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Dynamic systems, and in particular mechanical structures, may be subjected to non-smooth loadings such as impacts or shocks. Moreover, their behavior itself may exhibit more or less non-smooth evolutions, as when fracture occurs. Therefore, robust simulation models are of interest to capture such behaviors. A particular focus is made herein on time-stepping explicit dynamics schemes to allow efficient simulations, and non-smoothness is embedded within the discrete resolution model, so that robust simulations can be obtained, with a minimum number of numerical parameters. The original contributions of this article lie in the way the non-smooth behavior is formulated to be embedded in an explicit dynamics framework. This study focuses on the solver for dynamics with non-smooth interface behavior, rather than on the behavior models themselves. The applications concern non-smooth interface behaviors at macroscopic scale, between displacement jump on the 2D interface surface with no thickness, and interfacial force distributions acting on the bodies apart the interface. The proposed test cases which can serve as benchmarks for simulation codes, concern in a first step contact and perfectly plastic interface behavior (for illustrative purpose, on a 0D example). The last numerical test deals with contact, friction, fracture and adhesion for an extrinsic perfectly brittle interface behavior, to exemplify the feasibility on a full 3D finite element model.

1 Non-smoothness is difficult Non-smooth behaviors in mechanical models often lead to difficulties in their numerical simulation, where the problem is often qualified as stiff. For instance, contact or impact problems, crack propagation, brittle behaviors... involve such difficulties [START_REF] Brogliato | Numerical simulation of finite dimensional multibody nonsmooth mechanical systems[END_REF][START_REF] Acary | On solving contact problems with Coulomb friction: Formulations and numerical comparisons[END_REF]. A quasi-static model in this case is usually difficult to tackle, while the use of dynamical behavior may induce some regularization, although rigid models persist in exhibiting multiple solutions [START_REF] Moreau | Indetermination due to dry friction in multibody dynamics[END_REF][START_REF] Moreau | Facing the plurality of solutions in nonsmooth mechanics[END_REF][START_REF] Alart | How to overcome indetermination and interpenetration in granular systems via nonsmooth contact dynamics. An exploratory investigation[END_REF]). In such cases, but for deformable models, explicit dynamics schemes are useful to reduce the computational cost. However, additional regularizations such as penalization are then not suited, since explicit schemes usually exhibit a critical time step which is driven to a possibly very small value with high penalization factors in the model.

In this study the focus is therefore on the use of a symplectic explicit scheme, namely the CD-Lagrange scheme [START_REF] Fekak | A new heterogeneous asynchronous explicit-implicit time integrator for nonsmooth dynamics[END_REF], embedding by construction the treatment of non-smooth evolutions, without the need for any penalization with artificial numerical parameters.

Although non-smooth behaviors may also occur in the bulk of the structure, many different cases often arise also in the contact of an interface (assembling between mechanical parts, heterogeneous structure made by gluing of different parts, interaction between mechanical systems...) Therefore, this article focuses on these kinds of non-smooth behaviors. These stiff problems usually require particular formulations to overcome their resolution issue [START_REF] Jean | Non-smooth contact dynamics approach of cohesive materials[END_REF][START_REF] De Saxcé | A non incremental variational principle for brittle fracture[END_REF].

The CD-Lagrange scheme embedding the non-smooth Moreau framework [START_REF] Moreau | Une formulation du contact à frottement sec ; application au calcul numérique[END_REF][START_REF] Moreau | On Unilateral Constraints, Friction and Plasticity[END_REF][START_REF] Dubois | The Contact Dynamics method: A nonsmooth story[END_REF]) involves an interface behavior expressed not with a classical stress vs displacement jump function, but with an impulse-velocity jump relationship. It has been tested and used for different cases of non-regularized frictional contact [START_REF] Fekak | A new heterogeneous asynchronous explicit-implicit time integrator for nonsmooth dynamics[END_REF][START_REF] Di Stasio | Benchmark cases for robust explicit time integrators in non-smooth transient dynamics[END_REF].

We restrict the study here to macroscopic phenomenological models of interfaces. There are many references dealing with lower scale interface phenomena (chemistry, bonds...) which are not under consideration here. Apart from the contact behaviors, there are still other non-smooth behaviors, for instance those arising from piecewise linear relationships, such as plasticity with a yield threshold and without viscosity. We then test the explicit scheme first on interfaces that exhibit such plastic behaviors. Indeed, the perfectly plastic behavior in the bulk of the material may be difficult to handle in standard finite-element codes. Indeed, the plastic threshold may lead algorithms to fail to converge, especially when non-admissible intermediate solutions are seek for during iterations [START_REF] Meyer | Optimal control of perfect plasticity. Part I: stress tracking[END_REF]. Here, we focus on the plasticity developed in the interface model, for two phenomenological versions corresponding to two physical situations, and to derive benchmark cases, we push the non-smoothness using perfect plasticity models. In a second step, a brittle interface with adhesion recovery is studied. The brittle behavior corresponds to a fracture of the interface which is a brutal decohesion. Although fracture models are usually derived from energy release when creating fracture surface [START_REF] Francfort | Quasistatic brittle fracture seen as an energy minimizing movement[END_REF][START_REF] Kiener | 100 years after Griffith: From brittle bulk fracture to failure in 2D materials[END_REF], the brittle fracture is usually associated with a low energy. The contact part of this interface behavior (in compression) is one source of non-smoothness [START_REF] Jean | Non-smooth contact dynamics approach of cohesive materials[END_REF]. The infinite stiffness in traction of the interface (before fracture) is a second one [START_REF] Collins-Craft | On the formulation and implementation of extrinsic cohesive zone models with contact[END_REF] as it was also for the plastic interface. Finally the limit case of perfect brittle fracture, which is tested herein, exhibits a higher non-smooth response, corresponding to a zero energy dissipation. Although the physical interpretation of this limit case is not trivial (usually, looking at a smaller physical scale leads to some elastic behavior and some dissipation, [START_REF] Raffa | A micromechanical model of a hard interface with micro-cracking damage[END_REF][START_REF] Lebon | On the emergence of adhesion in asymptotic analysis of piecewise linear anisotropic elastic bonded joints[END_REF]), this case is used herein to challenge the models, leading to difficult numerical non-smoothness issues.

It is noteworthy that these different cases do have some similarities with the non-smoothness involved in the frictional contact models: the rigid, perfect plastic behavior leads to a normal behavior looking similar to the tangential friction of Tresca model; then, the brittle fracture leads to a generalization of the perfect normal contact behavior, the so-called Hertz-Signorini-Moreau (HSM) or Karush-Kuhn-Tucker (KKT) conditions [START_REF] Wriggers | Computational Contact Mechanics[END_REF]). These cases will be described, implemented and tested in this article. The target cases considered herein deal with a constant time step Δ𝑡, and the small displacement assumption. Moreover, compatible spatial discretizations on each side of an interface are assumed for sake of simplicity; this issue can be overcome for instance by considering the mortar approach [START_REF] Ben Belgacem | The mortar finite element method for contact problems[END_REF][START_REF] Casadei | A mortar spectral/finite element method for complex 2D and 3D elastodynamic problems[END_REF][START_REF] Wohlmuth | A mortar finite element method using dual spaces for the Lagrange multiplier[END_REF][START_REF] Popp | Dual mortar methods for computational contact mechanicsoverview and recent developments[END_REF][START_REF] Pinto Carvalho | An efficient algorithm for rigid/deformable contact interaction based on the dual mortar method[END_REF]).

A rigid, perfectly plastic interface behavior

We focus herein on perfectly plastic behavior of interfaces, as a macroscopic phenomenological model. To enforce non-smoothness, no elastic part is considered in the model, which is related to the so-called extrinsic case in fracture models [START_REF] Park | Cohesive zone models: A critical review of traction-separation relationships across fracture surfaces[END_REF][START_REF] Zhang | Extrinsic cohesive modelling of dynamic fracture and microbranching instability in brittle materials[END_REF][START_REF] Collins-Craft | On the formulation and implementation of extrinsic cohesive zone models with contact[END_REF]; this is the limit case of an elastic interface when its stiffness is driven to infinity. To help resolution in standard finite element codes, these non-smoothness are often managed with regularization or penalization, i.e. using some numerical parameters similar to artificial stiffness. But the higher the artificial stiffness is, the stiffer the problem is. When one is concerned with explicit dynamics schemes, this cannot be a solution due to the classical conditional stability issue, reducing the critical time step, and rendering the problem ill-conditioned. A dedicated integration scheme to deal with non-smoothness may therefore be a suited solution.

In this section, we first recall the principles of the explicit time-stepping symplectic CD-Lagrange scheme, with perfect frictionless unilateral impacts. Then we move to two new test cases, that could serve as benchmarks, involving perfect plasticity in the interface model: no elasticity is introduced to emphasize the non-smoothness feasibility of the approach.

Unilateral contact CD-Lagrange scheme

In a first step, the classical contact case is recalled to emphasize the different design stages of the algorithm.

For linear dynamics, a spatially discretized (by finite elements) system of mass and stiffness matrices 𝑀 and 𝐾, submitted to an external force is driven by the second-order in time ordinary differential equation (ODE) of the form 𝑀 𝑈 + 𝐾𝑈 = 𝑓 ext , where 𝑈 (𝑡) is the displacement degreesof-freedom vector and 𝑓 ext (𝑡) the external generalized nodal force vector. The CD-Lagrange scheme is based on the central difference time integration scheme, using a desynchronized time discretization where the indices 𝑛 and 𝑛 + 1/2 are related to the time steps 𝑡 𝑛 and 𝑡 𝑛+1/2 . Moreover, as a time-variational scheme, the order of the ODE is reduced by an order 1, and the time-discretized dynamic problem is

𝑀 (𝑉 𝑛+3/2 -𝑉 𝑛+1/2 ) + ℎ𝐾𝑈 𝑛+1 = ℎ𝑓 ext,𝑛+1 (1) 
where ℎ is the time step (ℎ = Δ𝑡 assumed herein uniform), and 𝑉 is the velocity vector, such that 𝑈 𝑛+1 = 𝑈 𝑛 + ℎ𝑉 𝑛+1/2 is the explicit computation of the incremental displacement, provided that both 𝑈 𝑛 and 𝑉 𝑛+1/2 are known, and that 𝑈 𝑛+1 and 𝑉 𝑛+3/2 are seek for. Contrary to event-driven schemes, the present time-stepping approach does not select the time steps to match with non-smooth event occurring times, allowing the use of pre-selected uniform time steps. Moreover, to get an explicit and matrix-free resolution, a classical solution is to use the lumped mass matrix, so 𝑀 is diagonal, as considered herein. If part of the degrees of freedom (dof) are subjected to unilateral contact condition (without friction in a first step), one may use the localization matrix 𝐿 containing the dofs selection and projection onto the normal to the contact (which is constant for the small perturbation case studied herein). Therefore, the normal velocity jump at contact interface is 𝑣 = 𝐿𝑉 , and the normal gap is 𝑔 = 𝑔 0 + 𝐿𝑈 where 𝑔 0 is the initial gap. For impact problems, and moreover for spatially discretized ones, the velocity may exhibit jumps in time, and the acceleration, as well as the contact force are not always defined. The reduced-order system is therefore suited for such a situation, once one introduces the so-called impact impulse 𝑟 that replaces the contact force and is a convergent quantity when the time step is refined. The discretized non-smooth dynamics evolution equation is then written as

𝑀 (𝑉 𝑛+3/2 -𝑉 𝑛+1/2 ) + ℎ𝐾𝑈 𝑛+1 = ℎ𝑓 ext,𝑛+1 + 𝐿 𝑇 𝑟 𝑛+3/2 (2) 
or

𝑉 𝑛+3/2 = 𝑉 free + 𝑀 -1 𝐿 𝑇 𝑟 𝑛+3/2 (3) 
where 𝑉 free = 𝑉 𝑛+1/2 + 𝑀 -1 ℎ(𝑓 ext,𝑛+1 -𝐾𝑈 𝑛+1 ) would be the velocity if no contact occurs, i.e. if 𝑟 𝑛+3/2 = 0. The reduced dynamics problem consists in expressing from (3) the relation between local unknown quantities at the contact interface 𝑣 𝑛+3/2 and 𝑟 𝑛+3/2 . This is done by pre-multiplying with 𝐿 to get

𝑣 𝑛+3/2 = 𝑣 free + 𝐻𝑟 𝑛+3/2 (4) 
where 𝑣 free = 𝐿𝑉 free and 𝐻 = 𝐿𝑀 -1 𝐿 𝑇 is the so-called Delassus operator. When considering compatible finite element meshes between impacting bodies, or impact with a fixed rigid part, the operator 𝐿 is local to each impacting nodes. Due to the properties of the lumped mass matrix 𝑀; this leads to a Delassus operator which is diagonal, definite positive and spherical per node (spatial directions are equivalent, as in the mass matrix 𝑀 for volumic finite elements) as considered herein.

To close the problem, the local contact behavior should be added. When expressed with a relationship between gap 𝑔 and impulse 𝑟 , it leads to the KKT condition: 0 ≤ 𝑔 ⊥ 𝑟 ≥ 0. This fits within the thermodynamics framework, using a free energy potential Ψ(𝑔) = 𝐼 R + (𝑔) where 𝐼 R + is the indicator function of the convex positive cone R + (with a null value for a positive argument, and +∞ otherwise). Clearly, the non-smoothness arises from the non differential property of this potential, so that the state law involves a subdifferential operation as

-𝑟 ∈ 𝜕 𝑔 Ψ(𝑔) (5) 
which is equivalent to the previous KKT condition. This condition can be replaced, thanks to Moreau viability lemma [START_REF] Moreau | Numerical aspects of the sweeping process[END_REF][START_REF] Dubois | The Contact Dynamics method: A nonsmooth story[END_REF], with a relation between impulse and velocity jump, that can also be interpreted as a constitutive relation of the form: R (𝑣, 𝑟 ; 𝑔) = 0. This relation is also neither smooth nor univoque. It reads:

If 𝑔 > 0 then: 𝑟 = 0 (6) Else: 0 ≤ 𝑣 ⊥ 𝑟 ≥ 0 (7)
Finally the problem is (4) together with the behavior R (𝑣 𝑛+3/2 , 𝑟 𝑛+3/2 ; 𝑔 𝑛+1 ) = 0 and with diagonal Delassus operator, it provides an explicit solution as well. Once 𝑟 𝑛+3/2 is known, the dynamics (3) allows to get the full velocity vector 𝑉 𝑛+3/2 .

The classical Coulomb friction laws can also be taken easily into account [START_REF] Fekak | A new heterogeneous asynchronous explicit-implicit time integrator for nonsmooth dynamics[END_REF][START_REF] Di Stasio | Benchmark cases for robust explicit time integrators in non-smooth transient dynamics[END_REF], with an underlying thermodynamics framework suited to this non-associated model thanks to the bi-potential method [START_REF] De Saxcé | The bipotential method: A constructive approach to design the complete contact law with friction and improved numerical algorithms[END_REF][START_REF] Feng | The bi-potential method applied to the modeling of dynamic problems with friction[END_REF]. Indeed, there are other explicit formulations for contact problems, as the Nitsche approach in [START_REF] Chouly | Explicit Verlet time-integration for a Nitsche-based approximation of elastodynamic contact problems[END_REF]) but dedicated to deformable bodies.

A simple 0D test case for normal rigid, perfectly plastic behavior

In this new test case, which is expected to be at least as non-smooth as the previous contact case, the only difference resides in the interface behavior, that should be expressed also as an impulse-velocity jump relationship.

The classical phenomenological representation of the interface behavior, in the normal direction to the interface, is selected to be the parallel association of a perfect contact behavior (with index 𝑐) and a purely plastic behavior (with index 𝑝) with the stress threshold 𝜎 𝑌 , as depicted on Figure 1. This association leads to the following assembly relationships: 𝑟 = 𝑟 𝑐 + 𝑟 𝑝 for the impulses and 𝑣 𝑐 = 𝑣 𝑝 = 𝑣 for the velocity jump (the gap is also the same for both). Such a model may correspond to a physical situation where a thin layer of cohesive plastic material separates two volumic elastic bodies, see for instance some dedicated plasticity models (de los [START_REF] De Los Ríos | Laminated materials with plastic interfaces: modeling and calculation[END_REF], elasto-plasticity [START_REF] Spada | Damage and plasticity at the interfaces in composite materials and structures[END_REF][START_REF] Brisotto | Simulation of interface behavior between FRP bars and concrete by an elastic-plastic theory via FEM[END_REF], visco-plasticity [START_REF] Monchiet | Interfacial models in viscoplastic composites materials[END_REF], etc. for which the non-smoothness is nevertheless weaker than the one of perfectly plastic model.

Indeed, at a macroscopic scale (larger that the interphase thickness), the interphase is represented by a null-thickness interface with a dedicated plastic behavior. The contact part of the behavior is only a crude model of the fact that the possible compression of the interphase is limited.

For the present model, the contact part of the behavior is similar to the one of the previous section. The plastic part of the behavior is usually modeled within the thermodynamic framework using a state potential for reversible part of the behavior, and a pseudo-potential of dissipation for the irreversible part [START_REF] Lemaitre | Elasto-plastic Contact of Rough Surfaces[END_REF]. Since the present model is perfectly plastic, no elastic part is involved and only a dissipation potential is used. The state variables are the normal stress 𝜎 𝑝 and the displacement jump 𝑢 𝑝 (the equivalent for an interface behavior to the strain for a volumic plasticity model). The non-smooth dissipation potential, for the 0D case, is defined as

Φ ★ (𝜎 𝑝 ) = 𝐼 R -(𝑓 (𝜎 𝑝 )) with 𝑓 (𝜎 𝑝 ) = |𝜎 𝑝 | -𝜎 𝑌
where 𝑓 (𝜎 𝑝 ) is the yield function, 𝜎 𝑌 is the yield stress and 𝐼 R -is the indicator function of the negative cone R -(with a null value for a negative argument, and +∞ otherwise). Clearly, the non-smoothness again arises from the non differential property of this potential [START_REF] Moreau | On Unilateral Constraints, Friction and Plasticity[END_REF], so that the evolution law involves also a subdifferential operation as

𝑢 𝑝 ∈ 𝜕 𝜎 𝑝 Φ ★ leading to If 𝑓 (𝜎 𝑝 ) < 0 then: 𝑢 𝑝 = 0 (8) Else: 𝑢 𝑝 = 𝜆 sgn(𝜎 𝑝 ) with 𝜆 ≥ 0 (9)
Expressed with velocity jump 𝑣 𝑝 = 𝑢 𝑝 and impulse 𝑟 𝑝 = -ℎ𝜎 𝑝 (the impulse corresponding to the normal plastic stress, this last one being positive in traction along the normal direction), this interface behavior is depicted on Figure 2, denoting 𝑟 𝑌 = ℎ𝜎 𝑌 . Some corresponding stress vs velocity jump answers are illustrated on Figure 3.
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The considered constitutive behavior, as an impulse/velocity jump relationship When the gap is strictly positive, the contact is disabled, so 𝑟 𝑐 = 0, 𝑟 = 𝑟 𝑝 , and the reduced dynamics reads
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𝑣 = 𝑣 free + 𝐻𝑟 𝑝 (10)
With the diagonal and positive properties of 𝐻 , the solution to the intersection of the linear reduced dynamics and non-smooth behavior relations is also explicit as illustrated on Figure 4 and detailed in Algorithm 1.
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The solution as the intersection of the behavior (plain line) and the reduced dynamics (dotted line)

When the gap is not strictly positive, both the contact and the plastic behaviors are activated. This situation corresponds to the case of an hyperstatic association of two relationships, therefore leading not to a unique solution for each. Nevertheless, the solution is still unique for the sum of the impulses 𝑟 = 𝑟 𝑐 + 𝑟 𝑝 with the reduced dynamics

𝑣 = 𝑣 free + 𝐻𝑟 (11)
Indeed, consider the cases separation:

• if 𝑣 > 0, then 𝑟 𝑐 = 0, so 𝑟 = 𝑟 𝑝 = -𝑟 𝑌 is computed as before. One therefore gets 𝑣 = 𝑣 free -𝐻𝑟 𝑌 := ṽ that should be positive in this case; • in the counter case, 𝑣 = 0, and the reduced dynamics reads 0 = 𝑣 free + 𝐻𝑟 = (𝑣 free -𝐻𝑟 𝑌 ) + 𝐻 (𝑟 𝑐 + 𝑟 𝑝 + 𝑟 𝑌 ), so 0 = ṽ + 𝐻 (𝑟 𝑐 + 𝑟 𝑌 -ℎ𝜎 𝑝 ) for which we should have 𝑟 𝑐 ≥ 0 and 0 ≤ 𝑟 𝑌 -ℎ𝜎 𝑝 ≤ 2𝑟 𝑌 . Now if ṽ > 0 this is inconsistent and corresponds to the previous case. Therefore ṽ ≤ 0 and

𝑟 = 𝑟 𝑐 -ℎ𝜎 𝑝 = -𝐻 -1 𝑣 free := r
This cases separation can therefore be summarized as

• if ṽ > 0 (which is equivalent to r < -𝑟 𝑌 ), then 𝑟 = -𝑟 𝑌 • else 𝑟 = r
This can be simplified also, as detailed in Algorithm 1.

Input: displacement 𝑈 𝑛 , velocity 𝑉 𝑛+1/2 Output: displacement 𝑈 𝑛+1 , velocity 𝑉 𝑛+3/2 1: Displacement 𝑈 𝑛+1 ← 𝑈 𝑛 + ℎ𝑉 𝑛+1/2 ⊲ Explicit configuration 2: 𝑔 𝑛+1 ← 𝑔 0 + 𝐿𝑈 𝑛+1 3: 𝑉 free ← 𝑉 𝑛+1/2 + 𝑀 -1 ℎ(𝑓 ext,𝑛+1 -𝐾𝑈 𝑛+1 ) ⊲ Free velocity 4: 𝑣 free ← 𝐿𝑉 free 5: r ← -𝐻 -1 𝑣 free 6: 𝑟 𝑌 ← ℎ𝜎 𝑌 7: if 𝑔 𝑛+1 > 0 then 8: if r < -𝑟 𝑌 then 𝑟 𝑛+3/2 ← -𝑟 𝑌 9: else if r > 𝑟 𝑌 then 𝑟 𝑛+3/2 ← 𝑟 𝑌 10: else 𝑟 𝑛+3/2 ← r 11: end if 12: else 𝑟 𝑛+3/2 ← max( r, -𝑟 𝑌 ) 13: end if 14: Velocity 𝑉 𝑛+3/2 ← 𝑉 free + 𝑀 -1 𝐿 𝑇 𝑟 𝑛+3/2
⊲ Matrix-free dynamics Algorithm 1: Time step increment for the perfectly plastic interface

To illustrate this resolution algorithm, a test case with a single dof problem is considered on Figure 5, with the non-dimensional parameters: 𝑔 0 = 0, 𝑚 = 𝑘 = 2𝜎 𝑌 = 1 (the dimensional 𝑚 would be a mass per unit surface, the dimensional 𝑘 a stiffness homogeneous to a Young modulus). The characteristic time for the oscillations in the linear regime is 𝜏 = 2𝜋 √︁ 𝑘/𝑚 = 2𝜋. Note that with a single degree-of-freedom problem, the distinction between implicit and explicit scheme is not significant, so there is not a real critical time step in this case and ℎ = Δ𝑡 should be smaller than 𝜏 for accuracy criteria; here ℎ = 0.03 is chosen.

The results are depicted on Figure 6. The loading consists in successive 3 forth and back increasing tractions followed by a highly dynamic compression whose maximal compression is maintained constant afterwards. The first traction is not high enough to produce plasticity, which can be seen on the displacement evolution: the interface remains perfectly glued. The second traction produces a plastic evolution: the interface plastically separates, and the interface impulse is constant during perfect plasticity. Finally the plasticity develops even more during the third traction, while the brutal compression allows to plastify in compression, up to the perfect contact activation with a velocity jump and an impact impulse. Since the model formulation acts on velocity and impulse, and since a time stepping approach is used, a residual displacement penetration may occur, related to a precision criteria (indeed, one cannot satisfy exactly simultaneously the displacement constraint, the velocity constraint, and the discretized relationship between them). Therefore, a relative error indicator can be easily computed with this residual as 𝜂 =min 𝑡 𝑔(𝑡)/max 𝑡 |𝑔(𝑡)|. On the present test case, it takes the value 𝜂 = 0.43 %. 

Another phenomenological association of contact and perfect plasticity

A serial association of the two previous elementary blocks for the 0D test case of figure 7 would lead to a completely different macroscopic model. This last one now may corresponds to a perfect contact interface between two bodies, taking into account some plasticity that may develop close to the interface but within the contacting bodies at a lower spatial scale (for instance roughness plasticity). In this case, the macroscopic model may embed the plasticity behavior not into the volumic bodies, but within the surfacic interface. Some examples of this association type may be found, for elasto-plasticity model (Liu et al. 2001;[START_REF] Ghaednia | A review of elastic-plastic contact mechanics[END_REF], for elasto-plastic contact at asperity scale [START_REF] Kogut | A finite element based elastic-plastic model for the contact of rough surfaces[END_REF], or at a larger scale (Wriggers et al. 1993), etc. This association leads to 𝑟 = 𝑟 𝑐 = 𝑟 𝑝 , 𝑣 = 𝑣 𝑐 + 𝑣 𝑝 and 𝑢 = 𝑢 𝑐 + 𝑢 𝑝 . The behavior of each block is the same as previously. The reduced dynamics still reads 𝑣 = 𝑣 free + 𝐻𝑟 . The same method as previously with case separation now leads to the following: if 𝑢 > 𝑢 𝑝 (i.e. 𝑢 𝑐 > 0, the contact is inactive) then 𝑟 𝑐 = 0 = 𝑟 𝑝 = 𝑟 (and 𝑣 𝑝 = 0, 𝑣 𝑐 = 𝑣 = 𝑣 free ); otherwise,

• if 𝑣 free > 0 (contact separation) then: 𝑟 𝑐 = 0 = 𝑟 𝑝 = 𝑟 (and 𝑣 𝑝 = 0, 𝑣 𝑐 = 𝑣 = 𝑣 free )

• otherwise (active contact) if 𝑣 free > -𝐻𝑟 𝑌 (no plasticity development) then: 𝑟 𝑐 = 𝑟 = 𝑟 𝑝 = -𝐻 -1 𝑣 free (indeed less than 𝑟 𝑌 ) and 𝑣 𝑐 = 0, 𝑣 𝑝 = 0 so 𝑣 = 0 (rigid interface) else 𝑣 free ≤ -𝐻𝑟 𝑌 (compressive plastification) so that: 𝑟 𝑝 = 𝑟 𝑌 (and 𝑟 𝑐 = 𝑟 = 𝑟 𝑌 as well), 𝑣 = 𝑣 𝑝 = 𝑣 free + 𝐻𝑟 𝑌 ≤ 0 (and 𝑣 𝑐 = 0) The numerical solution procedure is now described on algorithm 2 (one can note the need of the local plastic displacement 𝑢 𝑝 as a state internal variable).

The results of this test case are depicted in Figure 8. The loading is similar to the opposite of the previous one, but modulated to involve some plasticity in compression, and some contact release. When the traction load is positive, some contact release is obtained, while in compression 

𝑟 𝑛+3/2 ← max 0 , min(-𝐻 -1 𝑣 free , 𝑟 𝑌 ) 11: 𝑣 𝑝,𝑛+3/2 ← min(0 , 𝑣 free + 𝐻𝑟 𝑌 ) 12: end if 13: Velocity 𝑉 𝑛+3/2 ← 𝑉 free + 𝑀 -1 𝐿 𝑇 𝑟 𝑛+3/2
⊲ Matrix-free dynamics

Algorithm 2: Time step increment for the perfectly plastic contact interface for a sufficient value, the plastic flow is observed. 

A rigid, brittle interface with adhesion recovery

An even more non-smooth case is designed herein for testing purpose as an interface behavior that could be called "non-smooth post-it TM ". As for the previous example, a 0D test (i.e. in normal direction of the interface only) is first considered, and will after be generalized to a 2D interface.

The adhesion recovery is an other mechanism, allowing to recover some adhesion, when a compression force has been applied. These kind of behavior has already been studied, but in the case of progressive decohesion and damage evolution [START_REF] Raous | Restorable adhesion and friction[END_REF]. A perfect brittle version with non-smooth adhesion recovery is proposed in this section. The non-smoothness sources reside in the perfect contact in compression, the infinite stiffness in traction before fracture, and the null energy dissipation of the perfectly brittle fracture. Indeed this limit case is not well posed for quasi-static problems, since it would lead to an instability leading to instantaneous debonding of interfaces.

A normal behavior test with a 0D problem

The considered constitutive behavior is a compound of two different situations: a perfect contact or a gluing behavior with a yield traction load 𝑓 𝑌 (or impulse 𝑟 𝑌 = ℎ𝑓 𝑌 ) above which a brittle rupture occurs. The sketch of this behavior is depicted in Figure 9. In compression, the unilateral contact prevents the interpenetration.

The reduced dynamics reads 𝑣 = 𝑣 free + 𝐻𝑟 . As before, with the diagonal and positivity properties of 𝐻 , the solution is the intersection of the behavior and the reduced dynamics as illustrated on Figure 10, when the gap is null. When the gap is strictly positive, the fracture has occurred, so 𝑟 = 0. When the gap is not strictly positive, three different cases may happen: • either r ≤ -𝑟 𝑌 , then the solution is 𝑟 = 0 (and 𝑣 ≥ 0, the fracture occurs); • or r > 0, then the solution is 𝑟 = r (and 𝑣 = 0, the contact is active); • else, there are two possible solutions. In this case, the continuity of the previous status allows to decide which one is selected: either the previous status was inactive contact, so the status does not evolve and 𝑟 = 0, or the previous status was active contact or glued, and the status is now glued and 𝑟 = r . This behavior does nevertheless not take into account that the yield stress 𝑓 𝑌 may evolve (and is therefore an internal variable). Indeed, the considered modified model is: when a rupture occurs, 𝑓 𝑌 is nullified; when the impulse is positive (compression), 𝑓 𝑌 may increase back (this is a recovery of adhesion). An induced simplification also resides in the previous status of the interface: it has been stored in the 𝑓 𝑌 internal variable, so that the 𝑓 𝑌 = 0 case corresponds to the case where a fracture has occurred, and the constitutive behavior then collapses into the classical unilateral contact behavior; this allows to a more compact sub-cases selection (only two remaining): indeed, if rupture has occurred, one has 𝑓 𝑌 = 𝑟 𝑌 = 0, so that the first two previous cases cover all the possibilities.

An issue concerns the choice of the variable representing the threshold that should be a material intrinsic parameter. It was previously mentioned that either a yield stress 𝑓 𝑌 or an impulse distribution 𝑟 𝑌 are used, related with 𝑟 𝑌 = ℎ𝑓 𝑌 . Therefore, ℎ being a discretization parameter, 𝑓 𝑌 and 𝑟 𝑌 cannot both be intrinsic material parameters. An answer could a priori be obtained by looking at convergence of the solution when the time step ℎ goes to zero. If a 0D problem is considered, loaded with an external force 𝑓 ext (𝑡), and a material parameter 𝑟 𝑌 , the impulse solution looks like 𝑟 (𝑡) = -ℎ𝑓 ext (𝑡), therefore 𝑟 tends toward 0 (and 𝑟 /ℎ has a finite limit), so whatever the load is, after a certain refinement in time discretization, one cannot have 𝑟 ≤ -𝑟 𝑌 , so there is an inconsistency. Now consider a 0D problem, loaded with an external impulse 𝑟 ext (𝑡) (so that the equivalent force is 𝑓 (𝑡) = 𝑟 ext (𝑡)/ℎ). If the material parameter is 𝑓 𝑌 , since the solution looks like 𝑟 (𝑡) = 𝑟 ext (𝑡), after a certain refinement, and whatever the load is, one will always have 𝑟 > -𝑟 𝑌 = ℎ𝑓 𝑌 , so there is also an inconsistency.

Two physical fracture modes may be considered, that are physically different: either due to a smooth force, or due to a shock, so that the failure criteria is a compound: 𝑟 < -𝑟 𝑌 or 𝑟 < -ℎ𝑓 𝑌 . Herein, another physical model is considered: though the fracture happens brutally in time, the quantity that drives the fracture mechanism could be non-local in time. Indeed, at each interface point the quantity 𝑅(𝑡) = ∫ 𝑡 𝑡 -𝜏 𝑌 𝑓 (𝑡)𝑑𝑡 may be defined, where 𝑓 is the interface normal stress, which is equivalent to the more general expression 𝑅(𝑡) = 𝑖,𝑡 𝑖 ∈ [𝑡 -𝜏 𝑌 ,𝑡 ] 𝑟 (𝑡 𝑖 ) homogeneous to an impulse. Its interpretation is that a smooth force may lead to a brittle fracture, provided that is has been applied during a sufficient time duration, and that shocks may also lead to a brittle fracture, provided that they have been repeated sufficiently rapidly or have been sufficiently intense. With this new quantity, the fracture criteria reads 𝑅 < -𝑅 𝑌 , where 𝑅 𝑌 is a material parameter homogeneous to an impulse distribution, together with a second intrinsic parameter, namely a characteristic time 𝜏 𝑌 . As mentioned previously, one may consider a variable-in-time 𝑅 𝑌 . 𝑅 𝑌 is nullified when fracture occurs, and can be recovered by normal compression, i.e. when 𝑟 > 0. A consistent criteria could then read: 𝑅 𝑌 (𝑡) = max(𝑅 𝑌 (𝑡); 𝑅(𝑡)). And finally a maximum recovery could be added with a third material parameter, 𝑅 𝑌 max leading to 𝑅 𝑌 (𝑡) = min(𝑅 𝑌 max ; max(𝑅 𝑌 (𝑡); 𝑅(𝑡))). Such a modification with a non-locality in time is not related to a smoothing since no modification is made on the instantaneous fracture event, contrary to smoothing evolutions as in [START_REF] Zhang | Model smoothing method of contact-impact dynamics in flexible multibody systems[END_REF].

A main implementation difference is due to the non-locality in time: the impulse field 𝑟 should be stored during a previous duration of 𝜏 𝑌 , as a moving window in time. This indeed leads to a higher storage cost, but does not prevent the explicit matrix-free feature of the algorithm.

A bit more general model can be selected, such as one with an efficiency decrease of the adhesion recovery. Another internal variable is then used: 𝛼, that measures the efficiency of the adhesion recovery: as an initial condition, 𝛼 = 1 (maximum efficiency). At each fracture event at time 𝑡, it is then decreased, for instance with the following evolution law: 𝛼 (𝑡 + ) = 𝛼 (𝑡 -)𝑒 -1/𝑛 𝑏 , where 𝑛 𝑏 is then an additional material parameter. This is a discrete evolution: the decrease of efficiency is not continuous in time, but occurs at fracture events. The Algorithm 3 implements the non-locality in time and the possible decrease in adhesion recovery efficiency.

It can also be noticed that when this non-smooth brittle fracture occurs, no energy is dissipated in the interface (𝑟 = 0, so 𝑣 𝑇 𝑟 = 0), this could therefore be called a perfectly brittle behavior.

The following test case is implemented: consider again the mechanical system of Figure 5, still with a dimensionless mass 𝑚 = 1, but without stiffness 𝑘 = 0 and with a brittle interface behavior. As a load, some shocks are produced, i.e. an external impulse 𝑟 ext (𝑡) is prescribed, Figure 11. Concerning the time discretization, 160 time steps of uniform duration ℎ are selected. The initial conditions (null displacement, negative initial velocity) are designed so that a periodic solution is obtained for the first following test. Several tests are proposed: • The test 1 consists of using as material parameters 𝑅 𝑌 max = ∞ (no adhesion limit), 𝑛 𝑏 = ∞ (no efficiency decrease), 𝜏 𝑌 = 0 (no delay effect). For these values, a cyclic response is produced, Figure 12. A first impulse 𝑟 (𝑡 = ℎ) > 0 is produced due to the initial condition that engenders a compressive shock and increases the yield impulse 𝑅 𝑌 ; then a negative impulse happens opposed to the external first positive shock 𝑟 ext which is not large enough to produce a fracture; the second external impulse is large enough for a fracture to happen (the impulse 𝑟 is therefore null, as the yield impulse 𝑅 𝑌 ), and to induce kinetic energy of detachment. The third external impulse in negative and has been adjusted to get back the mass into contact with a positive impulse 𝑟 identical to the initial one, so cycling is obtained afterwards. Thanks to good discrete energy conservation of the integration scheme, cycles are preserved at long time duration. • For the test 2, only the efficiency decrease is changed to 𝑛 𝑏 = 10. The solution is no more cyclic, Figure 13. Indeed the yield impulse reconstruction 𝑅 𝑌 decreases up to the point when the first type of external impulse can produce the fracture, so the impulse and velocity solutions are no more cyclic. • The test 3 uses the same parameters as for test 1, except that a delay effect is used with 𝜏 𝑌 = 0.08 (actually 64 time steps). Though the solution differs from test 1 for the yield 𝑅 𝑌 , Figure 14, due to the time delay that is a moving window in time, the associated material behavior is conservative, are allows to recover the same solution for the other quantities. To check time-convergence, an additional test is used, based on the previous test 3, but with an additional smooth loading 𝑓 ext (𝑡) = -𝐹 𝑑 sin( 45 𝜋𝑡/𝑇 𝑐 ) with a non-dimensional amplitude 𝐹 𝑑 = 2, 𝑇 𝑐 = 0.04 being the non-dimensional duration of one cycle. Different time steps are used, and an over-killing one is used to obtain a reference solution (ℎ ref ≈ 7.63 10 -8 ). Since for instance the velocity is discontinuous, a Hausdorff distance [START_REF] Moreau | Approximation en graphe d'une évolution discontinue[END_REF]Acary 2012) is used to get an error with respect to this reference, both for the displacement and the velocity solutions. Note that normalizations of evolution graphs are needed for the metric of such a norm: the time scale is rescaled as 𝑡/𝑇 , 𝑇 being the total studied time duration and both displacement and velocity are rescaled with respect to their maximum absolute values of the reference solutions. In such a way the Hausdorff distance is an absolute error measure and is reported on Figure 15. 

3D structures and surfacic interfaces

To start with, the interface behavior is considered with a normal 𝑓 𝑁 and a tangential force distribution (or stress) 𝑓 𝑇 , together with a yield stress 𝜎 𝑌 at an interface point. No non-locality in time are considered in a first step.

Since fracture may happen with a shear stress, a threshold criteria should be used. A proposed equivalent stress is defined as

𝜎 (𝑓 𝑁 , 𝑓 𝑇 ) = √︃ < 𝑓 𝑁 > 2 + +∥𝑓 𝑇 ∥ 2 /𝜆 2 (12)
so only the tension normal part (hence the positive part < 𝑓 𝑁 > + is involved) acts on the fracture, and where 𝜆 is a weight for the influence of the tangential part, Figure 16. When 𝜎 (𝑓 𝑁 , 𝑓

𝑇

) < 𝜎 𝑌 no fracture occurs and the interface status is 'glued', i.e. the velocity jump is 𝑣 = 0; when 𝜎 (𝑓 𝑁 , 𝑓

𝑇

) > 𝜎 𝑌 a fracture has occurred and the interface status is 'contact', i.e. unilateral contact with Coulomb tangential friction, with a friction coefficient 𝜇, that may be either inactive (𝑣 𝑁 > 0, 𝑓 𝑁 = 0, 𝑓

𝑇 = 0) or sliding (𝑣 𝑇 ≠ 0, 𝑓 𝑁 > 0, ∥ 𝑓 𝑇 ∥ = 𝜇 𝑓 𝑁 ) or sticking (𝑣 𝑇 = 0, 𝑓 𝑁 > 0, ∥𝑓 𝑇 ∥ ≤ 𝜇 𝑓 𝑁 )
. In this considered model, no smooth transition occurs between the glued and contact status, to keep the behavior as non smooth as possible for testing the proposed resolution algorithms.

It can be noticed that when 𝜎 𝑌 = 0, the threshold collapses to the positive semi-axis 𝑓 𝑁 < 0. When 𝜆 = ∞ the tangential direction has no influence on the fracture, the normal behavior is identical as in the 0D test case. When 𝑅 𝑌 max = 0, the behavior reduces to a classical contact with Coulomb friction. Since with a 2D interface, tangential components are involved as vector quantities, underlying has been used to differentiate them from scalar quantities. Note however that in the following, when dealing with discretized quantities as column vectors, no underlying will be used anymore.
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The resolution algorithm 4 is then built on the same framework as previously. In particular, the velocity-impulse formulation is used, with 𝑟 𝑌 = ℎ𝜎 𝑌 , 𝑟 𝑁 = -ℎ𝑓 𝑁 , 𝑟 𝑇 = -ℎ𝑓 𝑇 , but as 3D cases discretized by finite elements are concerned, one has to add a loop on the nodes of the interface. The non-locality in time and the adhesion recovery decrease are also trivially extended to these cases.

Moreover, since the local quantities on the interface are impulse distributions, an additional integration on the interface has to be performed. To keep these quantities at nodal position on the interface, a nodal integration is therefore selected, the integration weight at node 𝑘 is 𝑆 (𝑘 ) . To simplify the notations, their assembling on the full set of dofs will be denoted with the diagonal entry matrix 𝑆, with duplicated entries on the 3 spatial directions and 3 zeros entries on the nodes that are not located on the interface. For 3D cases, the dynamics therefore reads

𝑉 𝑛+3/2 = 𝑉 free + 𝑀 -1 𝑆𝐿 𝑇 𝑟 𝑛+3/2 (13) = 𝑉 free + 𝑀 -1 𝑆𝐿 𝑇 𝑁 𝑟 𝑁 ,𝑛+3/2 + 𝑀 -1 𝑆𝐿 𝑇 𝑇 𝑟 𝑇 ,𝑛+3/2 (14)
where the mapping operators 𝐿 𝑇 𝑁 and 𝐿 𝑇 𝑇 contain respectively the normal to the interface, two tangent directions at the interface, and the mapping to the global dofs. With the previously mentioned properties of matrix 𝑀, still valid in 3D, and similar properties for 𝑆, one has 𝐿 𝑁 𝑀 -1 𝑆𝐿 𝑇 𝑇 = 0 so that the reduced dynamics reads firstly: Concerning the energy conservation, no energy is lost during fracture, but kinetic energy of back impacting node is lost at impact (no Newton restitution coefficient is used). This is a drawback of the discretized problem (the energy loss is driven to zero when mesh size is refined), but can be dealt with using an advanced modeling of mass matrix: the so-called redistributed or singular mass technique [START_REF] Khenous | Mass redistribution method for finite element contact problems in elastodynamics[END_REF][START_REF] Tkachuk | Hybrid-mixed discretization of elastodynamic contact problems using consistent singular mass matrices[END_REF][START_REF] Dabaghi | A weighted finite element mass redistribution method for dynamic contact problems[END_REF][START_REF] Di Stasio | An explicit timeintegrator with singular mass for non-smooth dynamics[END_REF]. There is also a physical source of energy loss, due to the friction between fractured surfaces, driven by the friction coefficient 𝜇.

3D test case

The 3D test case is modeled with classical finite elements, the geometry is given on Figure 17. It consists on a one-fourth of a tube slice (the internal radius is 𝑅 1 = 1, the thickness 𝐿 1 = 0.5 and the length 𝐿 2 = 0.5) meshed with 5712 cubic elements with 4 nodes each, leading to 20475 dof. The non-dimensional volumic parameters are: a Young modulus 𝐸 = 1, a Poisson coefficient 𝜈 = 0.3 and a density of 𝜌 = 1. Two interfaces with the rigid foundation are considered, on the two rectangular ends of the tube quarter. Both have the same behavior, whose parameters are given in Table 1. With the previous spatial discretization, there are 390 interface nodes. The boundary conditions are a symmetry plane, and a shear stress on the other end face (a quadratic radial distribution, whose resultant value is depicted on Figures 18 (a) and(c)) engendering a non-uniform solicitation both with normal and tangential components on the interfaces. Two time evolutions of the loading are considered, Figure 18 (a) and(c), the first one being less smooth than the second and involving more dynamical effects.

The initial conditions are a null displacement and velocity, and an initial adhesion threshold 𝑅 𝑌 (𝑡 = 0) = 10 -4 . The studied time interval is 𝑇 = 16, with a time step ℎ = 𝑇 /8000 = 0.002, while the estimated critical time step is 𝑡 𝑐 ≈ 0.047.

One can note that there could be some unstable initial determination of the evolution of the state variables, subjected to numerical precision issues when one uses at initial condition both an initial gap 𝑔 0 = 0 and an initial velocity 𝑉 0 = 0. Indeed, this corresponds to a grazing contact for which the distinction between active and inactive contact is undetermined. To fix this issue, a simple solution is to initialize the initial gap with a 'small' value (larger than the numerical precision), e.g. 𝑔 0 = -10 -10 , so that the initial state is active contact.

If 𝜆 = ∞ (no influence of tangential component), no failure occurs for this test case, since the interfaces are subjected to a normal compression. On the other hand, with the selected value of 𝜆 of Table 1, shearing is taken into account and the evolution of the fraction of cracked surface of the interfaces are depicted on Figure 18 the smooth loading leads to a delayed fracture, since the loading increases slower than for the first case. Moreover, the fracture curves are smoother as well, since there are less forward and backward elastic waves traveling in the structure. In each case, we can observe that the fracture, induced mainly herein by shearing of the interface, is first developing in the interface number 2, Figure 17, more subjected to shearing.

To question the space-time convergence, the same test is performed again, with a mesh size divided by a factor 𝑐 (i.e. for 𝑐 3 times more finite elements) and a time step divided by 𝑐 also (the ratio of the time step over the critical ones is therefore constant). The corresponding evolutions of the fraction of cracked surfaces are depicted on Figures 18(d-f) for 𝑐 ∈ {1, 3, 4}. The qualitative comparison is consistent; one can notice a kind of smoothing of the evolution curves for these macroscopic quantities, that may be due to the higher resolution.

Since we got a solution which is a space-time field, the norm on the residual penetration to get an error indicator is questionable. Indeed, we can use an spatial average and a maximum norm in time, or a full averaged one (here using the mean value), for instance: where < • > -stands for the negative part. For the different refinement ratios 𝑐, simultaneously for the mesh size and the time steps, the obtained values are reported in Table 2. These errors are quite small, and the tendency is a decrease with the refinement factor 𝑐. 

Conclusions and perspectives

The previously developed symplectic and explicit dynamic scheme CD-Lagrange has been tested on different highly non-smooth behaviors localized in mechanical interfaces. It provides a framework for the implementation of non-smooth (and not regularized) relationships, provided that the constitutive behaviors are expressed between impulse and velocity. Perfect plasticity with rigid interface and perfectly brittle fracture have been tested for a single degree-of-freedom problem, and validated on a full 3D finite element peeling-like problem. Concerning perspectives, testing if the non-smooth (and non-univoque) constitutive relations may lead to the so-called deterministic chaos, i.e. an a priori deterministic problem, but whose solution may strongly depend on initial conditions, is under concern. Some less non-smooth cases can also be studied, as ductile damage (cohesive zone models), for which an extrinsic case is feasible with no initial compliance [START_REF] Collins-Craft | On the formulation and implementation of extrinsic cohesive zone models with contact[END_REF]. To avoid spatial localization a delay-effect model [START_REF] Needleman | Material rate dependence and mesh sensitivity in localization problems[END_REF][START_REF] Allix | Delayed-damage modelling for fracture prediction of laminated composites under dynamic loading[END_REF][START_REF] Allix | A delay damage mesomodel of laminates under dynamic loading: basic aspects and identification issues[END_REF][START_REF] Desmorat | Delay-active damage versus nonlocal enhancement for anisotropic damage dynamics computations with alternated loading[END_REF]) will be more suited since non-locality in space [START_REF] Pijaudier-Cabot | Nonlocal damage theory[END_REF][START_REF] Lasry | Localization limiters in transient problems[END_REF][START_REF] Kamensky | A Review of Nonlocality in Computational Contact Mechanics[END_REF] would prevent an explicit matrix-free approach. Generalization to asynchronous explicit schemes [START_REF] Gravouil | Heterogeneous asynchronous time integrators for computational structural dynamics[END_REF][START_REF] Niu | An asynchronous variational integrator for the phase field approach to dynamic fracture[END_REF]) is also under concern. Comparing the present test cases, in particular the 3D one, with other time integration schemes is also a direct perspective to this work.
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 1 Figure 1: Sketch of the phenomenological interface behavior
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 3 Figure 3: The considered constitutive behavior, as a stress/displacement jump relationship
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 5 Figure 5: Sketch of the test case
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 6 Figure 6: The numerical solution for the 0D test case with the perfectly plastic interface
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 7 Figure 7: Sketch of the test case for the plastic contact
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 8 Figure 8: The numerical solution for the 0D test case with the contact with perfect plasticity interface
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 910 Figure 9: The considered brittle constitutive behavior, as an impulse/displacement jump relationship (the dotted line denotes a brutal jump in the status)
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 11 Figure 11: The non-smooth loading for the 0D test cases
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 121314 Figure 12: The numerical solution for the first 0D brittle test case
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 15 Figure15: The loading with forces and impulses, the numerical convergence of the solution with respect to time discretization and the reference solution for velocity

Figure 16 :

 16 Figure 16: Yield function for 2D fracture criteria

Figure 17 :

 17 Figure 17: Geometry of the 3D test case, with the vertical shear stress on the face end

Figure 18 :

 18 Figure 18: (a) test case 1, and (c) test case 2: time loading evolutions; (b) test case 1, and (d) test case 2: evolutions of the fraction of cracked surfaces (𝑐 = 1); (e) test case 2: for space-time convergence (𝑐 = 3); (f) test case 2: for space-time convergence (𝑐 = 4)

  𝜂 =max 𝑡 (-mean 𝑥 𝑔(𝑥, 𝑡))max 𝑡 mean 𝑥 |𝑔(𝑥, 𝑡)| or 𝜂 ′ = mean 𝑥,𝑡 < 𝑔(𝑥, 𝑡) > - mean 𝑥,𝑡 |𝑔(𝑥, 𝑡)| (15)

  Input: displacement 𝑈 𝑛 and 𝑢 𝑝,𝑛 , velocity 𝑉 𝑛+1/2 and 𝑣 𝑝,𝑛+1/2 Output: displacement 𝑈 𝑛+1 and 𝑢 𝑝,𝑛+1 , velocity 𝑉 𝑛+3/2 and 𝑣 𝑝,𝑛+3/2 1: Displacement 𝑈 𝑛+1 ← 𝑈 𝑛 + ℎ𝑉 𝑛+1/2 and 𝑢 𝑝,𝑛+1 ← 𝑢 𝑝,𝑛 + ℎ𝑣 𝑝,𝑛+1/2 ⊲ Explicit configuration 2: 𝑔 𝑛+1 ← 𝑔 0 + 𝐿𝑈 𝑛+1 3: 𝑉 free ← 𝑉 𝑛+1/2 + 𝑀 -1 ℎ(𝑓 ext,𝑛+1 -𝐾𝑈 𝑛+1 ) ⊲ Free velocity 4: 𝑣 free ← 𝐿𝑉 free 5: 𝑟 𝑌 ← ℎ𝜎 𝑌 6: if 𝑔 𝑛+1 > 𝑢 𝑝,𝑛+1 then

		⊲ Inactive contact
	7:	𝑟 𝑛+3/2 ← 0
	8:	𝑣 𝑝,𝑛+3/2 ← 0
	9: else
	10:	

Table 1 :

 1 𝑈 𝑛 and 𝑉 𝑛+1/2 as well as interface status 𝑅 𝑌 ,𝑛+1/2 and 𝛼 𝑛+1/2 Output: 𝑈 𝑛+1 and 𝑉 𝑛+3/2 as well as new interface status 𝑅 𝑌 ,𝑛+3/2 and 𝛼 𝑛+3/2 1: Displacement𝑈 𝑛+1 ← 𝑈 𝑛 + ℎ𝑉 𝑛+1/2 ⊲ Explicit configuration 2: 𝑔 𝑛+1 ← 𝑔 0 + 𝐿𝑈 𝑛+1 3: 𝑉 free ← 𝑉 𝑛+1/2 + 𝑀 -1 ℎ(𝑓 ext,𝑛+1 -𝐾𝑈 𝑛+1 ) 𝑖,𝑡 𝑖 ∈ [𝑡 𝑛+3/2 -𝜏 𝑌 ,𝑡 𝑛+1/2 ] 𝑟 𝑖 12:R𝑌 ← min(𝑅 𝑌 max ; max(𝑅 𝑌 ,𝑛+1/2 ; 𝛼 𝑛+1/2 R)) Interface non-dimensional parameters for the different test cases

	⊲ Free velocity

Input:

  𝑣 𝑁 = 𝑣 𝑁 free + 𝐻 𝑁 𝑟 𝑁 , where 𝐻 𝑁 = 𝐿 𝑁 𝑀 -1 𝑆𝐿 𝑇 𝑁 , 𝑣 𝑁 free = 𝐿 𝑁 𝑉 free , and secondly: 𝑣 𝑇 = 𝑣 𝑇 free + 𝐻 𝑇 𝑟 𝑇 , where 𝐻 𝑇 = 𝐿 𝑇 𝑀 -1 𝑆𝐿 𝑇 𝑇 , 𝑣 𝑇 free = 𝐿 𝑇 𝑉 free . The Delassus operators 𝐻 𝑁 and 𝐻 𝑇 are still definite positive, diagonal and spherical per node entry. 𝑈 𝑛 and 𝑉 𝑛+1/2 as well as interface status fields 𝑅 𝑌 ,𝑛+1/2 and 𝛼 𝑛+1/2 Output: 𝑈 𝑛+1 and 𝑉 𝑛+3/2 as well as new interface status fields 𝑅 𝑌 ,𝑛+3/2 and 𝛼 𝑛+3/2 1: Displacements 𝑈 𝑛+1 ← 𝑈 𝑛 + ℎ𝑉 𝑛+1/2 ⊲ Explicit configuration 2: 𝑔 𝑛+1 ← 𝑔 0 + 𝐿𝑈 𝑛+1 3: 𝑉 free ← 𝑉 𝑛+1/2 + 𝑀 -1 ℎ(𝑓 ext,𝑛+1 -𝐾𝑈 𝑛+1 ) ⊲ Free velocity 4: for each interface point 𝑘 do 𝑖,𝑡 𝑖 ∈ [𝑡 𝑛+3/2 -𝜏 𝑌 ,𝑡 𝑛+1/2 ] 𝑟 𝑁 ,𝑖 16: R𝑇 ← r𝑇 + 𝑖,𝑡 𝑖 ∈ [𝑡 𝑛+3/2 -𝜏 𝑌 ,𝑡 𝑛+1/2 ] 𝑟 𝑇 ,𝑖 17:R𝑌 ← min(𝑅 𝑌 max ; max(𝑅 𝑌 ,𝑛+1/2 ; 𝛼 𝑛+1/2 R𝑁 )) Velocity 𝑉 𝑛+3/2 ← 𝑉 free + 𝑀 -1 𝑆𝐿 𝑇 𝑟 𝑛+3/2

	5:	𝑣 𝑁 free ← 𝐿 (𝑘 ) 𝑁 𝑉 free	⊲ With the local to node 𝑘 operator
	6:	𝑣 𝑇 free ← 𝐿 (𝑘 ) 𝑇 𝑉 free	
	7:	if 𝑔 𝑘 𝑛+1 > 0 then		⊲ Inactive interaction
	8:	𝛼 𝑛+3/2 ← 𝛼 𝑛+1/2	
	9:	𝑅 𝑌 ,𝑛+3/2 ← 0	
	10:	𝑟 𝑁 ,𝑛+3/2 ← 0	
	11:	𝑟 𝑇 ,𝑛+3/2 ← 0	
	12:	else	
	13: 14:	r𝑁 ← -𝐻 -1 𝑁 𝑣 𝑁 free r𝑇 ← -𝐻 -1 𝑇 𝑣 𝑇 free	
	15: R𝑁 ← r𝑁 + 18: if 𝜎 (-R𝑁 , -R𝑇 ) < R𝑌 then		⊲ Glued interaction
	19:	𝛼 𝑛+3/2 ← 𝛼 𝑛+1/2	
	20:	𝑅 𝑌 ,𝑛+3/2 ← R𝑌	
	21:	𝑟 𝑁 ,𝑛+3/2 ← r𝑁	
	22:	𝑟 𝑇 ,𝑛+3/2 ← r𝑇	
	23:	else	
	24:	if 𝑅 𝑌 ,𝑛+1/2 > 0 then		⊲ Brittle fracture occurs
	25:	𝛼 𝑛+3/2 ← 𝛼 𝑛+1/2 𝑒 -1/𝑛 𝑏		⊲ Adhesion efficiency decrease
	26:	else	
	27:	𝛼 𝑛+3/2 ← 𝛼 𝑛+1/2	
	28:	end if	
	29:	𝑅 𝑌 ,𝑛+3/2 ← 0	
	30:	if r𝑁 > 0 then		⊲ Active contact
	31:	𝑟 𝑁 ,𝑛+3/2 ← r𝑁	
	32:	if ∥ r𝑇 ∥ > 𝜇𝑟 𝑁 ,𝑛+3/2 then	⊲ Sliding
	33:	𝑟 𝑇 ,𝑛+3/2 ← 𝜇𝑟 𝑁 ,𝑛+3/2	r𝑇 ∥ r𝑇 ∥
	34:	else		⊲ Sticking
	35:	𝑟 𝑇 ,𝑛+3/2 ← r𝑇	
	36:	end if	
	37:	else		⊲ Released contact
	38:	𝑟 𝑁 ,𝑛+3/2 ← 0	
	39:	𝑟 𝑇 ,𝑛+3/2 ← 0	
	40:	end if	
	41:	end if	
	42:	end if	
	43:	Assemble 𝑟 𝑁 ,𝑛+3/2 and 𝑟 𝑇 ,𝑛+3/2 in the right-hand-side 𝑟 𝑛+3/2
	44: end for	
	45:		

Input: ⊲ Matrix-free dynamics Algorithm 4: Time step increment for the 2D brittle fracture interface

Table 2 :

 2 Error indicators vs the refinement ratio

	𝑐	1	3	4
	𝜂 0.016 % 0.012 % 0.009 %
	𝜂 ′ 0.036 % 0.023 % 0.019 %
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