerometers.

In order to propose a solution to this problem, we first
look into system identification approaches to estimate the
transfer functions parameters given noisy measurements, then
we analyze the effect of the transfer function simplification and
of the measurements redundancy on the parameters estimation.

III. IDENTIFICATION APPROACHES

In this section, we focus on the identification of a discrete-
time transfer function in presence of additive noises on the
input and the output. The identification algorithms used in
this work are based on a discrete-time representation, which is
the most common and more natural setting, but the estimated
transfer function can subsequently easily be converted to a
continuous-time transfer function. For purpose of clarity, we
present the identification of systems with only one output, but
the same approach holds for multiple outputs.

A. Noise Model

In system identification, it is very important to take into
account the noise.In this work, the measurements noises are
modeled as additive noises on the input and on each output.

Let w1(k) be the input noise, the sum of a bias b1(k) and
a white noise v1(k): w1(k) = b1(k) + v1(k). This relation
stands for any value of k, so we can express w1(k − 1) =
b1(k)+v1(k−1). Since the bias varies slowly, we can assume
that b1(k) = b1(k− 1), which leads to: w1(k) = w1(k− 1)+
v1(k)−v1(k−1). Let us set e1(k) = v1(k)−v1(k−1), since
v1(k) is a white noise, e1(k) is also a white noise.

Overall, the input noise w1(k) can be modeled as a random
walk: w1(k) = w1(k− 1)+ e1(k). Using the z transform, we
can express w1(k) as:

w1(k) =
z

z − 1
e1(k).



The same reasoning is applied for the output. The measured
input um and output ym can be expressed as:

um(k) = u(k) +
z

z − 1
e1(k),

ym(k) = y(k) +
z

z − 1
e2(k).

B. Model structure

Let P (z) be the transfer function from u(k) to y(k).
Given the noisy measurements um(k) and ym(k), we can

represent this model structure as in Fig. 2. The measured

Fig. 2. Model structure with noise

output can be expressed as:

ym(k) = P (z)um(k) + z
z−1 (P (z)e1(k) + e2(k)) . (5)

The noise term (5) can be represented as:
z

z − 1
(P (z)e1(k) + e2(k)) = G(z)e(k),

where e(k) is a white noise and G(z) is a shape filter.
The obtained model is represented in Fig. 3. This model

structure correspond to the Box Jenkins (BJ) model [6]. When
estimating a BJ model, the noise model G(z) is also estimated,
so we only need to correctly guess its order. Since the noise
here is the sum of an integrated white noise 1

1−z−1 e2(k) and
an other integrated white noise passing trough the system

1
1−z−1P (z)e1(k), the order of G(z) can be chosen one order
higher than P (z).

Fig. 3. Box Jenkins model structure

C. Box-Jenkins model estimation and initialization

The Box-Jenkins model is well documented in the literature
[6] [7]. The estimation of the model parameters is usually
obtained by the minimization of the prediction error, which
turns out to be nonlinear and relays on nonlinear numeric
optimization routines.

Recently developed algorithms can estimate BJ models
with a guaranteed asymptotic global convergence [11], but
they might be difficult to implement on a vehicle embedded
system. In this work, we will rather use the original algorithm
presented by Box and Jenkins in their book [6] with a specific
initialization.

The convergence of the BJ algorithm is only guaranteed
locally. Hopefully, prior knowledge on the vehicle can be used
to initialize the optimization. In fact, for parameters like the
position of the center of mass and the pitch inertia moment,
any initialization with a coherent order of magnitude turns
out to be good enough for the tested cases. For example, the
center of mass can be initialized as the geometric center of the
vehicle, the pitch inertia moment can be initialized assuming
two equal point masses located over each axle.

IV. FROM ESTIMATION TO PHYSICAL PARAMETERS

The models identified according to the proposed structures
unfortunately do not directly provide the desired physical
parameters, but rather the transfer function parameters (either
for P1(s) or T (s)). These parameters are nonlinear functions
of the vehicle’s unknown parameters.

A. From estimation to physical parameters
Let us note p1, p2, p3, p4, p5, p6, and p7 the parameters of

P1(s), and p the set of these parameters:

P1(s) =
p5s+ p6s

2 + p7s
3

p1 + p2s+ p3s2 + p4s3 + s4
.

The parameters p are function of θ, let us note this function
p = f(θ):

p1 =
L2k1k2
IyyMs

, p2 =
L2(k1b2 + k2b1)

IyyMs
,

p3 =
Ms(a

2
1k1 + a22k2) + Iyy(k1 + k2) + L2b1b2

IyyMs
,

p4 =
Ms(a

2
1b1 + a22b2) + Iyy(b1 + b2)

IyyMs

p5 =
−(k1 + k2)H

Iyy
, p6 =

−(b1 + b2)H

Iyy
, p7 =

−MsH

Iyy
.

As there are only 3 unknown parameters in θ and 7 in p, there
are multiple approaches possible to invert these functions,
considering also the presence of estimation errors in the
transfer function parameters.

One possibility to recover θ̂ from estimated parameters p̂ is
to solve the following minimization problem:

θ̂ = argmin
θ

||p̂− f(θ)||2.

The solution can be obtained by using a gradient descent
algorithm, and it can be initialized by using first estimate
obtained from only 3 equations of the form p = f(θ).

The same approach is used for T (s). Let us note q1, q2,
q3, q4, and q5 the parameters of T (s), and q the set of theses
parameters:

T (s) =
q5

q1 + q2s+ q3s2 + q4s3 + s4
.

The parameters are also functions of θ , let us note this
function q = g(θ) (note that the denominator parameters are
the same as for P1(s)):

q1 = p1, q2 = p2, q3 = p3, q4 = p4, q5 =
−H
Iyy

.



To recover θ̂ from the estimated parameters q̂, the same
approach as for the first transfer function is used.

V. MAIN ALGORITHMS

The proposed method for the estimate of the position of the
center of mass is summarised in the following algorithm:

• Collect the signals ẍ(t), ψ̇(t) (and ψ̈ for case 2);
• set initial guess of the parameters for the estimation;
• estimate the discrete-time Box-Jenkins models;
• convert the estimated models from discrete to continuous-

time;
• compute physical parameters θ.

VI. SIMULATION RESULTS

A. Vehicle parameters

The proposed approaches has been tested first on simula-
tions. Data have been generated by using a Matlab model
including the pitch motion, the heave motion, the longitudinal
displacement, and the coupling between theses motions. The
simulated vehicle parameters are listed in Table I. These
parameters have been chosen because they lead to relatively
less accuracy compared to the other tested ones.

TABLE I
VEHICLE PARAMETERS

Parameter Unit Parameter Unit
k1 = 440000 N/m k2 = 300000 N/m
b1 = 5000 kg/s b2 = 12000 kg/s

Ms = 15000 kg Iyy = 23000 kg m2

a1 = 1.8 m a2 = 3.5 m
L = 5.3 m H = 1 m

B. Measurements noises

The measurements noises of gyroscopes and accelerometers
have been generated as the sum of a random constant (the
bias) and a band-limited white noise. The amplitudes of the
biases and the noises spectral densities in the simulations have
been chosen as referenced for the MPU-6050 GY-521 sensor
module [12], a cheap 6 axes gyroscope and accelerometer
sensor unit costing only about 3 euro. For the simulation, the
biases for the accelerometers are chosen around ±0.5 m/s2

and for the gyroscopes around 20◦/s, and the spectral densities
chosen for the accelerometers are 0.004 m/s2/

√
Hz, and for

the gyroscopes at 0.05◦/s/
√

Hz.

C. Data generation

Since the vehicle simulation and models estimation have
short computation times, we run 1000 different simulations.
Each simulation lasts 20 s and has a sample time of 0.01 s.

The system input signal is the vehicle acceleration. Input
signals are different for each simulation, they have been
generated as a succession of ramps and constants with random
slopes and amplitudes and with random durations, trying to
reproduce the typical cycles of driving along a road. Mea-
surements noises are generated with a Simulink block for
band-limited white noise and random biases. The seeds are

different for each gyroscope and accelerometers and for each
simulation.

Fig. 4 shows an input example, the bold black line is for
the real vehicle acceleration and the gray line for the measured
one.

0 2 4 6 8 10 12 14 16 18 20

time (s)

-1

-0.5

0

0.5

1

1.5
Vehicle acceleration [m/s2]

real signal
measured signal

Fig. 4. Vehicle acceleration and measurements noise examples

D. Validation of the estimation methods

The transfer function are estimated using the Box-Jenkins
method [6], then the physical parameters θ = {a1, H, Iyy}
are recovered according to the methods discussed in Section
IV-A. To characterize the quality of the estimation, we look
into median values of the estimated parameters (Mdn)1, their
normalized errors (E), and their normalized Root Mean Square
Error (RMSE) for the 1000 simulations. Normalized error
and normalized RMSE are expressed as percentages and are
defined as:

E =
100

θreal

∣∣∣θ̃ − θreal

∣∣∣ , RMSE =
100

θreal

√∑n
i

(
θ̂i − θ̃

)2

,

where θi are the estimated parameter for each simulation, θ̃
its median, θreal is the real value of the parameters, and n is
the number of samples.

Another performance index used is the success rate, that
is the number of estimated model with coherent parameter
values. The unsuccessful estimations are not considered when
computing the performance indexes above.

As discussed in section II-B, Simulation results are pre-
sented for two cases of measurement instrumentation.

In the first case, one gyroscope and one accelerometer
are used. The available measurements are ẍ and ψ̇. Transfer
function P1(s) is estimated directly from the measured signals,
and T (s) is estimated after filtering the output signal.

In the second case, two sets of gyroscope and accelerometer
units are used. This gives access to two different measures
of ẍ and ψ̇, and to a measure of ψ̈. This allows estimating
also P2(s), and estimating T (s) after filtering the two output
signals.

1It is interesting to look into the median values in this work because it
corresponds to what one is more likely to get during an estimation.



The estimated parameters obtained from estimation of the
different parameters are presented in the box-plot in Fig. 5
and in Table II. In addition, the success rate of the estimation
of each transfer function is presented in Table III

P1(s) P2(s) T(s) case1 T(s) case2

1

2

parameter a1 (m)

P1(s) P2(s) T(s) case1 T(s) case2
0.6

0.8

1

1.2

parameter H (m)

P1(s) P2(s) T(s) case1 T(s) case2

2

3

104 parameter Iyy (kg/m2)

Fig. 5. Estimated parameter boxplot

TABLE II
PARAMETER ESTIMATION FOR CASE 2

P1(s) P2(s)
Mdn E(%) RMSE(%) Mdn(%) E(%) RMSE(%)

â1 1.02 43.2 33.9 1.59 11.7 65.9
Ĥ 1.00 0.77 13.2 1.01 1.02 11.1
Îyy 25641 11.5 24.1 31074 35.1 24.2

T (s) case1 T (s) case2
Mdn E(%) RMSE(%) Mdn(%) E(%) RMSE(%)

â1 1.79 0.55 9.3 1.81 0.63 6.9
Ĥ 0.96 3.55 3.10 0.99 0.78 1.66
Îyy 22429 2.48 0.57 22416 2.54 0.47

TABLE III
TRANSFER FUNCTION ESTIMATION SUCCESS

P1(s) P2(s) T (s) case 1 T (s) case 2
Success rate (%) 61.8 77.2 94.0 97.4

The estimated parameters obtained from a direct identifi-
cation of P1(s) or P2(s) have important deviations and their
median values does not necessary correspond the real param-
eters. In addition, the success rate is somehow disappointing
for both transfer function. This might be due to the fact that
P1(s) has two pairs of zeros and poles that are very close.
It is actually difficult to identify accurately these close poles
and zeros. For the simulated vehicle, P1(s) has poles for:
p1,2 = −2.14 ± 14.7j and p3,4 = −0.594 ± 6.92j; its zeros
are z1 = 0 and z2,3 = −0.566± 7.00j.

On the other hand, the estimated parameters obtained from
filtering the output and the identification of T (s) have small
deviations and the median values close the real parameters (at
most 3.5% error). The success rate is close to 100%, with a

higher value for the second case. The transfer function T (s)
does not have close zeros and poles as the first one, therefore
it is simpler to estimate, yielding more accurate results.

When using additional sensors, the estimated parameters
have slightly less deviation and more accurate median values
for the transfer function T (s). For the case 2, the measurement
from different sensors are concatenated in the same identifica-
tion problem, and since the sensors have different noises, the
estimation precision increases.

VII. CONCLUSIONS

This article has illustrated an approach to estimate the
position of the center of mass of a road vehicle based on
noisy inertial measurements. Unlike previous works based on
online algorithms, we have used offline batch identification
to estimate the parameters. When using directly the measured
signals, the identification does not give reliable estimation of
the parameters on simulated data. A solution to this issue
has been proposed, consisting in filtering the output and
identifying the corresponding transfer function, leading to
more precise estimations of the vehicle parameters. Moreover,
when using an additional gyroscope and accelerometer, even
cheap ones, the estimation quality is improved.
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