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SPECTRAL ASYMPTOTICS OF THE NEUMANN LAPLACIAN
WITH VARIABLE MAGNETIC FIELD ON A SMOOTH BOUNDED

DOMAIN IN THREE DIMENSIONS

M. AAFARANI, K. ABOU ALFA, FRÉDÉRIC HÉRAU, AND NICOLAS RAYMOND

Abstract. This article is devoted the semiclassical spectral analysis of the Neumann mag-
netic Laplacian on a smooth bounded domain in three dimensions. Under a generic assump-
tion on the variable magnetic field (involving a localization of the eigenfunctions near the
boundary), we establish a semiclassical expansion of the lowest eigenvalues. In particular,
we prove that the eigenvalues become simple in the semiclassical limit.

1. Motivation and main result

1.1. The operator. Let Ω ⊂ R3 be a smooth connected open bounded domain. We consider
A : Ω → R3 a smooth magnetic vector potential. The associated magnetic field is given by

B(x) = ∇× A(x) ,

and assumed to be non vanishing on Ω. For h > 0, we consider the selfadjoint operator

Lh = (−ih∇− A)2 (1.1)

with domain
Dom(Lh) = {ψ ∈ H2(Ω) : n · (−ih∇−A)ψ = 0 on ∂Ω} ,

where n is the outward pointing normal to the boundary.
The associated quadratic form is defined, for all ψ ∈ H1(Ω), by

∀ψ ∈ H1(Ω) , Qh(ψ) =

∫
Ω

|(−ih∇− A)ψ|2 dx.

Since Ω is smooth and bounded, the operator Lh has compact resolvent and we can consider
the non-decreasing sequence of its eigenvalues (λn(h))n⩾1 (repeated according to their multi-
plicities). The aim of this article is to describe the behavior of the eigenvalues λn(h) in the
semiclassical limit h→ 0.

1.2. The operator on a half-space with constant magnetic field. The boundary of Ω
has an important influence on the spectral asymptotics. Let us consider x0 ∈ ∂Ω and the
angle θ(x0) ∈

[
−π

2
, π
2

]
given by

B(x0) · n(x0) = ∥B(x0)∥ sin(θ(x0)) .

Near x0, one will approximate Ω by the half-space R3
+ = {(r, s, t) ∈ R3 : t > 0} (the variable

t playing the role of the distance to the boundary). Then, this will lead to consider the
Neumann realization of

Lθ = (Dr − t cos θ + s sin θ)2 +D2
s +D2

t
1
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in the ambient space L2(R3
+), which already appeared in [11] in the context of Ginzburg-

Landau theory. The corresponding magnetic field is b(θ) = (0, cos θ, sin θ). We let

e(θ) = inf sp(Lθ) .

It is well-known (see [7], [11], and also [18, Section 2.5.2]) that e is even, continuous and
increasing on

[
0, π

2

]
(from Θ0 := e(0) ∈ (0, 1) to 1) and analytic on

(
0, π

2

)
. Moreover, we can

prove that, for all θ ∈
(
0, π

2

)
, e(θ) is also the groundstate energy of the Neumann realization

of the "Lu-Pan" operator, acting on L2(R2
+),

Lθ = (t cos θ − s sin θ)2 +D2
s +D2

t , (1.2)

see [18, Section 0.1.5.4]. In this case, the groundstate energy belongs to the discrete spectrum
and it is a simple eigenvalue.

These considerations lead to introduce the function β on the boundary.

Definition 1.1. We let, for all x ∈ ∂Ω,

β(x) = ∥B(x)∥e(θ(x)) .

1.3. Context, known results and main theorem. The function β plays a central role in
the semiclassical spectral asymptotics. The one-term asympotics of λ1(h) is established in
[11] (see also [15] and [3] where additionnal details are provided).

Theorem 1.2 (Lu-Pan ’00). We have

λ1(h) = hmin(bmin, βmin) + o(h) ,

where bmin = minx∈Ω ∥B(x)∥ and βmin = minx∈∂Ω β(x).

When B is constant (or with constant norm), more accurate estimates of the groundstate
energy have been obtained in [8] and in [16]. When looking at Theorem 1.2, natural questions
can be asked. Can we describe more than the groundstate energy? Is the groundstate energy
a simple eigenvalue? In three dimensions, most of the results in this direction have been
obtained rather recently:
— When bmin < βmin, we can prove that the boundary is essentially not seen by the eigen-

functions with low eigenvalues and that they are localized near the minima of ∥B∥. Then,
if the minimum is unique and non-degenerate, the analysis of [6] applies and it can be
established that

λn(h) = bminh+ C0h
3
2 + (C1(2n− 1) + C2)h

2 + o(h2) ,

where the constants (C0, C1, C2) ∈ R×R+×R reflect the classical dynamics in a magnetic
field.

— When B is constant (or with constant norm), we can prove that βmin < bmin and that
βmin = Θ0∥B∥. In this case, the eigenfunctions with low eigenvalues are localized near
the points of the boundary where the magnetic field is tangent, that is where e(θ(x)) is
minimal. Assuming that the magnetic field becomes generically tangent to the boundary
along a nice closed curve and assuming also a non-degeneracy assumption, we have, from
[9],

λn(h) = βminh+ C0h
4
3 + C1h

3
2 + (C2(2n− 1) + C3)h

5
3 + o(h2) ,

for some constants (C0, C1, C2, C3) ∈ R2 × R+ × R. The result in [9] is stated in the case
of a constant magnetic field, but only the fact that its norm is constant is actually used
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in the analysis, see [9, Section 3.2.1]. Note that without the additionnal non-degeneracy
assumption and stopping the analysis before [9, Section 5.6], this work provides us with
the two-term expansion. See also [5].

When βmin < bmin and when ∥B∥ is variable, it seems that less is known. The first estimates
of the low-lying eigenvalues, and not only of the first one, are done in [15] (see also [14]),
where an upper bound is obtained under a generic assumption (see Assumption 1.3 below):

λn(h) ⩽ βminh+ C0h
3
2 + (C1(2n− 1) + C2)h

2 + o(h2) , (1.3)

for some constants (C0, C1, C2) ∈ R× R+ × R and where C1 is explicitly given by

C1 =

√
detHessx0β

2∥B(x0)∥ sin θ(x0)
.

The upper bound (1.3) is obtained by means a construction of quasimodes in local coordinates
near the minimum of β and involves a number of rather subtle algebraic cancellations. At
a conference in Dijon in March 2010, S. Vũ Ngo.c suggested to the last author that these
algebraic cancellations were the signs of a hidden normal form. At the same conference, J.
Sjöstrand also suggested that a dimensonal reduction in the Grushin spirit (see the remarkable
survey [19]) could provide us with the lower bound. Retrospectively, we will see that both of
them were somewhat right, but that some microlocal technics needed to be developed further
in order to tackle the problem in an efficient way.

Until now, the matching lower bound to (1.3) has only been obtained for a toy model in
the case of a flat boundary with an explicit polynomial magnetic field, see [17]. The aim of
this article is to establish a lower bound that matches to (1.3). To do so, we will, of course,
work under the same assumption as in [15].

Assumption 1.3. The function β has a unique minimum, which is non-degenerate. It is
attained at x0 ∈ ∂Ω and we have

θ(x0) ∈
(
0,
π

2

)
. (1.4)

Moreover, we have

βmin = β(x0) = min
x∈∂Ω

β(x) < min
x∈Ω

∥B(x)∥ = bmin .

The main result of this article is a three-term expansion of the n-th eigenvalue of Lh.
Thereby, it completes the picture described above.

Theorem 1.4. Under Assumption 1.3, the exist C0, C1 ∈ R such that for all n ⩾ 1, we have

λn(h) =
h→0

βminh+ C0h
3
2 +

( √
detHessx0β

∥B(x0)∥ sin θ(x0)

(
n− 1

2

)
+ C1

)
h2 + o(h2) .

In particular, for all n ⩾ 1, λn(h) becomes a simple eigenvalue as soon as h is small enough.

1.4. Organization and strategy of the proof. In Section 2, we recall the already known
results of localization of the eigenfunctions near x0. This formally reduces the spectral anal-
ysis to a neighborhood of x0. This suggests to introduce local coordinates near x0. These
coordinates (r, s, t) are adapted to the geometry of the magnetic field: the coordinate s is
the curvilinear coordinate along the projection of the magnetic field on the boundary (we
use here that θ(x0) < π

2
), the coordinate r is the geodesic coordinate transverse to s, and
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t is the distance to the boundary. A rather similar coordinate system has been used and
described in [9] (inspired from [8]). Then, the local action of the operator is described in
Section 2.3 where we perform a Taylor expansion with respect to the normal variable t only.
After a local change of gauge, this makes an approximate magnetic vector potential appear,
see (2.10). In Section 2.3.2, we define a new operator on L2(R3

+) by extending the coefficients,
seen as functions of (r, s) defined near (0, 0), to functions on R2. Since this extension occurs
away from the localization zone of the eigenfunctions, we get a new operator L app

h whose
spectrum is close to that of Lh, see Proposition 2.11.

In Section 3, we perform the analysis of L app
h with the help of the change of coordinates

(r, s) 7→ J (r, s) = (u1, u2), whose geometric role is to make the normal component of the
magnetic field constant (here, we use θ(x0) > 0). This idea is reminiscent of the recent work
[13] in two dimensions, see [13, Prop. 2.2]. We are reduced to the spectral analysis of the
operator Nh, see (3.1). Then, we conjugate Nh by means a tangential Fourier transform
(in the direction u1) and a translation/dilation T (after these transforms, the variable u1
becomes z). After these explicit transforms, we get a new operator N ♯

ℏ , which can be seen
as a differential operator of order two in the variables (z, t) with coefficients that are h-
pseudodifferential operators (with an expansion in powers of ℏ = h

1
2 ) in the variable u2 only,

see (3.9). Its eigenfunctions are localized in (z, t), see Proposition 3.3 and Remark 3.4.
In Section 4, this localization with respect to z suggests to insert cutoff functions in the

coefficients of our operator. By doing this, we get the operator N ♭
ℏ , see (4.1). The advantage

of N ♭
ℏ is that it can be considered as a pseudodifferential operator with operator-valued

symbol in a reasonable class S(R2, N), see Proposition 4.2. The principal operator symbol
n0(u, υ) is unitarily equivalent to the Lu-Pan operator ∥B(υ,−u)∥Lθ(υ,−u) (where we make
here a slight abuse of notation by forgetting the reference to the local coordinates on the
boundary), see Proposition 4.4. Then, we may construct an inverse for n0 − Λ by means of
the so-called Grushin formalism, as soon as Λ is close to βmin, see Lemma 4.5. This is the first
step in the approximate parametrix construction for N ♭

ℏ −Λ given in Proposition 4.7, which
is the key of the proof of Theorem 1.4. Let us emphasize that this parametrix construction
is inspired by [10] and based on ideas developed by A. Martinez and J. Sjöstrand. This
formalism has recently been used in [9] in three dimensions (see also [1, 4, 2] in the case of
two dimensions). At a formal level, this parametrix construction relates the kernel of N ♭

ℏ −Λ
to that of an effective pseudodifferential operator Q±

ℏ (Λ), see (4.6).
Section 5 is devoted to relate the spectrum of N ♯

ℏ to that of the effective operator (peffℏ )W ,
see (5.1). Note that the effective operator is an operator in one dimension. This contrasts
with [9] where a double Grushin reduction is used: here, this reduction is done in one step
with the help of the Lu-Pan operator. The quasi-parametrix in Proposition 4.7 is the bridge
between the spectra of N ♯

ℏ and (peffℏ )W .
We emphasize that we have to be very careful when studying this connection since the

symbol of the effective operator is not necessarily real-valued (only its principal symbol p0 is
a priori real). This contrasts again with [9] and all the previous works on the subject. This
non-selfadjointness comes from the fact that Nh is not selfadjoint on the canonical L2-space,
but on a weighted L2-space. That is why a short detour in the world of non-selfadjoint
operators is used in Section 5. In fact, one will not need the operator (peffℏ )W more than its
approximation (pmod

ℏ )W near the minimum of p0, see Section 5.1. This approximation is a
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complex perturbation of the harmonic oscillator. Its spectrum is well-known as well as the
behavior of its resolvent.

In Section 5.2.1, we use rescaled Hermite functions to construct quasimodes for N ♯
ℏ . This

shows that the spectrum of the model operator is in fact real and we get an accurate upper
bound of λn(N ♯

ℏ ) in (5.4). This reproves in a much shorter way (1.3) (see [15, Theorem
1.5] where the convention ∥B(x0)∥ = 1 is used). Section 5.2.2 is devoted to establish the
corresponding lower bound (by using in particular that the eigenvalues of the non-selfadjoint
operator (pmod

ℏ )W have algebraic multiplicity 1).

2. Localization near x0 and consequences

2.1. Localization estimates. In this section, we gather some already known localization
properties of the eigenfunctions, see [14].

Proposition 2.1 (Localization near the boundary). Under Assumption 1.3, for all ϵ > 0
such that βmin + ϵ < bmin, there exist α,C, h0 > 0 such that, for all h ∈ (0, h0) and all
eigenfunctions ψ of Lh associated with an eigenvalue λ ⩽ (βmin + ϵ)h, we have∫

Ω

e
2αdist(x,∂Ω)√

h |ψ|2dx ⩽ C∥ψ∥2. (2.1)

For δ > 0, we consider the δ-neighborhood of the boundary given by

Ωδ := {x ∈ Ω : dist(x, ∂Ω) < δ} .
Due to Proposition 2.1, in the following, we take

δ = h
1
2
−η

for η ∈ (0, 1
2
). We consider Lh,δ = (−ih∇−A)2 the operator with magnetic Neumann

condition on ∂Ω and Dirichlet condition on ∂Ωδ \ ∂Ω.

Corollary 2.2. Let n ⩾ 1. There exist C, h0 > 0 such that for all h ∈ (0, h0),

λn(Lh,δ)− Ce−Ch−η

⩽ λn(Lh) ⩽ λn(Lh,δ) .

Thanks to Corollary 2.2, we may focus on the spectral analysis of Lh,δ. The following
proposition can be found in [3, Chapter 9] and [7, Theorem 4.3] (see also the proof of [9,
Prop. 2.9]).

Proposition 2.3 (Localization near x0). Let M > 0. There exist C, h0 > 0 and α > 0 such
that, for all h ∈ (0, h0), and all eigenfunctions ψ of Lh,δ associated with an eigenvalue λ such
that λ ⩽ βminh+Mh

3
2 , we have∫

Ωδ

e
2αdist(x,∂Ω)√

h |ψ(x)|2 dx+
∫
Ωδ

e
2α∥x−x0∥

2

h1/4 |ψ(x)|2 dx ⩽ C ∥ψ∥2 . (2.2)

Proposition 2.3 invites us to consider a local chart near x0 and to write the operator in the
corresponding coordinates. In order to simplify our analysis, we construct below a system of
coordinates compatible with the geometry of the magnetic field.

2.2. Adapted coordinates near x0. This section is devoted to introduce coordinates adapted
to the magnetic field. Most of the properties of our coordinates system have been established
in [9].
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2.2.1. Coordinate in the direction of the magnetic field on the boundary. We set

b(x) =
B(x)

∥B(x)∥
,

and we consider its projection on the tangent plane at x ∈ ∂Ω:

b∥(x) = b(x)− ⟨b(x),n(x)⟩n(x) ,

where n is the outward pointing normal.
Due to Assumption 1.3, near x0, the vector field b∥ does not vanish. This allows to consider

the unit vector field

f(x) =
b∥(x)

∥b∥(x)∥

and the associated integral curve γ given by

γ′(s) = f(γ(s)) , γ(0) = x0 ,

which is well-defined on (−s0, s0) for some s0 > 0. Clearly, γ is smooth and with values in
∂Ω.

2.2.2. Coordinates on the boundary. Denoting by K the second fundamental form of ∂Ω
associated to the Weingarten map defined by

∀U, V ∈ Tx∂Ω , Kx(U, V ) = ⟨dnx(U), V ⟩ ,

we can consider the ODE with parameter s of unknown r 7→ γ(r, s)

∂2rγ(r, s) = −K(∂rγ(r, s), ∂rγ(r, s))n(γ(r, s)) ,

with initial conditions

γ(0, s) = γ(s) , ∂rγ(0, s) = −γ′(s)⊥ ,

where ⊥ is understood in the tangent space. The minus is here so that (∂rγ, ∂sγ,n) is a
direct orthonormal basis. This ODE has a unique smooth solution (−r0, r0) × (−s0, s0) ∋
(r, s) 7→ γ(r, s) where r0 > 0 is chosen small enough. Let us gather the important properties
of (r, s) 7→ γ(r, s). Their proofs may be found in [9].

Proposition 2.4. The function (r, s) 7→ γ(r, s) is valued in ∂Ω. Moreover, we have

|∂rγ(r, s)| = 1 , ⟨∂rγ, ∂sγ⟩ = 0 .

In this chart γ, the first fundamental form on ∂Ω is given by the matrix

g(r, s) =

(
1 0
0 α(r, s)

)
, α(r, s) = |∂sγ(r, s)|2 .

For all s ∈ (−s0, s0), we have α(0, s) = 1 and ∂sα(0, s) = 0.
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2.2.3. Coordinates near the boundary. We consider the tubular coordinates associated with
the chart γ:

y = (r, s, t) 7→ Γ(r, s, t) = γ(r, s)− tn(γ(r, s)) = x . (2.3)
The map Γ is a smooth diffeomorphism from Q0 := (−r0, r0) × (−s0, s0) × (0, t0) to Γ(Q0),
as soon as t0 > 0 is chosen small enough. The differential of Γ can be written as

dΓy = [(Id− tdn)(∂rγ), (Id− tdn)(∂sγ),−n] , (2.4)

and the Euclidean metrics becomes

G = (dΓ)TdΓ =

(
g 0
0 1

)
, (2.5)

with

g(r, s, t) =

(
∥(Id− tdn)(∂rγ)∥2 ⟨(Id− tdn)(∂rγ), (Id− tdn)(∂sγ)⟩

⟨(Id− tdn)(∂rγ), (Id− tdn)(∂sγ)⟩ ∥(Id− tdn)(∂sγ)∥2
)
.

We have g(r, s) = g(r, s, 0), where g is defined in Proposition 2.4.

2.2.4. The magnetic form in tubular coordinates. In this section, we discuss the expression
of the magnetic field in the coodinates induced by Γ. This discusssion can be found in [18,
Section 0.1.2.2] and [9, Section 3.2]. We consider the 1-form

σ = A · dx =
3∑

ℓ=1

Aℓdxℓ .

Its exterior derivative is the magnetic 2-form

ω = dσ =
∑

1⩽k<ℓ⩽3

(∂kAℓ − ∂ℓAk)dxk ∧ dxℓ ,

which can also be written as

ω = B3dx1 ∧ dx2 −B2dx1 ∧ dx3 +B1dx2 ∧ dx3 .

Note also that
∀U, V ∈ R3 , ω(U, V ) = [U, V,B] = ⟨U × V,B⟩ .

Let us now consider the effect of the change of variables Γ(y) = x. We have

Γ∗σ =
3∑

j=1

Ãjdyj , Ã = (dΓ)T ◦A ◦ Γ , (2.6)

and
Γ∗ω = Γ∗dσ = d(Γ∗σ) = [·, ·,∇× Ã] .

This also gives that, for all U, V ∈ R3,

[dΓ(U), dΓ(V ),B] = [U, V,∇× Ã] , or det dΓ[·, ·, dΓ−1(B)] = [·, ·,∇× Ã] ,

so that,
∇× Ã = (det dΓ) dΓ−1(B) .

Note then that using (2.5) we get

|g|−
1
2∇× Ã = B , (2.7)
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where B(y) := dΓ−1
y (B(x)) corresponds to the coordinates of B(y) in the image of the canon-

ical basis by dΓy. With our specific change of coordinates (2.3), we have

B = dΓ(B) = B1 (Id−tdn) (∂rγ) + B2 (Id−tdn) (∂sγ)− B3n .

For all x ∈ ∂Ω, i.e. t = 0, we have

B(x) = B1(r, s, 0)∂rγ + B2(r, s, 0)∂sγ − B3(r, s, 0)n(γ(r, s)) ,

∥B(x)∥2 = B2
1(r, s, 0) + α(r, s)B2

2(r, s, 0) + B2
3(r, s, 0) .

(2.8)

Moreover, we have

B1(r, s, 0) = ⟨B, ∂rγ⟩ , α(r, s)B2(r, s, 0) = ⟨B, ∂sγ⟩ , B3(r, s, 0) = −⟨B,n⟩ .

Note that our choice of coordinate s (along the projection of the magnetic field on the tangent
plane) and of transverse coordinate r implies that

B1(0, s, 0) = 0 , B2(0, s, 0) > 0 ,

thanks to Assumption 1.3.

Definition 2.5. In a neighbordhood of (0, 0), we can consider the unique smooth function θ
such that

B (γ(r, s)) · n (γ(r, s)) = ∥B (γ(r, s))∥ sin θ(r, s)
and satisfying θ(r, s) ∈

(
0, π

2

)
. With a sligh abuse of notation, we let

β(r, s) = ∥B(γ(r, s))∥e(θ(r, s)) .

Remark 2.6. We have
B3(r, s) = −∥B(γ(r, s))∥ sin (θ(r, s)) .

Moreover, since B2 > 0 and α(0, s) = 1,

B2(0, s, 0) = ∥B(γ(0, s))∥ cos θ(0, s) , B3(0, s, 0) = −∥B(γ(0, s))∥ sin θ(0, s) .

In fact, we can choose a suitable explicit Ã such that (2.7) holds in a neighborhood of
(0, 0, 0).

Lemma 2.7. Considering

Ã1(r, s, t) =

∫ t

0

[|g|
1
2B2](r, s, τ)dτ ,

Ã2(r, s, t) = −
∫ t

0

[|g|
1
2B1](r, s, τ)dτ +

∫ r

0

[|g|
1
2B3](u, s, 0)du ,

Ã3(r, s, t) = 0 ,

we have ∇× Ã(r, s, t) = |g| 12B(r, s, t).

Proof. It follows from a straightforward computation and the fact that |g| 12B is divergence-
free. □

Remark 2.8. Note that the proof of Lemma 2.7 does not involve global geometric quantities
on the boundary as in [9, Prop. 3.3] since our analysis is local near x0.
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2.3. First approximation of the magnetic Laplacian in local coordinates. If the
support of ψ is close enough to x0, we may express Qh(ψ) in the local chart given by Γ(y) = x.
Letting ψ̃(y) = ψ ◦ Γ(y), we have then

Qh(ψ) =

∫
⟨G−1(−ih∇y − Ã(y))ψ̃, (−ih∇y − Ã(y))ψ̃⟩|g|

1
2dy .

In the Hilbert space L2(|g| 12dy), the operator locally takes the form

|g|−
1
2 (−ih∇y − Ã(y)) · |g|

1
2G−1(−ih∇y − Ã(y)) , (2.9)

where G is defined in (2.5). From now on, the analysis deviates from [9].

2.3.1. Expansion with respect to t. Due to the localization near the boundary at the scale h
1
2 ,

we are led to replace Ã by its Taylor expansion Ã[3] at order 3 and g and G by their Taylor
expansions at the order 2. We let

Ã
[3]
1 (r, s, t) = t[|g|

1
2B2](r, s, 0) + C2t̂

2 + C3t̂
3 ,

Ã
[3]
2 (r, s, t) = −t[|g|

1
2B1](r, s, 0) + F (r, s) + E2t̂

2 + E3t̂
3 ,

Ã
[3]
3 (r, s, t) = 0 ,

(2.10)

where t̂ = tχ(h−
1
2
+ηt) for some smooth cutoff function χ equal to 1 near 0 and where

F (r, s) =

∫ r

0

[|g|
1
2B3](ℓ, s, 0)dℓ , (2.11)

and the functions Cj(r, s) and Ej(r, s) are smooth. We emphasize that we only truncate the
terms of order at least 2 in t in the above expression.

Due to Assumption 1.3, (r, s) 7→ (F (r, s), s) is a smooth diffeomorphism on a neighborhood
of (0, 0).

We also consider the expansions

|g|
1
2 (r, s, t) = m(r, s, t) + O(t3) , G−1 =M(r, s, t)−1 + O(t3) ,

with

m(r, s, t) = a0(r, s) + t̂a1(r, s) + t̂2a2(r, s) , M(r, s, t) =M0(r, s) + t̂M1(r, s) + t̂2M2(r, s) .

Recall that |g|(r, s, 0) = α(r, s).

2.3.2. Extension of the functions of the tangential variables. It will be convenient to work on
the half-space R3

+ instead of a neighborhood of (0, 0, 0).
Given ϵ0 > 0, consider a smooth odd function ζ : R → R such that ζ(x) = x on [0, ϵ0] and

ζ(x) = 2ϵ0, for all x ⩾ 2ϵ0. In particular, ∥ζ∥∞ = 2ϵ0. We let

Z(r, s) = (ζ(r), ζ(s)) .

The following lemma is a straightforward consequence of Assumption 1.3.

Lemma 2.9. For ϵ0 small enough, the function β̂ = β ◦ Z : R2 → R+ is smooth and has a
unique minimum (at (0, 0)), which is non-degenerate and not attained at infinity.

Let us now replace the function B : (r, s) 7→ α(r, s)
1
2B(r, s, 0) by B◦Z in (2.10) and (2.11).

We replace the other coefficients Cj and Ej by Cj ◦ Z and Ej ◦ Z. Note that we have the
following.
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Lemma 2.10. For ϵ0 small enough, the function

J : R2 ∋ (r, s) 7→
(∫ r

0

[|g|
1
2B3](Z(ℓ, s), 0)dℓ, s

)
= u = (u1, u2) ∈ R2

is smooth and it is a global diffeomorphism.

This leads to consider the new vector potential

Â1(r, s, t) = t
◦
C1 +

◦
C2t̂

2 +
◦
C3t̂

3 ,

Â2(r, s, t) = −t
◦
E1 + J1(r, s) +

◦
E2t̂

2 +
◦
E3t̂

3 ,

Â3(r, s, t) = 0 ,

(2.12)

where C1 = α
1
2B2, E1 = α

1
2B1 and with the notation

◦
f = f ◦ Z.

The rest of the article will be devoted to the spectral analysis of the operator associated
with the new quadratic form

Qapp
h (φ) =

∫
R3
+

⟨(
◦
M)−1(−ih∇y − Â(y))φ, (−ih∇y − Â(y))φ⟩ ◦

mdy .

This selfadjoint operator L app
h is acting as

◦
m

−1
(−ih∇y − Â) · ◦

m(
◦
M)−1(−ih∇y − Â) ,

in the ambient Hilbert space L2(R3
+,

◦
mdy). This spectral analysis is motivated by the fact

that the low-lying spectra of Lh and L app
h coincide modulo o(h2), in the sense of the following

proposition.

Proposition 2.11. We have, for all n ⩾ 1,

λn(h) = λn(L
app
h ) + o(h2) .

We omit the proof. It follows from Corollary 2.2 and the localization estimates given in
Proposition 2.3 (which are also true in the coordinates (r, s, t) for those of L app

h by using the
same arguments) and the Min-max Theorem. These localisation estimates allow to remove
the cutoff functions up to remainders of order O(h∞) and to control the remainders of the
expansion in t.

3. Change of coordinates and metaplectic transform

In order to perform the spectral analysis of L app
h , it is convenient to use the change of

variable J given in Lemma 2.10. More precisely, we will use the unitary transform induced
by J defined by

U : L2(R3
+,

◦
mdy) → L2(R3

+, m̆ |JacJ −1| dudt)
φ 7→ φ̆

,

where we used the notation f̆(u, t) = f(J −1(u), t) and the slight abuse of notation
◦̆
f = f̆ .

Then, we focus on the operator Nh = UL app
h U−1, acting in L2(R3

+, m̆ |JacJ −1| dudt). The
operator Nh is acting as

Nh = UL app
h U−1 = m̆−1Dh · m̆(M̆)−1Dh , (3.1)
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where

Dh =

 −ihC̆0∂u1 − tC̆1 − t̂2C̆2 − t̂3C̆3

−ih∂u2 − u1 − ihĔ0∂u1 + tĔ1 − t̂2Ĕ2 − t̂3Ĕ3

−ih∂t

 ,

and
C0 = ∂rJ1 = α

1
2B3 , E0 = ∂sJ1 . (3.2)

Notation 3.1. We will use the following classical notation for the semiclassical Weyl quanti-
zation of a symbol a = a(u, υ). We let

aWψ(u) =
1

(2πh)2

∫
R4

ei(u−x)·υ/ha

(
u+ x

2
, υ

)
ψ(x)dxdυ .

Proposition 3.2. Let K > 0 and η ∈
(
0, 1

2

)
. Let Ξ be a smooth function equal to 0 near 0 and

1 away from a compact neighborhood of 0. There exists h0 > 0 such that for all h ∈ (0, h0) and
for all normalized eigenfunctions ψ of Nh associated with an eigenvalue λ such that λ ⩽ Kh,
we have [

Ξ

(
u1 − υ2

h
1
2
−η

)]W
ψ = O(h∞) .

Proof. To simplify the notation, we denote by Ξh = Ξ
(

u1−υ2

h
1
2−η

)
. Let ψ be a normalized

eigenfunction of Nh associated with an eigenvalue λ such that λ ⩽ Kh. The eigenvalue
equation gives us

⟨NhΞ
W
h ψ,Ξ

W
h ψ⟩ = λ∥ΞW

h ψ∥2 + ⟨
[
Nh,Ξ

W
h

]
ψ,ΞW

h ψ⟩, (3.3)

where ⟨·, ·⟩ is the scalar product in L2
(
R3

+, m̆|JacJ −1|dudt
)
.

According to the localization at the scale h
1
2 with respect to t, we can insert a cutoff

function supported in {t ⩽ h
1−η
2 } and we obtain, for j = 2, 3,

∥tjΞW
h ψ∥ ⩽ Ch1−η∥ΞW

h ψ∥+ O(h∞)∥ψ∥ . (3.4)
By means of the Young inequality and rough quadratic form estimates, this yields, for some
c, C > 0,

⟨NhΞ
W
h ψ,Ξ

W
h ψ⟩ ⩾ cQ0

h(Ξ
W
h ψ)− Ch1−η∥ΞW

h ψ∥2 + O(h∞)∥ψ∥2 , (3.5)
where

Q0
h(φ) = ∥h∂tφ∥2 +

∥∥∥(hC̆0Du1 − tC̆1)φ
∥∥∥2 + ∥∥∥(hDu2 − u1 + hĔ0Du1 + tĔ1)φ

∥∥∥2 .
Then, using again the Young inequality, we find that

Q0
h(φ) ⩾ ∥h∂tφ∥2 +

1

2

∥∥∥hC̆0Du1φ
∥∥∥2 + 1

2
∥(hDu2 − u1)φ∥2 − 2∥hĔ0Du1φ∥2 − C∥tφ∥2 .

Notice that there exists c > 0 such that

|C̆0| ⩾ c , |Ĕ0| ⩽
c

4
,

where we recall (3.2) and Lemma 2.10. Note also that C0 is globally positive and that E0

is as small as we want since it vanishes at (0, 0, 0), after the extension procedure in Section
2.3.2. This shows that, for some c0 > 0,

Q0
h(φ) ⩾ ∥h∂tφ∥2 + c0 ∥hDu1φ∥

2 +
1

2
∥(hDu2 − u1)φ∥2 − C∥tφ∥2 . (3.6)
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On the support of Ξh we have (υ2 − u1)
2 ⩾ h1−2η. Thus (3.4), (3.5), (3.6), and again the

localization in t, yield

⟨NhΞ
W
h ψ,Ξ

W
h ψ⟩ ⩾

c̃

2
h1−2η∥ΞW

h ψ∥2 + O(h∞)∥ψ∥2 . (3.7)

By using classical results of composition of pseudo-differential operators, we have

⟨
[
Nh,Ξ

W
h

]
ψ,ΞW

h ψ⟩ ⩽ Ch1+η∥ΞW
h ψ∥2 + O(h∞)∥ψ∥2 , (3.8)

where Ξ has a support slightly larger than that of Ξh. Here we used the energy estimate
∥DhΞ

W
h ψ∥ = O(h1/2)∥ΞW

h ψ∥+ O(h∞)∥ψ∥, which follows from rough estimates of (3.3).
Thus, by combining (3.3), (3.7), and (3.8) with the fact that λ ⩽ Kh, we obtain

∥ΞW
h ψ∥2 ⩽Mhη∥ΞW

h ψ∥2 + O(h∞)∥ψ∥2 .
Finally, by an induction argument on the size of the support of Ξ, we get

∥ΞW
h ψ∥ = O(h∞)∥ψ∥ .

□

Let us consider the partial semiclassical Fourier transform F2
1 with respect to u2 and the

translation/dilation T : u1 7→ (u1 − υ2)h
− 1

2 = z. With a slight abuse of notation, we identify
T with φ 7→ φ ◦ T . Letting V = F−1

2 T , we have

V ∗(−ih∂u2 − u1)V = −h
1
2 z ,

and, with the dilation W : t 7→ h−
1
2 t,

W ∗V ∗DhVW = ℏD ♯
ℏ , ℏ = h

1
2 ,

with

D ♯
ℏ =

 −iC♯
0∂z − tC♯

1 − ℏt2χ(hηt)2C♯
2 − ℏ2t3χ(hηt)3C♯

3

−z − iE♯
0∂z + tE♯

1 − ℏt2χ(hηt)2E♯
2 − ℏ2t3χ(hηt)3E♯

3

−i∂t

W

where the coefficients of the conjugated operator D ♯
ℏ are now given by P ♯ = P̆ (υ2 + ℏz,−u2).

Here the Weyl quantization can be considered only in the variables (u2, υ2) since z is now a
"space variable". We let

N ♯
ℏ = [mℏ

−1]♯D ♯
ℏ · [mℏ(Mℏ)

−1]♯D ♯
ℏ ,

where mℏ(·, t) = m(·, ℏt) and Mℏ(·, t) = M(·, ℏt). Note that Nh and hN ♯
ℏ are unitarily

equivalent since
W ∗V ∗NhVW = hN ♯

ℏ . (3.9)
After all these elementary transforms, Proposition 3.2 can be reformulated as follows.

Proposition 3.3. Let K > 0 and η ∈
(
0, 1

2

)
. Let Ξ be a smooth function equal to 0 near 0 and

1 away from a compact neighborhood of 0. There exists h0 > 0 such that for all h ∈ (0, h0) and
for all normalized eigenfunctions ψ of N ♯

ℏ associated with an eigenvalue λ such that λ ⩽ K,
we have

Ξ (hηz)ψ = O(h∞) .

1which is the metaplectic transform associated with the linear symplectic application (u2, υ2) 7→ (υ2,−u2),
see, for instance, [12, Section 3.4].
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Remark 3.4. As a consequence of the Agmon estimates and working in the coordinates
(u1, u2, t), we notice that the eigenfunctions are also roughly localized in "frequency" in
the sense that, for all (α, β, γ) ∈ N3 , and all η ∈

(
0, 1

2

)
, there exist C, h0 > 0 such that, for

all h ∈ (0, h0),
∥tαzβDγ

zψ∥+ ∥tαzβDγ
t ψ∥ ⩽ Ch−η(α+β+γ)∥ψ∥ .

4. A pseudodifferential operator with operator symbol

Proposition 3.3 invites us to insert cutoff functions in the coefficients of the operator N ♯
ℏ .

That is why we consider

N ♭
ℏ =

(
[mℏ

−1]♭
)W

D ♭
ℏ ·
(
[mℏ(Mℏ)

−1]♭
)W

D ♭
ℏ , (4.1)

where

D ♭
ℏ =

 −iC♭
0∂z − tC♭

1 − ℏt2χ(hηt)2C♭
2 − ℏ2t3χ(hηt)3C♭

3

−z − iE♭
0∂z + tE♭

1 − ℏt2χ(hηt)2E♭
2 − ℏ2t3χ(hηt)3E♭

3

−i∂t

W

, (4.2)

with P ♭ = P̆ (υ2 + ℏχη(z)z,−u2), where χη(z) = χ0(h
ηz), the function χ0 being smooth, with

a compact support, and equal to 1 on a neighborhood of the support of 1− Ξ.

4.1. The symbol and its properties. Expanding the operator N ♭
ℏ with respect to ℏ (say

first at a formal level) suggests to consider the following selfadjoint operator, depending on
(u2, υ2), acting as

n0(u2, υ2)

= (−iC̆0(υ2,−u2)∂z−tC̆1(υ2,−u2))2+α−1(υ2,−u2)(−z−iĔ0(υ2,−u2)∂z+tĔ1(υ2,−u2))2−∂2t ,
with the domain

Dom(n0) = {ψ ∈ L2(R2
+) : n0(u2, υ2)ψ ∈ L2(R2

+) , ∂tψ(z, 0) = 0} ,
and where we recall that C1 and E1 are given in (2.12). The domain of n0(u2, υ2) depends on
(u2, υ2). However, we can check that it is unitarily equivalent to a selfadjoint operator with
domain independent of (u2, υ2), see the proof of Proposition 4.4 below. In the following, we
will use class of operator symbols of the form

S(R2,L(A1,A2)) = {a ∈ C ∞(R2,L(A1,A2)) : ∀γ ∈ N2 ,∃Cγ > 0 : ∥∂γa∥L(A1,A2) ⩽ Cγ} ,
where A1 and A2 are (fixed) Hilbert spaces. We also introduce

Bk = {ψ ∈ L2(R2
+) : ∀α ∈ Nk , |α| ⩽ k ⇒ (⟨t⟩k + ⟨z⟩k)∂αψ ∈ L2(R2

+)} ,
and the class of symbols

S(R2, N) =
⋂
k⩾N

S(R2,L(Bk,Bk−N)) .

and we notice that n0 ∈ S(R2, 2).

Remark 4.1. Note that these classes of symbols are not algebras. However, the classical Moyal
product of symbols in S(R2, N) and S(R2,M) is well-defined and belongs to S(R2, N +M),
see [10, Theorem 2. 1. 12].
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In fact, for N ⩾ 2, by using a classical trace theorem, we may also define

BNeu
N = {ψ ∈ BN : ∂tψ(z, 0) = 0}(⊂ Domn0) ,

and the associated class SNeu(R2, N). We can also write n0 ∈ SNeu(R2, 2) to remember that
the domain of n0 is equipped with the Neumann condition.

By expanding N ♭
ℏ in powers of ℏ and by using a composition theorem for pseudodifferential

operators, we get the following.

Proposition 4.2. The operator N ♭
ℏ is an h-pseudodifferential operator with symbol in the

class SNeu(R2, 2). Moreover, we can write the expansion

N ♭
ℏ = nW

0 + ℏnW
1 + ℏ2nW

2 + ℏ3rWℏ , (4.3)

with n1, n2 and rℏ in the class SNeu(R2, 8).

Proof. Let us recall that N ♭
ℏ is given in (4.1). Let us notice that the operator D ♭

ℏ, defined in
(4.2), is indeed a pseudodifferential operator with operator-valued symbol. With respect to
the variables z and t, it is a differential operator of order 1 whose symbol is −iC♭

0∂z − tC♭
1 − ℏt2χ(hηt)2C♭

2 − ℏ2t3χ(hηt)3C♭
3

−z − iE♭
0∂z + tE♭

1 − ℏt2χ(hηt)2E♭
2 − ℏ2t3χ(hηt)3E♭

3

−i∂t

 (4.4)

and belongs to S(R2, 1). The functions/symbols [mℏ
−1]♭ and [mℏ(Mℏ)

−1]♭ belong to S(R2, 0).
Combining these considerations with (4.1), it remains to apply the composition theorem for
pseudodifferential operators with operator symbols, see Remark 4.1.

To get (4.3), it is sufficient to use the Taylor expansions in ℏ of the symbol (4.4), [mℏ
−1]♭,

and [mℏ(Mℏ)
−1]♭, and to apply again the composition theorem (the worst remainders being

roughly of order 8 in (z, t)). □

Remark 4.3. We will see that the accurate description of n1 and n2 in (4.3) are not necessary
to prove our main theorem. The use of the more restrictive class SNeu(R2, 8) allows to deal
with the uniformity in the semiclassical expansions in ℏ.

Let us describe the groundstate energy of the principal symbol n0. From now on, we lighten
the notation by setting (u2, υ2) = (u, υ).

Proposition 4.4. For all (u, υ) ∈ R2, the bottom of the spectrum of n0 belongs to the discrete
spectrum and it is a simple eigenvalue that equals β̆(υ,−u). The corresponding normalized
eigenfunction fu,υ belongs to the Schwartz class and depends on (u, υ) smoothly.

Moreover, there exists c > 0 such that, by possibly choosing ϵ0 smaller in Lemma 2.9, we
have, for all (u, υ) ∈ R2,

inf sp(n0(u, υ)|f⊥u,υ) ⩾ βmin + c ⩾ β̆(u, υ) .

Proof. By using the Fourier transform in z and then a change of gauge, we are reduced to
the case when E0 = 0. With a rescaling in z, n0 is unitarily equivalent to

(−i∂z − tC̆1)
2 + α−1(−C̆0z + tĔ1)

2 − ∂2t = (−i∂z − tb2)
2 + (b3z + tb1)

2 − ∂2t ,

with
b1 = B̆1 , b2 =

˘
α

1
2B2 , b3 = −B̆3 ,
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where the functions are evaluated at (υ2,−u2). Recalling (2.8), we see that the Euclidean
norm of b = (b1, b2, b3) is

∥b∥2 = ∥B̆∥ ,
with a slight abuse of notation. By homogeneity, we can easily scale out ∥B̆∥ and consider
the operator

(−i∂z − tb2)
2 − ∂2t + (tb1 + b3z)

2 ,

with b1 = cos θ cosφ, b2 = cos θ sinφ and b3 = sin θ. Completing a square leads to the identity

(−i∂z − tb2)
2 − ∂2t + (tb1 + b3z)

2

= −∂2t + (t cos θ − sinφDz − z sin θ cosφ)2 + (cosφDz − z sin θ sinφ)2 .

This shows, thanks to a change of gauge and a rescaling in z, that the operator is unitarily
equivalent to

D2
t + (t cos θ − tanφDz − z sin θ)2 +D2

z

and then, by a change of gauge on the Fourier side, to

D2
t +D2

z + (t cos θ − z sin θ)2 ,

which is nothing but the Lu-Pan operator defined in (1.2), which is unitarily equivalent to
cos2 θD2

t + sin2 θD2
z + (t− z)2 (whose domain is independent of θ).

The eigenfunction fu,υ belongs to the Schwartz class in virtue of [14, Corollaire 5.1.2] and
the stability of the Schwartz class by Fourier and gauge transforms.

□

4.2. An approximate parametrix.

4.2.1. Inverting the principal symbol.

Lemma 4.5. Consider ϵ > 0 and Λ ⩽ βmin + ϵ. We let

P0(Λ) =

(
n0(u, υ)− Λ ·fu,υ

⟨·, fu,υ⟩ 0

)
.

For ϵ small enough, P0(Λ) : Domn0 × C → L2(R2
+) × C is bijective. Its inverse is denoted

by Q0 and is given by

Q0 = Q0(Λ) =

(
(n0(u, υ)− Λ)−1

⊥ ·fu,υ
⟨·, fu,υ⟩ Λ− β̆(υ, u)

)
,

where (n0(u, υ)− Λ)−1
⊥ is the regularized resolvent on (span fu,υ)

⊥.
Moreover, we have Q0 ∈ S(R2, 0).

Proof. By using the same algebraic computations as in [10] and the spectral gap in Proposition
4.4, we get the announced inverse. Moreover, it is also clear that Q0 is bounded from L2(R2

+)
to L2(R2

+) uniformly in (u, υ). The fact that it belongs to the class S(R2, 0) follows from
weighted resolvent estimates similar to [14, p.100-101], see also [2, Appendix]. □

We let

Pℏ(Λ) =

(
n0 + ℏn1 + ℏ2n2 + ℏ3rℏ − Λ ·fu,υ

⟨·, fu,υ⟩ 0

)
= P0(Λ) + ℏP1 + ℏ2P2 + ℏ3Rℏ ,

where n0, n1, n2, and rℏ are given in Proposition 4.2.
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4.2.2. The approximate parametrix. Let us now construct an approximate (at the order 2)
inverse of PW

ℏ when it acts on the Schwartz class (with Neumann condition). We consider

Qℏ = Q0 + ℏQ1 + ℏ2Q2 =

(
Qℏ Q+

ℏ
Q−

ℏ Q±
ℏ

)
,

where

Q1 = −Q0P1Q0 , Q2 = −Q0P2Q0 + Q0P1Q0P1Q0 −
1

i
{Q0,P0}Q0 . (4.5)

By Remark 4.1, the symbols Q1 and Q2 belong to S(R2,M), for some M ⩾ 8. By computing
products of matrices and using the exponential decay of fu,υ, we get

Q±
ℏ (Λ) = Λ− (p0 + ℏp1 + ℏ2p2,Λ) , (4.6)

with p0 = β̆(υ,−u) and p1, p2,Λ ∈ SR2(1) where

SR2(1) = {a ∈ C ∞(R2,C) : ∀α ∈ N2 ,∃Cα > 0 : |∂αa| ⩽ Cα} .

In addition, Λ 7→ p2,Λ ∈ SR2(1) is analytic in a neighborhood of βmin.

Remark 4.6. Let us emphasize here that nothing a priori ensures that the subprincipal symbols
p1 and p2,E are real-valued since our formal operator is not selfadjoint on the canonical L2-
space.

The reason to consider the expressions (4.5) simply comes from the semiclassical expansion
of the product QW

ℏ PW
ℏ by means of the composition theorem [10, Theorem 2.1.12]. These

explicit choices, with the Calderón-Vaillancourt Theorem [10, Theorem 2.1.16] to estimate
the remainders, imply the following proposition.

Proposition 4.7. There exists N ⩾ 2 such that the following holds. We have

QW
ℏ PW

ℏ = Id
S Neu(R2

+)×S (R) + ℏ3RW
ℏ,ℓ , PW

ℏ QW
ℏ = Id

S (R2
+)×S (R) + ℏ3RW

ℏ,r ,

where Rℏ,ℓ and Rℏ,r belong to S(R2, N) and where S Neu(R2

+) denotes the Schwartz class on
R2

+ with Neumann condition at t = 0.
In particular, we have, for all ψ ∈ S Neu(R2

+),

QW
ℏ (N ♭

ℏ − Λ)ψ + (Q+
ℏ )

WPψ = ψ + O(ℏ3)∥ψ∥L2(R,BN ) ,

(Q−
ℏ )

W (N ♭
ℏ − Λ)ψ + (Q±

ℏ )
WPψ = O(ℏ3)∥ψ∥L2(R,BN ) ,

(4.7)

and, for all φ ∈ S (R),

(N ♭
ℏ − Λ)(Q+

ℏ )
Wφ+P∗(Q±

ℏ )
Wφ = O(ℏ3)∥φ∥ ,

P(Q+
ℏ )

Wφ = φ+ O(ℏ3)∥φ∥ .
(4.8)

Here, P = (⟨·, fu,υ⟩)W .
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5. Spectral consequences

This last section is devoted to the proof of Theorem 1.4 with the help of Proposition 4.7.
The spectrum of N ♯

ℏ will be compared to the spectrum of a model operator, derived from an
effective operator whose symbol is

peffh = p0 + ℏp1 + ℏ2p2,βmin
, (5.1)

see (4.6).

5.1. A model operator. Let us consider

pmod
h (U) = peffh (0) +

1

2
Hess(0,0) p0(U,U) + ℏplin1 (U) , U = (u, υ) ,

where plin1 is the linear approximation of p1 at (0, 0). The corresponding operator (pmod
h )W is

not selfadjoint due to the linear part. However, this operator has still compact resolvent and
we can compute its spectrum and estimate its resolvent. Let us explain this. Thanks to a
rotation and Assumption 1.3, we may assume that

pmod
h = peffh (0) +

d0
2
(u2 + υ2) + ℏ(αu+ βυ) ,

for some d0 > 0 and (α, β) ∈ C2.

Remark 5.1. In fact, we have

d0 =
√
detHess(0,0)p0 =

√
detHess(0,0)β̆(υ,−u) =

√
detHessx0β

∥B(x0)∥2 sin2 θ(x0)
,

where we used the notation introduced at the beginning of Section 3, the change of variable
J in Lemma 2.10, and Remark 2.6.

By completing square, we get

(pmod
h )W = p̃effh (0) +

d0
2

((
u+

ℏα
d0

)2

+

(
hDu +

ℏβ
d0

)2
)

, p̃effh (0) = peffh (0)− α2 + β2

d0
h .

For all n ⩾ 1, we let

fn(u) = [e−iβ·/d0Hn(·)]
(
u+

α

d0

)
, fn,ℏ(u) = ℏ−

1
2fn(ℏ−1u) ,

where Hn is the n-th normalized Hermite function.
The family (fn,ℏ)n⩾1 is a total family in L2(R) (but not necessarily orthogonal). It satisfies

(pmod
h )Wfn,ℏ = λmod

n (h)fn,ℏ , λmod
n (h) =

d0
2
(2n− 1)h+ p̃effh (0) . (5.2)

By the analytic perturbation theory, the spectrum of (pmod
h )W is made of eigenvalues of

algebraic multiplicity 1 and it is given by

sp
(
(pmod

h )W
)
=

{
d0
2
(2n− 1)h+ p̃effh (0) , n ⩾ 1

}
.

Moreover, for all compact K ⊂ C, there exists CK > 0 such that, for all µ ∈ K,

∥((pmod
h )W − p̃effh (0)− hµ)−1∥ ⩽

CK

dist(p̃effh (0) + hµ, sp
(
(pmod

h )W
)
)
. (5.3)
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5.2. Refined estimates.

5.2.1. From the model operator to N ♯
ℏ . The functions (fn,ℏ) can serve as quasimodes for Nℏ

♯

with the help of (4.8). Indeed, by taking z = λmod
n (h) and φ = fn,ℏ, we see that

(N ♭
ℏ − λmod

n (h))(Q+
ℏ )

Wfn,ℏ = O(ℏ3) ,
Since (Q+

ℏ )
Wfn,ℏ is localized near (z, t) = (0, 0) (due to the exponential decay of fu,υ, which

is uniform in (u, υ)), we get

(N ♯
ℏ − λmod

n (h))(Q+
ℏ )

Wfn,ℏ = O(ℏ3) .
By using the inverse Fourier transform and translation/dilation, (Q+

ℏ )
Wfn,ℏ becomes a quasi-

mode for Nh, see (3.1) and the end of Section 3. But the operator Nh is unitarily equivalent
to selfadjoint for a suitable scalar product on the usual L2-space. Therefore, we can apply
the spectral theorem and we deduce that

dist
(
λmod
n (h), sp(N ♯

ℏ )
)
⩽ Cℏ3 .

In particular, this implies that, for h small enough, λmod
n (h) is real. This shows that we

necessarily have

p1(0) ∈ R , p2(0)−
α2 + β2

d0
∈ R .

This also implies that
λn(N

♯
ℏ ) ⩽ λmod

n (h) + Cℏ3 . (5.4)

5.2.2. From N ♯
ℏ to the model operator. Let n ⩾ 1. Let us consider an eigenfunction ψ of N ♯

ℏ
associated with the eigenvalue λn(N ♯

ℏ ).
We know that λn(N ♯

ℏ ) = βmin+o(1) and that the corresponding eigenfunctions are localized
in (z, t) (due to the Agmon estimates and Proposition 3.3). Thus, in (4.7), we can replace
N ♭

ℏ by N ♯
ℏ and we deduce that(

(peffh )W − λn(N
♯

ℏ )
)
Pψ = O(ℏ3)∥ψ∥ , ∥ψ∥ ⩽ C∥Pψ∥ . (5.5)

where we used Remark 3.4 to control the remainders. By taking the scalar product with Pψ,
taking the real part and using the min-max principle, we get that

λn(N
♯

ℏ ) ⩾ βmin + p1(0)ℏ− Ch .

This establishes the two-term asymptotic estimate

λn(N
♯

ℏ ) = βmin + p1(0)ℏ+ O(h) .

Therefore, we can focus on the description of the eigenvalues of the form

λn(N
♯

ℏ ) = βmin + p1(0)ℏ+ µn(ℏ)h ,
for µn(ℏ) ∈ D(0, R) with a given R > 0. We have(

(peffh )W − (βmin + p1(0)ℏ+ µn(ℏ)h))
)
Pψn = O(ℏ3)∥Pψn∥ , (5.6)

where ψn denotes a normalized eigenfunction associated to the n-th eigenvalue of N ♯
ℏ . In

fact, by considering (5.6) and again Proposition 4.7, the function Pψn is microlocalized near
(0, 0), the minimum of the principal symbol p0. Since this minimum is non-degenerate, the
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quadratic approximation of the symbol shows that Pψn is microlocalized near (u, υ) = (0, 0)
at the scale ℏ1−η for any η ∈

(
0, 1

2

)
. In particular, we deduce that(

(pmod
h )W − (βmin + p1(0)ℏ+ µn(ℏ)h))

)
Pψn = O(ℏ3−3η)∥Pψn∥ .

From the resolvent estimate (5.3), this implies that

µn(ℏ) ∈
⋃
j⩾1

D

(
d0
2
(2j − 1) + d1, Cℏ1−3η

)
, d1 = p2(0)−

α2 + β2

d0
,

where D(z, r) denotes the disc of center z ∈ C and radius r > 0. In particular, we have

µ1(ℏ) ⩾
d0
2

+ d1 − Cℏ1−3η .

This shows that

λ1

(
N ♯

ℏ

)
⩾ βmin + p1(0)ℏ+

(
d0
2

+ d1

)
ℏ2 − Cℏ3−3η ,

and thus, with (5.4), we get

µ1(ℏ) =
d0
2

+ d1 + O(ℏ1−3η) ,

and
λ1

(
N ♯

ℏ

)
= λmod

1 (h) + O(ℏ3−3η) .

Let us now deal with λ2

(
N ♯

ℏ

)
and recall (5.4). Assume by contradiction that µ2(ℏ) ∈

D
(
d0
2
+ d1, Cℏ1−3η

)
. Then, we have

|µ2(ℏ)− µ1(ℏ)| ⩽ Cℏ1−3η .

We infer that (
(pmod

h )W − λmod
1 (h)

)
Pψ = O(ℏ3−3η)∥Pψ∥ ,

for all ψ ∈ span(ψ1, ψ2). Moreover, coming back to (4.7) (see also (5.6)), we also get that
∥ψ∥ ⩽ C∥Pψ∥ for all ψ ∈ span(ψ1, ψ2). In particular, P(span(ψ1, ψ2)) is of dimension two.
Let us consider the Riesz projector (in the characteristic subspace of (pmod

ℏ )W associated with
the smallest eigenvalue)

Π =
1

2iπ

∫
λmod
1 (h),ℏ3−4η)

(ζ − (pmod
ℏ )W )−1dζ ,

which is of rank one. Then, for all φ ∈ P(span(ψ1, ψ2)), we write, with the Cauchy formula,

Πφ = φ+
1

2iπ

∫
λmod
1 (h),ℏ3−4η)

(
(ζ − (pmod

ℏ )W )−1 − (ζ − λmod
1 (h))−1

)
dζ .

But, we have

(ζ − (pmod
ℏ )W )−1 − (ζ − λmod

1 (h))−1 = (ζ − λmod
1 (h))−1(ζ − (pmod

ℏ )W )−1
(
(pmod

h )W − λmod
1 (h))

)
,

so that, by using the resolvent estimate (5.3), we get

∥Πφ− φ∥ ⩽ Cℏ3−4ηℏ−3+4ηℏ−3+4ηℏ3−3η∥φ∥ = Cℏη∥φ∥ .
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This shows that the range of Π is of dimension at least two as soon as ℏ is small enough. This
is a contradiction. Therefore, we must have µ2(ℏ) ∈ D

(
3d0

2
+ d1, Cℏ1−3η

)
. In particular, we

have
µ2(ℏ) = 3

d0
2

+ d1 + O(ℏ1−3η) , λ2

(
N ♯

ℏ

)
= λmod

2 (h) + O(ℏ3−3η) .

We proceed by induction to get that, for all n ⩾ 1,

µn(ℏ) = (2n− 1)
d0
2

+ d1 + O(ℏ1−3η) , λn

(
N ♯

ℏ

)
= λmod

n (h) + O(ℏ3−3η) . (5.7)

5.2.3. End of the proof of Theorem 1.4. Proposition 2.11 shows that the first eigenvalues of
Lh coincide with those of L app

h modulo o(h2). Then, by (3.1), L app
h is unitarily equivalent

to Nh. The operator Nh is unitarily equivalent to hN ♯
ℏ , see (3.9). Theorem 1.4 follows from

(5.7) and (5.2) (see also Remark 5.1 for the explicit formula for d0).
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