
HAL Id: hal-04146454
https://hal.science/hal-04146454

Submitted on 3 Jul 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Last layer state space model for representation learning
and uncertainty quantification

Max Cohen, Maurice Charbit, Sylvain Le Corff

To cite this version:
Max Cohen, Maurice Charbit, Sylvain Le Corff. Last layer state space model for representa-
tion learning and uncertainty quantification. IEEE Workshop Statistical Signal Processing, 2023,
�10.48550/arXiv.2307.01566�. �hal-04146454�

https://hal.science/hal-04146454
https://hal.archives-ouvertes.fr

Last layer state space model for representation
learning and uncertainty quantification
Max Cohen

Télécom SudParis, CITI, TIPIC
Institut Polyechnique de Paris

maxjcohen@proton.me

Maurice Charbit
Accenta, Boulogne-Billancourt

maurice.charbit@accenta.fr

Sylvain Le Corff
Télécom SudParis, CITI, TIPIC

Institut Polyechnique de Paris

Abstract—As sequential neural architectures become deeper
and more complex, uncertainty estimation is more and more
challenging. Efforts in quantifying uncertainty often rely on
specific training procedures, and bear additional computational
costs due to the dimensionality of such models. In this paper, we
propose to decompose a classification or regression task in two
steps: a representation learning stage to learn low-dimensional
states, and a state space model for uncertainty estimation.
This approach allows to separate representation learning and
design of generative models. We demonstrate how predictive
distributions can be estimated on top of an existing and trained
neural network, by adding a state space-based last layer whose
parameters are estimated with Sequential Monte Carlo methods.
We apply our proposed methodology to the hourly estimation of
Electricity Transformer Oil temperature, a publicly benchmarked
dataset. Our model accounts for the noisy data structure, due
to unknown or unavailable variables, and is able to provide
confidence intervals on predictions.

Index Terms—Recurrent neural networks, Representation
learning, Uncertainty quantification, Sequential Monte Carlo.

I. INTRODUCTION

Recurrent Neural Networks (RNN) were first introduced
as an efficient and convenient architecture to address short
time dependencies problems. They have been consistently
improved to develop longer term memory, and optimize their
implementations [1], [2]. Current deep learning frameworks
allow stacking arbitrary high number of recurrent layers,
whose parameters are estimated by gradient descent through
automated differentiation procedures, as shown in [3]. How-
ever, many critical applications, such as medical diagnosis or
drug design discovery, require not only accurate predictions,
but a good estimate of their uncertainty ([4], [5]). Fostering
the dissemination of deep learning-based algorithms to such
fields requires to design new approaches for uncertainty quan-
tification.

Bayesian statistics are able to approximate the distributions
of future observations and to provide uncertainty estimation
[6]. Several architectures inspired by Variational Inference
(VI, see [7]) emerged by considering latent states as random
variables and approximating their posterior distribution. The
authors of [8] built on a traditional recurrent architecture by
modelling temporal dependencies between these latent random
states. Results presented in [9] yield improved performances
when considering local gradient information for computing the
posterior. In [10], a prior model based on a Markov chain is

estimated in the latent space of an Auto Encoder in order to
compute uncertainty estimation on the observation.

Sequential Monte Carlo (SMC) methods have also been
successfully applied to Recurrent Neural Networks. Instead
of computing a single latent vector at each time step, a set of
particles representing the distribution of the latent space are
propagated, and associated with importance weights. In [11],
[12], the authors were able to model complex distributions on
dependant data. We turn to [13] for an example using more
complex neural architectures, such as the Transformer.

In [14], the authors considered weights as random variables
and proposed approximations of their posterior distributions
allowing more robust predictions. Such Bayesian neural net-
works have been proposed and studied in a variety of works,
see for instance [15], [16]. However, these methods are com-
putationally intensive for high dimensional models and we do
not have statistical guarantees on their ability to capture the
target posterior distribution, see [17].

Monte Carlo Dropout (MC Dropout) methods offer to
capture uncertainty by leveraging Dropout during both training
and evaluation tasks, producing variable predictions from a
single trained recurrent model, see [18]. In the recent years,
MC Dropout methods have been applied in many industrial
fields, such as flight delay prediction [19] or molecular simula-
tions [20]. Alternatively, ensemble methods consist in training
distinct networks to obtain a combined prediction, as shown in
[21]. However, these frequentist approaches fail to guarantee
proper calibration of the model, as highlighted by [22], and
suffer various limitations, see [23].

In an effort to provide an alternative strategy with limited
computation overhead, [24] suggests splitting representation
learning and uncertainty estimation to solve classification
problems for independent data. A deep classifier is first trained
to obtain task dependent representations of the data, on which
ensemble models are fitted to approximate the distribution of
the observations. Their experiments indicate that performing
uncertainty estimation on the last-layer of the model outper-
forms baseline networks and is an appealing trade-off between
computational cost and uncertainty quantification. However,
as this method is restricted to independent data, it cannot be
directly applied to time series.

Inspired by [24], we propose a last layer approach to
split uncertainty quantification from representation learning,

in the context of dependent data. This new method combines
high expressivity, quality uncertainty estimations and ease of
training. Our main contributions are as follows.

• We propose a decoupled architecture composed of an
arbitrary sequential model and a state space model layer.

• This last layer allows to introduce complex predictive
distributions for the observations. Its parameters are es-
timated through approximate samplings using Sequential
Monte Carlo methods, as the likelihood of the observa-
tions is not available explicitly in such a setting.

• Our methodology allows for arbitrary deep architectures,
and does not suffer the overconfidence of frequentist
approaches.

II. LAST LAYER DECOUPLING

Estimating the parameters of potentially high-dimensional
models with unobserved (i.e. noisy) layers is a challenging
task. We therefore propose to first train an input model
following traditional deep learning approaches, then use Monte
Carlo methods in a lower dimensional state space to account
for uncertainty, with tractable and computationally efficient
simulation-based methods. The two-stage training algorithm
is presented in Algorithm 1, and the architecture of the model
is described in Figure 1

In the following, for any sequence (am, . . . , an) with n ≥
m, we use the short-hand notation am:n = (am, . . . , an). Let
T ≥ 1 be a given time horizon. We consider a regression task
with observations Y1:T associated with inputs U1:T .

A. Representation learning

In this paper, we consider an arbitrary multi-layer neural
network hφ with unknown parameters φ, responsible for
extracting high level features from the input time series:

Ũ1:T = hφ(U1:T) , input model.

We produce an estimate φ̂ during the first training stage, by
introducing an auxiliary function κψ to model the observations
as follows: for all 1 ≤ k ≤ T , Yk = κψ(Yk−1, Ũk) + ϵk
and Y0 = κψ(Ũ0) + ϵ0, where (ϵk)k≤0 are independent
centered Gaussian random variables with unknown variance.
The input model is trained on a simple deterministic regression
task, by performing gradient descent on the mean squared
error, leading to a first estimate of φ and ψ. We keep the
estimated parameters φ̂ while the auxiliary function κψ and
its parameters, only designed to model the observations, are
discarded.

B. State space model

The next step is to define a state space model taking as input
the previously extracted features Ũ1:T . Let X1:T a sequence
of stochastic hidden states computed recursively and Yt their
associated predictions. For all k ≥ 1, the model is defined as:

Xk = gθ(Xk−1, Ũk) + ηk , state model,
Yk = fθ(Xk) + ϵk , observation model,

where θ are the unknown real-valued parameters of the
network (weights and biases) and fθ and gθ are nonlinear
parametric functions. We chose (ηk)k≥1 and (ϵk)k≥1 as two
sequences of independent centered Gaussian random variables
with covariance matrices Σx and Σy , although any distribution
can be substituted.

This decoupled approach aims at reducing the number of
parameters in θ, compared to φ, in order to estimate them
using Sequential Monte Carlo methods. In the next section,
we describe this second training procedure for the last layer
only, by keeping φ̂ fixed.

Fig. 1. Our architecture combining a generic input model with a state space
model on the last layer.

III. SEQUENTIAL MONTE CARLO LAYER

In this section, we detail how to estimate the parameters
θ, Σx and Σy in the model introduced in Section II-B, from
a record of observations Y1:T . This is challenging because
the likelihood of the observations is not available explicitly,
as it would require integrating over the hidden states X1:T .
Consequently, the score function is intractable. We propose to
optimize a Monte Carlo estimator of this score function, using
Fisher’s identity [25]:

∇θ log pθ(Y1:T) = Eθ [∇θ log pθ(X1:T , Y1:T)|Y1:T] , (1)

where Eθ designs the expectation under the model parameter-
ized by θ (the dependency on the input U1:T is kept implicit
here for better clarity). In the following paragraphs, we denote
by Ψµ,Σ the Gaussian probability density function with mean
vector µ and covariance matrix Σ.

A. Particle filter

The conditional distribution of X1:T given Y1:T is not
available explicitly for a nonlinear state space model, but it
can be approximated using a family of N particles (ξℓ1:T)

N
ℓ=1

associated with importance weights (ωℓT)
N
ℓ=1. At k = 0,

(ξℓ0)
N
ℓ=1 are sampled independently from ρ0 = Ψ0,Σx

, and
each particle ξℓ0 is associated with the standard importance
sampling weight ωℓ0 ∝ ΨY0,Σy

(fθ(ξ
ℓ
0)). Then, for k ≥ 1, using

{(ξℓk−1, ω
ℓ
k−1)}Nℓ=1, we sample pairs {(Iℓk, ξℓk)}Nℓ=1 of indices

and particles from the instrumental distribution:

πk(ℓ, x) ∝ ωℓk−1pk(ξ
ℓ
k−1, Ũk, x) .

In this application we use for pk(ξℓk−1, Ũk, ·) the prior kernel
Ψgθ(ξℓk−1,Ũk),Σx

. For ℓ ∈ {1, . . . , N}, ξℓk is associated with the

importance weight ωℓk ∝ ΨYk,Σy
(fθ(ξ

ℓ
k)). Such a particle filter

with multinomial resampling is referred to as the bootstrap
algorithm, see [26]. It has been extended and analyzed in many
directions in the past decades, see [27]–[29]. In other lines of
works, the adaptive tuning of the Monte Carlo effort has been
analyzed in order to adapt the number of particles on-the-fly,
see [30], [31].

B. Particle smoother and online estimation

Our framework allows the use of any particle smoother to
estimate (1). In this paper, we first describe the Path-space
smoother [32] for its simplicity, in order to illustrate our
approach. In practice, it often leads to particle path degeneracy
[33], which can be mitigated by substituting a more complex
smoother such as the Forward Filtering Backward Smoothing
[34] or the Forward Filtering Backward Simulation algorithm
[35]. Additionally, because estimating (1) amounts to comput-
ing a smoothed expectation of an additive functional, we can
also use very efficient forward-only SMC smoothers such as
the PaRIS algorithm and its pseudo-marginal extensions [36],
[37]. With ξi1:T the ancestral line of ξiT , the score function (1)
can be estimated as follows using automated differentiation:

ŜNθ (Y1:T) =

N∑
ℓ=1

ωℓT∇θ log pθ(ξℓ1:T , Y1:T) ,

where pθ is the joint probability density function of
(X1:T , Y1:T) for the model described in Section II-B.

The degeneracy relative to the smoothing problem
can be overcome using backward sampling. It is
specifically designed for additive functionals so it is well
suited to our setting (1) since ∇θ log pθ(x1:T , y1:T) =∑T
t=1∇θ logmθ(xt−1, ũt;xt)rθ(xt, yt), where

mθ(xt−1, ũt; ·) is the transition density of the state model
and rθ(xt, ·) is the density of the conditional distribution of
yt given xt and by convention mθ(x0, ũ1; ·) = ρ0(·).

The Monte Carlo estimator of the score function can
be obtained online by setting, ŜNθ (y1:T) =

∑N
i=1 ω

i
T τ

i
T ,

where the statistics {τ is}Ni=1 satisfy the recursion

τ is+1 = τ
Iis+1
s + h̃s(ξ

Iis+1
s , ξis+1), where h̃s(xs, xs+1) =

∇θ logmθ(xs, ũs+1;xs+1)rθ(xs+1, ys+1). Following [36]–
[39], the degeneracy of the path-space smoother can be
overcome by performing an online PaRis update of the
statistics τ is+1, 1 ≤ i ≤ N , using the backward kernel of the
hidden Markov chain.

An appealing application of the last layer approach is
recursive maximum likelihood estimation, i.e., where new
observations are used only once to update the estimator of the
unknown parameter θ. In [24], the authors used in particular
Stochastic Gradient Descent (SGD) and Stochastic Gradient
Langevin Dynamics to update the estimation of θ and perform
uncertainty quantification. In state space models, recursive
maximum likelihood estimation produces a sequence {θk}k≥0

of parameter estimates writing, for each new observation
Yk, k ≥ 1,

θk = θk−1 + γk∇θℓθ(Yk|Y0:k−1) ,

where ℓθ(Yk|Y0:k−1) is the loglikelihood for the new obser-
vation given all the past, and {γk}k≥1 are positive step sizes
such that

∑
k≥1 γk = ∞ and

∑
k≥1 γ

2
k < ∞. The practical

implementation of such an algorithm, where ∇θℓθ(Yk|Y0:k−1)
is approximated using the weighted samples {(ξℓk, ωℓk)}Nℓ=1 can
be found for instance in [37]. The PaRIS algorithm proposed in
[36] allows to use the weighted samples {(ξℓk, ωℓk)}Nℓ=1 and the
statistics {τ ℓk}Nℓ=1 on-the-fly to approximate ∇θℓθ(Yk|Y0:k−1).

Although this algorithm is very efficient to update param-
eters recusrively, it is computationally intensive and therefore
fits particularly well our last layer approach as it would be
intractable for very high dimensional latent states.

Algorithm 1: Two-stage learning

φ̂← Train the input model hφ;
Ũ1:T ← hφ̂(U1:T);
Initialize parameter estimate θ̂0;
for p← 1 to MaxIt do

ξℓ0 ∼ ρ0 and ωℓ0 ∝ ΨY0,Σy (fθ̂p−1
(ξℓ0));

for k ← 1 to T do
for j ← 1 to N do

Ijk ∼ P(Ijk = m) = ωmk−1;

ξjk ∼ pk(ξ
Ijk
k−1, Ũk, ·);

ωjk ∝ ΨYk,Σy
(fθ̂p−1

(ξjk));

Set ξj0:k = (ξ
Ijk
0:k−1, ξ

j
k).

Update the parameter estimate using gradient
descent with estimated gradient ŜN

θ̂p−1
(Y1:T).

IV. EXPERIMENTS

A. Data and model

We benchmarked our approach on the public Electricity
Transformer Temperature (ETT) Dataset, designed in [40] to
forecast Oil temperature based on hourly power load records
(ETTh1 subset).

The Input model is a L = 3 layered GRU model, as defined
in the deep learning framework PyTorch1: for all 1 ≤ ℓ ≤ L
and all 1 ≤ k ≤ T ,

rℓk = σ(WirU
ℓ−1
k + bir +WhrU

ℓ
k−1 + bhr) ,

zℓk = σ(WizU
ℓ−1
k + biz +WhzU

ℓ
k−1 + bhz) ,

nℓk = tanh(WinU
ℓ−1
k + bin + rℓk(WhnU

ℓ
k−1 + bhn)) ,

Ũ ℓk = (1− zℓk)nℓk + zℓkU
ℓ
k−1 ,

where φ = {(Wis, bis,Whs, bhs), s ∈ {r, z, n}} are unknown
parameters, and σ : x 7→ 1/(1 + e−x) is the sigmoid
function. The first layer of the network is assimilated to
the input vectors, Ũ0

t ≡ Uk and Ũ ℓ0 ≡ 0. The input
dimension din = 6 corresponds to the number of power
load records of the dataset, we set the output dimension to
6. In order to estimate the parameters φ, we introduce an

1https://pytorch.org/docs/stable/generated/torch.nn.GRU.html

https://pytorch.org/docs/stable/generated/torch.nn.GRU.html

auxiliary GRU layer responsible for computing oil temperature
predictions. During the training, we minimize the cost function
Linput(φ) =

∑Nsample

i=1 ∥modelφ(U i1:T)−Y i1:T ∥2 between each
sample of the dataset and the associated prediction obtain with
this deterministic model.

The State Space model is implemented using PyTorch
implementations of RNN and Linear layers. We chose the
following form for fθ and gθ:

gθ : Xk−1, Ũk 7→ tanh(WgxXk−1 + bgx +WguŨk + bgu) ,

fθ : Xk 7→ σ(WfXk + bf) ,

where θ = {Wgx, bgx,Wgu, bgu,Wf , bf ,Σx,Σy} are un-
known parameters. All following experiments are conducted
with N = 100 particles and a batch size of 32, using the Adam
optimizer introduced in [41]. The learning rate was chosen
using a simple grid search. We train models for a maximum
of 50 epochs, and employ early stopping to prevent overfit.

B. Evaluations

In this section, we illustrate the ability of our model to
capture the distribution of future observations, by evaluating
the benchmarked models using the following protocol. We
draw 48 hours long samples (u1:48, y1:48) from the valida-
tion dataset, composed of a 24 hour long lookback window
(u1:24, y1:24), containing historic commands and observations,
and a predictions window where only future commands
are available (u25:48). Each model produces N = 100

24 hour long forecasts (y
(i)
25:48)

N
i=1. We compute the Root

Mean Squared Error (RMSE) between the observations and
the average of the forecasts: RMSE2 = T−1

∑T
k=1(Yk −

N−1
∑N
i=1 y

(i)
k)2. Additionally, we evaluate the Prediction

Interval Coverage Probability (PICP, see [42]) which measures
the ratio of observations falling between a 95% confidence in-
terval: PICP = T−1

∑T
k=1 1[ykL,y

k
U](Yk), where ykU (resp. ykL)

is the upper (resp. lower) bound of the confidence intervals.
Both criteria are reported in Table I.

For our proposed model, predictions can be performed by
approximating the predictive density pθ,φ(yk+1|U1:k+1, Y1:k)
by

pN
θ̂,φ̂

(yk+1) =

N∑
i=1

ωikpθ̂,φ̂(yk+1|ξik, Uk+1) ,

where pθ̂,φ̂(yk+1|ξik, Uk+1) is the predictive distribution of
Yk+1 described in Section II-B. In order to explore longer
ranges, we run our model to get N samples for any time hori-
zon. The associated intervals containing 95% of the samples
are displayed in Figure 2, for 24 hours forecasts.

We compared our model with MC Dropout methods, by
implementing recurrent dropout layers as described in [18].
The optimal dropout rate pdrop = 0.01 that we tuned by grid
search is smaller than the proposed value in the original paper,
which may be due to our much longer time series, similarly
to results presented in [43]. Additionally, we evaluate the
model with pdrop = 0.05, which we show slightly degrades
performances. The training procedure is similar to traditional

recurrent models ; during inference, we draw 100 samples
from the dropout layers, and compute the same average fore-
casts and intervals as for our model. Despite being based on the
same deep learning architecture, the MC dropout model is still
largely overconfident, while our proposed model provide more
credible empirical confidence intervals. We also experimented
with a Gaussian linear Hidden Markov Model (HMM) whose
parameters are estimated with the Kalman smoother using
the Expectation Maximization (EM, [44]) algorithm. Out of
a range of possible latent dimension sizes dhmm ∈ {1, 2, 4, 6},
we selected dhmm = 4 as it yielded the best performances.

Fig. 2. Forecasting of oil temperature given observations in the lookback
window (k < 24). Since resampling of particles is no longer available at that
point, the uncertainty grows for our model. As a comparison, we plotted the
confidence intervals produced by the MC Dropout model (for pdrop = 0.01).

TABLE I
COMPARISON OF RMSE, PICP AND COMPUTATION TIME OF OUR MODEL
AGAINST THE BENCHMARKED MC DROPOUT METHODS AND HMM. TWO
VERSIONS OF THE DROPOUT MODEL WERE EVALUATED, WITH DROPOUT

VALUES pdrop = 0.05 AND pdrop = 0.01. MEAN VALUES OF THE
ESTIMATORS ARE DISPLAYED ALONG WITH THEIR VARIANCE.

RMSE PICP Computation time

SMCL (ours) 0.24± 0.13 98% 210ms± 75.7
MCD p = 0.01 0.25± 0.15 59% 193ms± 60.4
MCD p = 0.05 0.28± 0.15 65% 193ms± 60.4
HMM 0.44± 0.13 85% 994ms± 21.4

V. CONCLUSION

In this paper, we introduced a decoupled architecture for
uncertainty estimation on a time series dataset. Our deep
neural network backbone is responsible for extracting high
level features, while particle filtering in the last layer al-
lows modelling recurrent nonlinear uncertainty. Our proposed
model does not suffer from the overconfidence of MC Dropout
methods, while significantly improving on the performances of
Hidden Markov Models.

We demonstrate the potential behind implementing latent
space models as a modified RNN cell ; more complex archi-
tectures, such as the GRU network used in the input model,
or LSTM cells, could be considered.

Our decoupled architecture enables incorporating uncer-
tainty estimation to an already trained network. This opens the
door to multiple, cheap finetuning of last layers parameters,
from a global pretraining.

REFERENCES

[1] Y. Bengio, P. Y. Simard, and P. Frasconi, “Learning long-term depen-
dencies with gradient descent is difficult,” IEEE transactions on neural
networks, vol. 5 2, pp. 157–66, 1994.

[2] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Computation, vol. 9, pp. 1735–1780, 1997.

[3] A. Graves, A. rahman Mohamed, and G. E. Hinton, “Speech recognition
with deep recurrent neural networks,” 2013, pp. 6645–6649.

[4] C. S. Crowson, E. J. Atkinson, and T. M. Therneau, “Assessing calibra-
tion of prognostic risk scores,” Statistical Methods in Medical Research,
vol. 25, no. 4, pp. 1692–1706, 2016, pMID: 23907781.

[5] L. H. Mervin, S. Johansson, E. Semenova, K. A. Giblin, and O. Engkvist,
“Uncertainty quantification in drug design.” Drug discovery today,
vol. 26, no. 2, pp. 474–489, 2021.

[6] G. E. Hinton and R. Neal, “Bayesian learning for neural networks,”
1995.

[7] M. I. Jordan, Z. Ghahramani, T. Jaakkola, and L. K. Saul, “An intro-
duction to variational methods for graphical models,” Machine Learning,
vol. 37, pp. 183–233, 2004.

[8] M. Fraccaro, S. r. K. Sø nderby, U. Paquet, and O. Winther, “Sequential
neural models with stochastic layers,” in Advances in Neural Information
Processing Systems, D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, and
R. Garnett, Eds., vol. 29. Curran Associates, Inc., 2016.

[9] M. Fortunato, C. Blundell, and O. Vinyals, “Bayesian recurrent neural
networks,” arXiv preprint arXiv:1704.02798, 2017.

[10] M. Cohen, M. Charbit, and S. Le Corff, “Variational latent discrete
representation for time series modelling,” 2023 IEEE Statistical Signal
Processing Workshop (SSP), 2023.

[11] C. J. Maddison, J. Lawson, G. Tucker, N. Heess, M. Norouzi, A. Mnih,
A. Doucet, and Y. Teh, “Filtering variational objectives,” in Advances
in Neural Information Processing Systems, vol. 30, 2017.

[12] C. Naesseth, S. Linderman, R. Ranganath, and D. Blei, “Variational Se-
quential Monte Carlo,” in Proceedings of the Twenty-First International
Conference on Artificial Intelligence and Statistics, ser. Proceedings of
Machine Learning Research, A. Storkey and F. Perez-Cruz, Eds., vol. 84.
PMLR, 09–11 Apr 2018, pp. 968–977.

[13] A. Martin, C. Ollion, F. Strub, S. L. Corff, and O. Pietquin, “The
monte carlo transformer: a stochastic self-attention model for sequence
prediction,” ArXiv, vol. abs/2007.08620, 2020.

[14] C. Blundell, J. Cornebise, K. Kavukcuoglu, and D. Wierstra, “Weight
uncertainty in neural networks,” in Proceedings of the 32nd International
Conference on International Conference on Machine Learning - Volume
37, ser. ICML’15. JMLR.org, 2015, p. 1613–1622.

[15] J. M. Hernandez-Lobato and R. Adams, “Probabilistic backpropagation
for scalable learning of bayesian neural networks,” in Proceedings of the
32nd International Conference on Machine Learning, ser. Proceedings
of Machine Learning Research, F. Bach and D. Blei, Eds., vol. 37. Lille,
France: PMLR, 07–09 Jul 2015, pp. 1861–1869.

[16] M. Teye, H. Azizpour, and K. Smith, “Bayesian uncertainty estimation
for batch normalized deep networks,” in Proceedings of the 35th
International Conference on Machine Learning, ser. Proceedings of
Machine Learning Research, J. Dy and A. Krause, Eds., vol. 80. PMLR,
10–15 Jul 2018, pp. 4907–4916.

[17] A. Foong, D. Burt, Y. Li, and R. Turner, “On the expressiveness of
approximate inference in bayesian neural networks,” in Advances in
Neural Information Processing Systems, H. Larochelle, M. Ranzato,
R. Hadsell, M. Balcan, and H. Lin, Eds., vol. 33. Curran Associates,
Inc., 2020, pp. 15 897–15 908.

[18] Y. Gal and Z. Ghahramani, “A theoretically grounded application of
dropout in recurrent neural networks,” in Advances in Neural Informa-
tion Processing Systems, D. Lee, M. Sugiyama, U. Luxburg, I. Guyon,
and R. Garnett, Eds., vol. 29. Curran Associates, Inc., 2016.

[19] T. Vandal, M. Livingston, C. Piho, and S. Zimmerman, “Prediction and
uncertainty quantification of daily airport flight delays,” in Proceedings
of The 4th International Conference on Predictive Applications and
APIs, ser. Proceedings of Machine Learning Research, vol. 82, 24–25
Oct 2018, pp. 45–51.

[20] M. Wen and E. Tadmor, “Uncertainty quantification in molecular sim-
ulations with dropout neural network potentials,” npj Computational
Materials, vol. 6, pp. 1–10, 2020.

[21] T. Pearce, A. Brintrup, M. Zaki, and A. Neely, “High-quality prediction
intervals for deep learning: A distribution-free, ensembled approach,” in
Proceedings of the 35th International Conference on Machine Learning,

ser. Proceedings of Machine Learning Research, vol. 80, 10–15 Jul 2018,
pp. 4075–4084.

[22] A. Ashukha, A. Lyzhov, D. Molchanov, and D. Vetrov, “Pitfalls of in-
domain uncertainty estimation and ensembling in deep learning,” arXiv
preprint arXiv:2002.06470, 2020.

[23] A. Foong, D. Burt, Y. Li, and R. Turner, “On the expressiveness of
approximate inference in bayesian neural networks,” in Advances in
Neural Information Processing Systems, H. Larochelle, M. Ranzato,
R. Hadsell, M. F. Balcan, and H. Lin, Eds., vol. 33. Curran Associates,
Inc., 2020, pp. 15 897–15 908.

[24] N. Brosse, C. Riquelme, A. Martin, S. Gelly, and É. Moulines, “On
last-layer algorithms for classification: Decoupling representation from
uncertainty estimation,” ArXiv, vol. abs/2001.08049, 2020.

[25] R. Douc, É. Moulines, and D. Stoffer, Nonlinear Time Series: Theory,
Methods and Applications with R Examples. Chapman & Hall, 2013.

[26] N. J. Gordon, D. J. Salmond, and A. F. Smith, “Novel approach to
nonlinear/non-gaussian bayesian state estimation,” in IEE Proceedings
F, vol. 140, no. 2. IET, 1993, pp. 107–113.

[27] M. K. Pitt and N. Shephard, “Filtering via simulation: Auxiliary particle
filters,” J. Amer. Statist. Assoc., vol. 94, no. 446, pp. 590–599, 1999.

[28] R. Douc and O. Cappé, “Comparison of resampling schemes for particle
filtering,” in ISPA 2005. Proceedings of the 4th International Symposium
on Image and Signal Processing and Analysis, 2005. IEEE, 2005, pp.
64–69.

[29] N. Chopin and O. Papaspiliopoulos, An Introduction to Sequential Monte
Carlo. Springer International Publishing, 2020.

[30] V. Elvira, J. Mı́guez, and P. M. Djurić, “Adapting the number of
particles in sequential monte carlo methods through an online scheme
for convergence assessment,” IEEE Transactions on Signal Processing,
vol. 65, no. 7, pp. 1781–1794, 2016.

[31] V. Elvira, J. Miguez, and P. M. Djurić, “On the performance of particle
filters with adaptive number of particles,” Statistics and Computing,
vol. 31, no. 6, pp. 1–18, 2021.

[32] G. Kitagawa, “Monte carlo filter and smoother for non-gaussian non-
linear state space models,” Journal of Computational and Graphical
Statistics, vol. 5, no. 1, pp. 1–25, 1996.

[33] C. Andrieu, A. Doucet, and V. Tadic, “On-line parameter estimation in
general state-space models,” in Proceedings of the 44th IEEE Conference
on Decision and Control, 2005, pp. 332–337.

[34] A. Doucet, S. J. Godsill, and C. Andrieu, “On sequential monte carlo
sampling methods for bayesian filtering,” Statistics and Computing,
vol. 10, pp. 197–208, 2000.

[35] S. J. Godsill, A. Doucet, and M. A. West, “Monte carlo smoothing for
nonlinear time series,” Journal of the American Statistical Association,
vol. 99, pp. 156 – 168, 2004.

[36] J. Olsson and J. Westerborn, “Efficient particle-based online smoothing
in general hidden markov models : the paris algorithm,” Bernoulli,
vol. 23, pp. 1951–1996, 2014.

[37] P. Gloaguen, S. L. Corff, and J. Olsson, “A pseudo-marginal sequential
Monte Carlo online smoothing algorithm,” Bernoulli, vol. 28, no. 4, pp.
2606 – 2633, 2022.

[38] P. Del Moral, A. Doucet, and S. S. Singh, “A backward interpretation
of Feynman–Kac formulae,” ESAIM: Mathematical Modelling and Nu-
merical Analysis, vol. 44, pp. 947–975, 2010.

[39] A. Martin, M.-P. Etienne, P. Gloaguen, S. L. Corff, and J. Olsson,
“Backward importance sampling for online estimation of state space
models,” arXiv preprint arXiv:2002.05438, 2020.

[40] H. Zhou, S. Zhang, J. Peng, S. Zhang, J. Li, H. Xiong, and W. Zhang,
“Informer: Beyond efficient transformer for long sequence time-series
forecasting,” Proceedings of the AAAI Conference on Artificial Intelli-
gence, vol. 35, no. 12, pp. 11 106–11 115, May 2021.

[41] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
CoRR, vol. abs/1412.6980, 2015.

[42] D. L. Shrestha and D. P. Solomatine, “Machine learning approaches for
estimation of prediction interval for the model output,” Neural Networks,
vol. 19, no. 2, pp. 225–235, 2006, earth Sciences and Environmental
Applications of Computational Intelligence.

[43] L. Zhu and N. P. Laptev, “Deep and confident prediction for time
series at uber,” 2017 IEEE International Conference on Data Mining
Workshops (ICDMW), pp. 103–110, 2017.

[44] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum likelihood
from incomplete data via the EM algorithm,” Journal of the Royal
Statistical Society: Series B, vol. 39, pp. 1–38, 1977.

	Introduction
	Last layer decoupling
	Representation learning
	State space model

	Sequential Monte Carlo Layer
	Particle filter
	Particle smoother and online estimation

	Experiments
	Data and model
	Evaluations

	Conclusion
	References

