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Abstract

In this work, we focus on the challenging problem of designing an off-the-grid method for dictionaries
involving both positional and scale shifts. To tackle this challenge, we introduce a novel algorithm inspired
by the Sliding Frank-Wolfe approach. In our proposed algorithm, positions are treated as continuous
variables, whereas scales are discretized. Such a strategy eliminates numerical instabilities inherent to
the direct application of Sliding Frank-Wolfe. We successfully apply this algorithm to the study of DNA
replication data.

1 Introduction

Formally, sparse coding methods consist in approximating a signal z P L2pX q, in a vector space X , by a
finite linear combination of atoms selected from the dictionary D “ tφp¨; θq P L2pX q : θ P Θu, where φ is
a continuous mapping. The objective is to estimate the underlying unknown parameters θ̄1, ..., θ̄K P Θ, and
amplitudes ᾱ1, ..., ᾱK P R modeling the signal z as:

z “ F

˜

K
ÿ

k“1

ᾱkφp¨; θ̄kq

¸

,

where F denotes a stochastic degradation. This problem can be solved by different optimization techniques
of sparse approximation [14, 18, 13].

Traditionally, sparse coding methods rely on the discretization of the parameter set Θ, corresponding to

a set of rK atoms tφk “ φp¨; θkqu
ĂK
k“1, from which a small subset of K ą 0 atoms must by chosen. In this

context, LASSO (Least Absolute Shrinkage and Selection Operator, [18]) is a well accepted method that
uses the ℓ1 norm as a measure of sparsity. Numerically, the signal is a vector z P RN as well as the atoms
φk P RN and the LASSO is written as:

pa P Argmin
a

}z ´

ĂK
ÿ

k“1

akφk}22 ` λ}a}1, (1)

where λ ą 0, impacts the number of non-zero components of a “ pâkq
1ďkďĂK

P RK̃ .
In this work, we focus on atoms φ for which the parametrization Θ is associated to dilatation and

translation of a reference atom, forming a space ˆ scale dictionary. We investigate how this type of dictionary
interacts with sparse coding methods. As the translation of an atom can be expressed using a convolution
kernel it gives rise to a variety of numerical methods. Particularly when Θ is discrete, these methods are
called convolutional sparse coding and have been applied in audio processing and other fields [9, 22, 12, 17].
The popularity of these methods comes from (i) the possibility of providing a compact representation of a
large dictionary, and (ii) the efficient computation of convolutions via FFTs.
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Another objective of sparse coding methods is to increase the accuracy in the estimation of parameters.
For this purpose, continuous sparse coding methods have shown significant advantages compared to tradi-
tional discretized formulations [3, 10]. This is the case of BLASSO (Beurling LASSO [19]), in which Θ equals
X . In BLASSO, the solution belongs to the space of measures MpΘq and is numerically approximated by a
weighted sum of Dirac measures:

m “

K
ÿ

k“1

αkδθk , (2)

involving the weights αk P R and θk P Θ elements of the parameter space where the measure is not zero. The
optimization problem is given by:

minimize
mPMpΘq

}z ´ Φpmq}22 ` λ|m|pΘq, (3)

where |m|pΘq is the total variation of the measure m, [20, Section 6.1], λ ą 0, and the operator Φ is defined
as:

Φ : MpΘq ÝÑ L2pΘq

m ÞÝÑ

ż

Θ

φp¨; θqdmpθq “

K
ÿ

k“1

αkφp¨; θkq.

The last equality holds when m is written as in (2). With some hypothesis on the regularity of the kernel
φ, theoretical recovery guarantees have been established for BLASSO [19, 16, 6]. In the specific case of
convolution kernels, numerically solving BLASSO can be performed efficiently using different methods [2, 7,
15]. For example, the Sliding Frank-Wolfe method [3, 15], based on the Frank-Wolfe method [11], transforms
the non-constrained optimization problem (3) in a compact constrained problem where it is possible to apply
the Frank-Wolfe algorithm. Sliding Frank-Wolfe method benefits from flexibility with respect to the space
X , and theoretical guarantees [15].
Contributions: We investigate BLASSO in the case of a space-scale transformation. In this context, we
propose a new optimization method that combines continuous and discrete optimization allowing to reach
spatial accuracy and good performance on scale recovery, without being sensitive to numerical instabilities.
We also show that theoretical recovery guarantees of Sliding Frank-Wolfe algorithm are not affected in the
hybrid model. The proposed algorithm is applied in the context of single molecule DNA replication studies
[1]. Numerical tests show the adequacy and relevance of the hybrid method in estimating position (space)
and speed (scale) with high precision.

Outline: In Section 2, we study the consequences of a space-scale dictionary in the original Sliding
Frank-Wolfe algorithm. In Section 3, we present our hybrid algorithm, continuous in space and discrete
in scale, highlighting the main theoretical differences between the proposed algorithm and original Sliding
Frank-Wolfe. Finally, Section 4 presents a case study in the context of DNA replication with numerical
experiments to support the relevance of the method.

2 Sliding Frank-Wolfe algorithm for space-scale parametrization

Space-scale setting – For a set S Ă R, we focus on a parameter space Θ “ X ˆS. The dictionary set D is

D “

!

φp¨; px, sqq “ csψ
´

¨ ´ x

s

¯

, px, sq P Θ
)

(4)

where the continuous function ψ : R Ñ R is a reference atom and cs, the normalizing constant, is such that
}φp¨, px, sqq}2 “ 1, for every θ “ px, sq P Θ. When handling the discrete signal z, the variable p¨q is replaced
by a discretization space tuiu

N
i“1 of the signal z. We consider the operator Φ: MpΘq Ñ L2pX q such that

Φ : m “

K
ÿ

k“1

αkδpxk,skq ÞÝÑ

K
ÿ

k“1

αkφp¨; pxk, skqq.
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In this context, the Sliding Frank-Wolfe algorithm (Section SIV), proposed on [15, Algorithm 2], provides a
sequence with an accumulation point that minimizes problem (3). This accumulation point is approximated

by tα˚
k , s

˚
k , x

˚
ku1ďkďK that defines the sum of Dirac measures m˚ “

řN˚

k“1 α
˚
kδpx˚

k ,s
˚
k q.

For the iteration ℓ, let tαrℓs, θrℓsu define the set of amplitudes and spikes (space ˆ scale), and Krℓs “ |θrℓs|

be the number of spikes. The algorithm loops on three steps until it reaches the stopping criterion:
[Step 1] Estimate an additional spike θ̄ by maximizing

ηSFW
pθq “

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1

2λ
xzp¨q ´ Φ

¨

˝

Krℓs
ÿ

k“1

α
rℓs

k δ
θ

rℓs

k

˛

‚, φp¨, θqy

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

, (5)

and add θ̄ to the spike set, composed now by Krℓs ` 1 spikes.

[Step 2] Adjust the amplitudes with the new set of spikes and obtain
!

αrℓ` 1
2 s, θrℓ` 1

2 s
)

, where
ˇ

ˇ

ˇ
θrℓ` 1

2 s
ˇ

ˇ

ˇ
“

Krℓs ` 1.
[Step 3] Solve the non-convex optimization problem (3) when restricted to a sum Dirac measures with
Krℓs `1 components. The initialization is made with the previous estimates. This step results on the refined
parameters

␣

αrℓ`1s, θrℓ`1s
(

, where Krℓ`1s “
ˇ

ˇθrℓ`1s
ˇ

ˇ.
Scale dictionary specificities – The optimization problem involved in Step 1 relies on the gradient of
ηSFW with respect to θ “ px, sq, which may lead to numerical instabilities in the computation of ∇xη

SFW.
These instabilities are due to oscillations in the gradient ∇xψpx “ rx, sq, for a fixed rx, when using a relatively
large grid step ν “ ui`1 ´ ui. A specific analysis is provided in the supplementary material. On the other
hand, for s̃ fixed, ∇xη

SFWpx, s “ s̃q is well-behaved, motivating the hybrid scheme proposed in Section 3.

3 Hybrid continuous-discrete method

To solve the numerical instabilities that arise when the scale s is considered as a continuous parameter, we
propose to reformulate problem (3) treating the scale parameter set as discrete. We consider rΘ “ X ˆ rS,
where rS “ ts1, ..., sMu denotes the discretization of S and for every i P t1, . . . ,Mu, we consider mi P MpX q.
The new formulation is given by:

minimize
m“pm1,...,mM q

∥∥∥∥∥Mÿ
i“1

Φipmiq ´ z

∥∥∥∥∥
2

2

` λ
M
ÿ

i“1

|mi|pX q. (6)

where mi “
ř

k αi,kδxi,k
, for xi,k P X and the operator Φi : MpX q Ñ L2pX q is defined as:

mi “

Ki
ÿ

k“1

αi,kδxi,k
ÞÑ

Ki
ÿ

k“1

αi,kcsiψ

ˆ

¨ ´ xi,k
si

˙

. (7)

This lead us to the hybrid discrete-continuous Algorithm 1.
The objective is to estimate the components tα˚

i,k, x
˚
i,ku, for i P t1, ...,Mu of m˚

i , forming the solution
m˚ “ pm˚

1 , ...,m
˚
M q. The index i incorporates the scale information. This algorithm loops on three steps:

[Step 1] choose both the scale si and a first approximation of the translation component xi,k by maximizing
ηHSFW [Step 2] adjust the amplitudes αi,k based on the previously estimated xi,k, for all i and k, and
[Step 3] solve the non-convex optimization problem (3) with the operators Φi, i P t1, ...,Mu defined by (7)
to refine the parameters tαi,k, xi,ku starting from the previous estimates.

When atoms are not overlapping, steps (2)-(3) can focus only on the scale i chosen by Step 1. The
algorithm employed on Steps 1 and 3 is L-BFGS-B. In Step 1, the problem is solved separately for each
discrete scale variable. Step 2 is solved by FISTA [5, 4]. The stopping criterion of Algorithm 1 is specified
line 3 of the algorithm.

The following theorem formalizes the fact that Algorithm 1 is the Frank-Wolfe algorithm applied to
the hybrid formulation (6). With this result, Algorithm 1 benefits from the same convergence results than
Frank-Wolfe method.
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Theorem 1. The Hybrid Sliding Frank-Wolfe (Algorithm 1) is the Frank-Wolfe Algorithm [11, 15] applied

to problem (6) when ϕi are defined by (7). In addition, if ψ P KERp2q, as defined in [15, Definition 4], any
accumulation point (for the weak˚-topology) of the sequence pm˚,rℓsqℓPN obtained from the Algorithm 1 is in
the set of minimizers of problem (6).

The proof is provided in Annex (Section 5).

4 Application to single molecule DNA replication data

Data description – One of the current goals in DNA replication studies is to characterize the location
and the speed of the molecular motors responsible for DNA synthesis along the chromosomes. This can be
achieved using DNA sequencing data [1] that captures the passage of the molecular motors by measuring the
variation of the concentration of a chemical (BrdU, a modified nucleotide that incorporates in replacement
of thymidines) as a function of the 1D coordinate along the chromosomes (Figure 1A). The molecular
motors incorporate BrdU following its time-dependent intracellular level ψptq. ψptq has been determined
experimentally and follows an asymetrical wave pattern [1, Section Methods] defined in the supplementary
material. The passage of the motors of constant speed s and passing position x at time 0 results in a 1D
spatial pattern ψ

`

¨´x
s

˘

in the measured BrdU profile (Figure 1A). Hence, the faster the local replication
speed, the longer the observed BrdU spatial wave (Figure 1B).

We note that ψ is not differentiable at the start of the wave and at the point of maximal BrdU con-
centration. This difficulty was overcome using directional derivatives that proved to be numerically well
behaved when executing the Algorithm 1. In our discrete case, the normalization constant is approximated
by cs “ 1?

s}ψ}2
.

Experimentally, the BrdU concentration is determined with a spatial sampling period of 100 bp (base

Algorithm 1 Hybrid Sliding Frank-Wolfe (HSFW)

Initialization: Let λ ą 0, p@iq K
r0s

i ” 0 and x
r0s

i “ H.
1: For ℓ “ 0, 1, . . .
2: Step 1: Estimate an additional spike:

psx,siq “ argmax
xPX

iPt1,2,...,Mu

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1

2λ
xz ´

M
ÿ

i“1

K
rℓs
i
ÿ

k“1

α
rℓs

i,kcsiψ

˜

¨ ´ x
rℓs

i,k

si

¸

, φsp¨, xqy

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

looooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooon

ηHSFWpx,siq

and define

$

’

’

’

’

’

&

’

’

’

’

’

%

x
rℓ` 1

2
s

ī
“ x

rℓs

ī
Y tx̄u,

x
rℓ` 1

2
s

i “ x
rℓs

i for all i ‰ ī,

K
rℓ` 1

2
s

ī
“ K

rℓs

ī
` 1,

K
rℓ` 1

2
s

i “ K
rℓs

i for all i ‰ ī.

3: If ηHSFWpx̄, sīqď1 STOP.
4: Step 2: Estimate the amplitudes using the elements of the spike-sets:

αrℓ` 1
2

s
“ argmin

α

›

›

›

›

›

›

›

›

z´

M
ÿ

i“1

K
rℓ` 1

2
s

i
ÿ

k“1

αi,kcsiψ

¨

˝

¨ ´ x
rℓ` 1

2
s

i,k

si

˛

‚

›

›

›

›

›

›

›

›

2

`γ}α}1

5: Step 3: Determine a solution m˚,rℓ`1s of the non-convex problem (6) restricted to Dirac measures

mi with K
rℓ` 1

2 s

i spikes. The initialization is set to m̄i “
řK

rℓ` 1
2

s

i

k“1 α
rℓ`1{2s

i,k δ
x

rℓ`1{2s

i,k

where K
rℓ` 1

2 s

i denotes

the number of spikes for scale si.

6: Step 4: Update for all i : K
rℓ`1s

i “ |m
˚,rℓ`1s

i |, xrℓ`1s “ x˚,rℓ`1s and αrℓ`1s “ α˚,rℓ`1s

4



Figure 1: (A) Example of BrdU concentration signal along the chromossome with two divergent replication
patterns. (B) 3 atoms of the dictionary. (C) Spikes of position and amplitude associated to the forks of
signal (A).

pairs). This distance establishes the grid tuiu
N
i“1 for the signal z (Section 2). In principle, the maximal

spatial precision for x is 1 bp. Our goal is thus, considering the proposed off-the-grid method, to overcome
the 100 bp sampling limit.
Experimental setting – We evaluate the performance of the proposed Hybrid Sliding Frank-Wolfe algo-
rithm (Algorithm 1) with M -scales and compare them to a dictionary discretized both in time (position)

and scale, thus with rK “ M ˆ N in (1). In our experiments we consider Matching Pursuit (MP) rather
than LASSO as reference fully discrete method as it appears to be more efficient in this applicative context
of very sparse representation. The experiments are run for P “ 200 noisy signals and 200 noiseless signals
zppq P RN . For each atom, position and speed are chosen according to a uniform distribution on [0,300] (kbp)
and r´3,´0.5s Y r0.5, 3s (kbp/min) respectively. The stochastic degradation is assumed to follow a Poisson
distribution with intensity parameter β “ 700 to mimic the non-Gaussian experimental noise [1]. A fidelity
term adapted to Poisson noise was tested in this context [8] and was not advantageous compared to the
Euclidian norm, which explains our choice of distance. In experimental data, most signals have 1 or 2 atoms.
Based on that, in our simulated data, signals have a maximum of 2 atoms.

For both approaches (hybrid and fully discrete), we compare the precision of position and velocity esti-
mation by computing the mean absolute error compared to the ground truth. The choice of the parameter
λ “ 0.001 in Algorithm 1 is made in order to detect all the replication patterns.
Results – Figure 2 illustrates the performance of both hybrid (proposed HSFW) and discrete strategy (MP)
when M “ 40 for signal with one replication pattern. Both methods have a good behavior. A more accurate
estimation of the position and amplitude of the atom is obtained with the HSFW as illustrated by the zoom.
The MP solution is the constrained by grid step of 100 bp = 0.1 kb, while the hybrid solution is able to
place the position between two grid elements.

In Figure 3, we compare the mean absolute error for discrete and hybrid methods with noisy and noiseless
samples. As expected, increasing speed detection accuracy (increasingM) decreases position error. Note that
the proposed HSFW systematically reduces the error from 20% up to 40% compared to MP for configurations
with or without noise. We observe that for M “ 40, MP achieves the optimal performance that can be
obtained for a discrete method (black solid line) while the hybrid method overcomes this limit.

In Fig. 4 we display the scattered plot of the reconstruction error (i.e. }z ´ py‚}22) w.r.t the absolute
position error for samples without noise and M “ 40. The colors gradient represents the speed error. With
HSFW (red), we observe that samples with low reconstruction error are those that have low position and
speed error, allowing to easily select small absolute position/speed errors from the reconstruction error. With
MP (blue), error in position are compensate by errors in speed resulting in a low reconstruction error but
relatively high errors in the parameter estimations. The noisy samples exhibits a similar but less accurate
behavior (results not shown).
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Figure 2: Example of a single replication fork fit, represented as in Figure 1 A,C. (First row) Reconstructed signals

pyMP “
ř

ĂK
k“1 pak pφk (in blue) and pyHSFW “

řK
k“1 pαkφp¨; pθkq (in red). When zooming we can observe that the hybrid

method is able to improve the resolution of position detection.

5 Annex : proof of Theorem 1.

The convergence proof is divided in four parts: (i) rewrite problem (6) with the aim of achieving a convex
objective function with a different feasible set; (ii) prove the compactness of the feasible set; (iii) prove that
the linear optimization (Step 1 of Frank-Wolfe method [15]) can be written as Step 1 of Algorithm 1;
(iv) conclude that the sequence generated by Algorithm 1 has a convergent sub-sequence.

Following [15, Lemma 4], (6) can be reformulated as the convex optimization problem with an epigraphic
constraint:

min
pm,tqP rC

rTλpm, tq :“

∥∥∥∥∥ÿ
i

Φipmiq ´ z

∥∥∥∥∥
2

2

` λt (8)

where

rC “

#

pm1, ...,mM , tq :
ÿ

i

|mi|pX q ď t ď ζ and ζ “
}z}

2

λ

+

.

The upper bound ζ of rC is obtained applying mi “ 0 to (6).

One of the key points for applying Frank-Wolfe to problem (8) is to note that rC is a compact set in the
weak˚-topology. As mentioned for the Sliding Frank-Wolfe convergence [15, Remark 2], the ball in MpX q

with the total variation metric is compact. We observe that rC is a closed set contained in the product of
balls: ΠiPt1,..,Mutmi : |mi|pX q ď ζu ˆ tt : 0 ď t ď ζu which is compact by the Tychonoff’s theorem, [21,

Section 9.6, Theorem 1]), hence rC is compact.
The Frank-Wolfe algorithm consists in successive linear optimization problems in a convex and compact

set. In our case, at iteration ℓ, the minimization is reformulated as follows:

max
pm,tqP rC

ÿ

i

ż

X

ηipxqdmi ` λt (9)

where ηipxq “ 1
2λxz´Φipm

rℓs
i q, φsip¨, xqy. Following [15, Remark 4], we shall compute the extremal points of

the set C̃ with the purpose of simplifying this minimization step. In our case, the extremal set of C̃ can be
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Figure 3: Mean absolute position error for MP/HSFW for noiseless/noisy regimes (β “ 700). Black line:
optimal mean position error for discrete methods with a grid step of 100 bp.

Figure 4: Scatter plot of the reconstruction error vs. position error for discrete (left) and continuous (right) methods
when estimated without noise for M “ 40. The color intensity of dots is given according to the absolute speed error.

easily computed as:

EpC̃q “ tpm1, ...,mM , ζq, mi “ 0, for i ‰ i0 and mi0 “ ζδx,

for some x P X and i0 P t1, ...,Muu.

Therefore, by (9), the sum of integrals becomes the value of ηipxq, for some x P X , and for some i P t1, ...,Mu

leading to: argmax
txPX, iPt1,2,..,Muu

|ηipxq|.

In addition, we observe that in Sliding Frank-Wolfe [15, Algorithm 2], the search step (see [15, Algorithm
1]) is replaced by any procedure able to decrease the value of the objective function. Therefore, we conclude
that Algorithm 1 is the Frank-Wolfe algorithm applied to problem (6) and we can benefit from all convergence
results of the later.

Following the steps of [15, Proposition 5], with the assumption that ψ P KERp2q, we conclude that the
sequence m˚,rℓs is a bounded minimizing sequence. In addition, we observe that the objective function in
(6) is l.s.c and convex to obtain that any accumulation point of mrℓs is a solution to (6).

7



6 Conlusion

We propose a study of the Sliding Frank-Wolfe method for space ˆ scale dictionaries. Numerical instabil-
ities arise from the interaction of discretized signals with continuous optimization, specifically in the scale
dependency of the dictionary. To address this limitation, we propose a hybrid algorithm dealing with space
as a continuous variable and scale as a discrete variable. Compared to the MP algorithm, where the whole
parameter space is discretized, our hybrid approach proves its efficiency and promising solution for DNA
replication analysis.

This work was supported by the Agence Nationale de la Recherche (ANR-18-CE45-0002 and ANR-19-
CE12-0028). We thank R. Gribonval for insightful discussions.
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Supplementary material

7 Convolution kernel

In this work, we consider the sparse coding optimization problem for a parameter set Θ “ X ˆ S, where X
represents a translation component:

φp¨; θq “ φp¨; px, sqq “ ψsp¨ ´ xq. (10)

When Θ is a discrete set, Θ “ tx1, ..., xNu ˆ ts1, ..., sMu, it is possible to write the problem in the
convolutive form:

pb P Argmin
b

∥∥∥∥∥z ´

M
ÿ

i“1

bi ˚ φsi

∥∥∥∥∥
2

2

` λ
M
ÿ

i“1

}bi}1,

where φsi P RN , and the sparse vectors bi P RN encodes the discretized location and coefficients related to
i-th atom.

Figure 5: λ∇xη for DNA replication atoms for the first iteration of Sliding Frank-Wolfe Algorithm S1. We consider z “ φp¨, θq,

with θ “ px, sq “ p100 kbp, 1 kbp/minq, and grids tuiu
N
i“1 with different step sizes ν “ ui`1 ´ ui. (A,B,C) λ∇xηpx “ x, ¨q as a

function of s. (D,E,F) λ∇xηp¨, s “ sq as a function of x.

8 Dictionary form:

The dictionary defined in (4) relies on a reference atom ψ. In the DNA replication application this function
was determined experimentally [18] as:

ψptq “

$

’

’

&

’

’

%

c

ˆ

1 ´ e
´

t`t0
τ1

˙

, ´t0 ď t ď 0

c

ˆ

1 ´ e
´

t0
τ1

˙

`

´

r ´ c
`

1 ´ e
´

t0
τ1

˘

¯

`

1 ´ e
t
τ2

˘

, 0 ď t ď 8

(11)

where the parameters τ1, τ2, a and c are assumed constant, with τ1 “ 0.8 min, τ2 “ 1.4 min, c “ 0.4,
t0 “ 2 min and r “ 0. The parameter r represents the residual level of intracellular BrdU in the cell. The
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value r “ 0 is found in humans cells, while yeast presents higher values of r. The value of t0 represents the
duration of the BrdU pulse. Parameters τ1 and τ2 are related to the rate of import/export of BrdU by the
cell. c controls the maximum level of BrdU. Since here r “ 0 the function ψ decreases to zero for large values
of t.

9 Gradient instability:

In Section II, we discuss the numerical instabilities on the first step of Sliding Frank-Wolfe (Algorithm 2),
when considering scale dictionaries. This observation is illustrated when ψ has the form (11). In Figure 5,
we observe the derivative ∇xηpx “ rx, sq and ∇xηpx, s “ rsq for different values of the sampling period ν.
They present oscillating behavior if s is not fixed. This problem is not specific to the function ψ in equation
(11), and can also appear with other space-scale dictionaries described by (4).

10 Sliding Frank-Wolfe algorithm:

Algorithm 2 Sliding Frank-Wolfe

1: Initialization: Let λ ą 0, Kr0s “ 0, θr0s “ H

2: For ℓ “ 0, 1, . . .
3: Step 1: Estimate an additional spike:

θ̄ “ argmax
θPΘ

ηSFWpθq

where:

ηSFW
pθq “

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1

2λ
xz ´ Φ

¨

˝

Krℓs
ÿ

k“1

α
rℓs

k δ
θ

rℓs

k

˛

‚, φp¨, θqy

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

,

and define θrℓ` 1
2 s “ θrℓs Y tθ̄u and Krℓ` 1

2 s “ Krℓs ` 1
4: If ηpθqď1 STOP.
5: Step 2 Estimate the amplitudes by solving

αrℓ` 1
2

s
“ argmin

α

›

›

›

›

›

›

›

z ´ Φ

¨

˚

˝

K
rℓ` 1

2
s

ÿ

k“1

αkδ
θ

rℓ` 1
2

s

k

˛

‹

‚

›

›

›

›

›

›

›

2

2

` λ}α}1

where θ Ð θrl` 1
2 s.

6: Step 3: Estimate a solution m˚ of (3) restricted to Dirac measures with Krℓ` 1
2 s spikes. The initial-

ization is set to m “
Krℓ` 1

2
s

ř

k“1

α
rℓ` 1

2 s

k δ
θ

rℓ` 1
2

s

k

.

Update: Krℓ`1s “ |θrl`1s|, θrl`1s “ θ˚ and α “ α˚.
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