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Abstract. Supervised deep learning relies heavily on the existence of a
huge amount of labelled data, which in many cases is difficult to obtain.
Domain adaptation deals with this problem by learning on a labelled
dataset and applying that knowledge to another, unlabelled or scarcely
labelled dataset, with a related but different probability distribution.
Heterogeneous domain adaptation is an especially challenging area where
domains lie in different input spaces. These methods are very interesting
for the field of remote sensing (and indeed computer vision in general),
where a variety of sensors are used, capturing images of different modal-
ities, different spatial and spectral resolutions, and where labelling is a
very expensive process. With two heterogeneous domains, however, un-
supervised domain adaptation is difficult to perform, and class-flipping is
frequent. At least a small amount of labelled data is therefore necessary in
the target domain in many cases. This work proposes loosening the label
requirement by labelling the target domain with must-link and cannot-
link constraints instead of class labels. Our method Constrained-HIDA,
based on constraints, contrastive loss, and learning domain invariant fea-
tures, shows that a significant performance improvement can be achieved
by using a very small number of constraints. This demonstrates that a
reduced amount of information, in the form of constraints, is as effective
as giving class labels. Moreover, this paper shows the benefits of inter-
active supervision — assigning constraints to the samples from classes
that are known to be prone to flipping can further reduce the necessary
amount of constraints.

Keywords: Deep Learning · Domain Adaptation · Constraints · Remote
Sensing.

1 Introduction

Supervised deep learning (DL) models are heavily dependent on the existence
of the large-scale labelled datasets. The process of obtaining the reference data
is however often very slow and expensive. This is especially the case in the field
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of remote sensing (RS), where acquiring the labels requires collecting data in
the field from locations that may be complicated to reach due to inaccessibility,
natural disasters, armed conflicts etc. Furthermore, the existing reference data
may not be reusable for images taken at a later date due to constant changes of
the Earth’s surface, such as seasonal and climate changes, deforestation, growth
of urban area etc. Since satellites generate huge amount of data on a daily basis,
these limitations put the pace of producing reference data far behind the speed
of acquiring new data.

Most of the time, existing trained supervised DL models cannot be applied
to other dataset as they often generalise poorly. If the conditions during data
acquisition differ, there will be a domain shift — a difference between probability
distributions — between the datasets. Domain adaptation (DA) techniques can
help with overcoming this problem. Typically, DA involves learning a model on
one data distribution (named source domain, typically labelled), and applying it
to another, different but related data distribution (called target domain typically
unlabelled or scarcely labelled) by reducing the shift between domains. Alterna-
tively, both domains can be given to one model at training time, yet with the
labels present exclusively or primarily in the source domain.

When there is a small amount of labelled data in a mainly unlabelled tar-
get domain, semi-supervised domain adaptation (SSDA) can be employed, and
methods for SSDA are specifically developed to take advantage of existing target
labels. When there are no labels at all in the target domain, unsupervised domain
adaptation (UDA) methods are used. These methods often try to compensate for
the absence of supervision in the target domain by using pseudo-labels. Another
possible way to incorporate certain knowledge about the target domain, rarely
addressed in DA so far, is using the constraints.

Constrained clustering is a type of learning where knowledge is provided
in the form of constraints rather than labels. The motivation for developing
such methods was to improve upon the performance of unsupervised models by
providing alternative knowledge about the problem domain in the absence of
exact hard labels. Constraints are most often given between the pairs of samples
in the form of must-link and cannot-link constraints. There is a growing base
of constrained clustering literature, the paradigm is gaining in popularity due
to the fact that it does not require classes to be defined (since constraints only
act upon pairs of samples) and offers a much weaker form of supervision than
labelled samples. It is much easier for an expert to express their preference
that two samples should be grouped together (or not), rather than defining
absolute labels. This is particularly useful when samples are hard to interpret
and interactive, iterative approaches are preferable.

Constraints can be very helpful in DA, especially in situations when there is a
huge domain shift. Though existing DA methods are very successful in the field
of computer vision (CV), most of them assume RGB images in both domains
(homogeneous DA). In remote sensing, however, a variety of sensors are used
(Figure 1), capturing images of different modalities, with:

– different spatial resolution
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Fig. 1: Different sensors in remote sensing. Images taken from Maxar Open Data
Program, Sentinel-1, WorldView-2, EuroSAT and Indian Pines datasets.

– different, non-corresponding channels (referred to as bands in RS), and pos-
sibly different numbers of bands.

The domains in RS therefore may not lay in the same space and may have
a different dimensionality, increasing still the effective ‘domain shift’. Homoge-
neous DA approaches cannot be applied to such heterogeneous domains. Instead,
heterogeneous domain adaptation (HDA) methods are used.

HDA methods show good performance in semi-supervised settings when a
small amount of labelled data is also available in the target domain. The results
are, however, much more limited in unsupervised HDA. The problem of class
flipping occurs frequently, and it is difficult for the algorithms to associate the
same-class samples between domains with such a huge domain shift without any
supervision. Many works, therefore, state that a presence of at least a small
amount of reference data is required to perform HDA [24, 5].

In this work, we offer a new approach to HDA by introducing constraints to
the learning process to reduce the labelling requirement. We hypothesise that
HDA methods may greatly benefit from just a few constraints to avoid incorrectly
matching classes between domains and that hard labels are not necessary to
overcome the problem of large domain shifts. We present a novel method named
Constrained-HIDA, a heterogeneous image domain adaptation model for the
task of patch classification, in which the knowledge of the target domain is
provided in the form of constraints. Constrained-HIDA extracts domain invariant
features from two heterogeneous domains, where samples are forced to respect
the constraints in the learned representation space through the use of contrastive
loss. We show that by using a very small number of constraints, our method
can match the performance of semi-supervised HDA methods, thus reducing
greatly the amount of information from the target domain needed. Interactive
supervision can make the method even more efficient, by assigning constraints
to the samples that are known to be difficult to solve. The results show that in
this manner less constraints can be used without affecting the performance.

The developed Constrained-HIDA method could be very beneficial to the
RS community since the domain adaptation problem is exacerbated by large
domain shifts due to the use of different modalities, e.g. RGB, multispectral,



4 M. Obrenović et al.

hyperspectral, SAR, LiDAR, panchromatic data etc. The field of application,
however, is not limited to RS; different sensors having the same point of view
can be found in robotics (depth images, radar), in medical imaging (e.g. CT and
MRI) etc. Another benefit is facilitating the labelling process, Hsu et al. state
that in many cases, it may be an easier task for a human to provide pair-wise
relationships rather than directly assigning class labels [15].

This article is organised as follows: in Section 2, a review of related existing
work is given, followed by a description of the proposed Constrained-HIDA model
in Section 3. Experimental setup and results are shown in Section 4. Finally, the
concluding remarks are given and future work is discussed in Section 5.

2 Literature Review

The emergence of Generative Adversarial Networks (GANs) inspired numerous
homogeneous domain adaptation techniques for computer vision. Some of these
models aim to extract domain invariant features such as DANN [9, 8] (derived
from the original GAN [10]), WDGRL [23] (derived from Wasserstein GAN [1]),
DSN [4], etc. Others like CyCADA [14] aim to translate data between domains
and are mostly based on image-to-image GAN architectures [32]. It is known,
however, that these UDA methods do not scale well to the semi-supervised set-
ting [22]. Methods that specifically aim to use few target labels easily outperform
UDA methods [22], motivating the need for specific SSDA algorithms. When
target labels are not available at all, many UDA methods fall back on pseudo-
labelling [25, 19].

In many cases, even if there are no hard, explicit labels, some background
knowledge about the domain is available. This knowledge can be incorporated
in the form of instance-level constraints. In constrained clustering, constraints
on the pairs of data samples are used to guide the clustering. These constraints
can be in the form of must-link or cannot-link, which state that the pair should
or should not belong to the same cluster [29]. Zhang et al. propose the deep con-
strained clustering framework [31] which takes advantage of the benefits of deep
learning to learn embedding features and clustering in an end-to-end manner.

Contrastive loss is often used with pair-wise constraints, for example in face
recognition [7]. Its simple formula pushes must-link pairs closer in latent space,
and cannot-link pairs farther apart. Contrastive learning is therefore a natural
choice when learning features for constrained clustering. Hsu et al. used con-
trastive KL loss on logits of their neural network for constrained clustering [15].
An example of the contrastive loss being used together with clustering in DA is
the Contrastive Adaptation Network (CAN) [16].

Constraints found their application in homogeneous DA. Liu et al. [20] pose
the problem of unsupervised DA as semi-supervised constrained clustering with
target labels missing. The source labels are used to create partition-level con-
straints. This is especially useful for preserving the structure of domains in
multi-source DA. This work, however, does not explore how to use knowledge
or preserve the structure in the target domain. Another interesting UDA work
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is assigning pairwise pseudo-constraints to samples in the target domain to fa-
cilitate the clustering process [17]. In SSDA, soft constraints are used to help
tackle the problem of imbalanced classes in medical images [12]. The constraints
included, however, are based on labels in the target domain that are already
used by the algorithm, with the sole purpose of preserving the structure, and
they do not introduce any new knowledge about the target domain.

Heterogeneous domain adaptation is much less present in the literature than
homogeneous DA. Most of the heterogeneous DA methods for CV are designed
to work with tabular data and focus on adapting between vectorial features
extracted from the images of different sizes, such as between SURF and DeCAF
[18, 30] and DeCAF and ImageNet features [26], or to adapt from image to text
data [24, 5].

The HDA methods applicable to raw-image data of different modalities such
as the ones that exist in RS are less frequent. Adversarial Discriminative Do-
main Adaptation (ADDA) [27] is evaluated on RGB and depth images, but the
limitation of the model is that it assumes the same number of channels in the
domains. This is also true for Benjdira et al.’s contribution to RS [3], which can
be applied to different sensors, but the number of bands must remain the same.
Another model for RS by Benjdira et al. [2] can work with a different number
of channels, but it is designed for semantic segmentation, and it requires the
existence of labelled segmentation masks in the target domain to be used as
an intermediate space during the translation process. This approach, therefore,
does not extend to classification.

CycleGAN for HDA [28] is a patch classification approach based on image-
to-image translation, it is a variant of CycleGAN in which a metric loss, classi-
fication loss, and a super-resolution capability are introduced. It is designed to
handle RS data of different resolutions, but it may be possible to apply it to do-
mains with different numbers of channels1 Another work on patch classification
of RS data explores the potential of learning domain invariant features in HDA
[21]. The paradigm of extracting domain-invariant features is a natural choice
for our Constrained-HIDA, as applying the contrastive loss on the constraints is
straightforward in the learned common latent feature space.

To the best of our knowledge, there are no other works on using the con-
straints in HDA, thus making Constrained-HIDA the first such method.

3 Methodology

In this section, the Constrained-HIDA model will be described. Constrained-
HIDA extracts deep domain-invariant features from two heterogeneous domains.
The learning of a common latent space of invariant features is guided by cross-
entropy loss on available (source domain) labels for class discrimination, Wasser-
stein loss is used to reduce the distance between domains, and contrastive loss
on constraints helps to preserve the correct local structure of domains.
1 It is not clear in the original article [28] if the method was evaluated on the same or

different numbers of channels.
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Let Xs =
{
xs
i

}ns

i=1
be a labelled source dataset of ns samples from the domain

Ds following the data distribution Pxs with labels ysi , and let Xt =
{
xt
j

}nt

j=1
be

an unlabelled target dataset of nt samples from the domain Dt following the
data distribution Pxt . Constrained-HIDA is able to work with heterogeneous
domains, i.e. xs ∈ X s, xt ∈ X t, X s ̸= X t where the dimensions ds and dt of
spaces X s and X t may or may not differ.

A certain amount of domain knowledge is given in the form of pairwise con-
straints of two types — must-link and cannot-link. These constraints can be
attached to two samples coming from the same domain or from different do-
mains. In this paper, the focus is on the case where there are only inter-domain
constraints. The set of constrained samples Xc is usually a small fraction of
the whole dataset X = Xs ∪ Xt. Let C= be a set of must-link constraints
C=

i , where C=
i = (xi1, xi2) ∈ C= implies that xi1 and xi2 should belong to

the same cluster/class, and let C ̸= be a set of cannot-link constraints, where
C ̸=

j = (xj1, xj2) ∈ C ̸= implies that xj1 and xj2 should belong to the different
cluster/class, C=, C ̸= ⊂ Xs ×Xt, C= ∩ C ̸= = ∅.

Constrained-HIDA’s architecture is presented in Figure 2 and consists of 5
neural network components: 3 feature extractors, a domain critic, and a class
discriminator, with the addition of contrastive loss over constraints on extracted
features. To work with the data coming from two different spaces, possibly
of different input sizes, two different input branches are needed. Therefore,
Constrained-HIDA has two separate feature extractors — FEs : X s → Rd1

and FEt : X t → Rd1 — these have the task of bringing the data to a feature
space of the same size — gs = FEs(x

s) and gt = FEt(x
t). Furthermore, another

invariant feature extractor FEi : Rd1 → Rd2 is employed to model the similarity
of the data domains and to extract domain invariant features — hs = FEi(g

s)
and ht = FEi(g

t).
Wasserstein distance is used to measure the distance between domains. This

metric is calculated by solving the optimal transport between two probability
distributions µ and ν. Since this is computationally expensive, the domain critic
DC : Rd2 → R is trained to approximate it instead [1, 23], accelerating the
training process. The loss of this component is defined such that

Lwd(h
s, ht) =

1

ns

ns∑
i=1

DC(hs
i )−

1

nt

nt∑
j=1

DC(ht
j). (1)

In order to calculate the empirical Wasserstein distance, Eq. (1) needs to be
maximised, therefore the domain critic component is trained by solving

max
θdc

(Lwd − γLgrad), (2)

where θdc are the domain critic’s weights and γLgrad is a regularisation term
enforcing the Lipschitz constraint. When training our domain critic [23], this
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Fig. 2: Overview of the proposed method. Features of the labelled source domain
samples are shown in blue, with triangles and squares representing different
classes, while features of the unlabelled target domain samples are shown as red
circles. Must-link constraints force samples to move towards each other (green
arrows), and cannot-link constraints force samples to move apart (orange arrow).

regularisation term amounts to

Lgrad(ĥ) =

(∥∥∥∇ĥDC(ĥ)
∥∥∥
2
− 1

)2

, (3)

where ĥ is the union of source and target representation points — hs and ht —
and the points sampled from the straight lines between coupled points of hs and
ht. This way, we are sufficiently close to enforcing the norm of 1 on the entire
space of the two domains [11].

The class discriminator C : Rd2 → Rc (where c is the number of classes)
is trained on the extracted features of the labelled source samples (hs, ys) (and
does not use the unlabelled target data). If labels ys are one-hot encoded, the
cross-entropy classification loss is used, such that

Lc(h
s, ys) = − 1

ns

ns∑
i=1

c∑
k=1

ysi,k logC(hs
i ). (4)

Contrastive loss is applied to the extracted features of the constrained pairs
of samples. Let I= be an indicator function equal to one when the pair (xi, xj)
is under must-link constraint, or equal to zero otherwise. Let also I ̸= be an
indicator function for cannot-link constraints. The contrastive loss is defined
such that

Lcon =
∑
i,j

I=(xi, xj)||hi − hj ||22 + I ̸=(xi, xj)max
(
0,m− ||hi − hj ||22

)
(5)

where hi, hj are the extracted features of samples xi, xj , and m is a threshold
that prevents the cannot-link loss from moving towards infinity, i.e. the features
of samples under a cannot-link constraint are limited to be a distance of m apart.
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Name Source Image Size # Patches Classes Resolution
RESISC45 Aerial 256×256×3 31,500 45 0.2m−30m
EuroSAT Satellite 64× 64× 13 27,000 10 10m

Table 1: Characteristics of NWPU-RESISC45 and EuroSAT datasets.

River Forest
Rectangular 
Farmland

Dense 
Residential

Industrial 
Area

RESISC45

EuroSAT

Freeway Lake Meadow

River Forest Crop Residential Industrial Highway Sealake Pasture

Fig. 3: Examples of chosen corresponding classes from RESISC45 and EuroSAT
datasets. For EuroSAT, the RGB version of the dataset is shown.

If we denote the feature extractor’s weights as θfe and the class discrimina-
tor’s weights as θc, the final min-max adversarial optimisation problem to be
solved is

min
θfe,θc

{
Lc + λ1 max

θwd

[
Lwd − γLgrad

]
+ λ2Lcon

}
. (6)

where λ1 and λ2 are the weights of the contrastive loss and Wasserstein loss
respectively.

4 Experimental results

4.1 Data

The proposed approach is evaluated on the following eight corresponding classes
from two heterogeneous remote sensing datasets (details given in Table 1 and
examples of classes given in Figure 3):

– NWPU-RESISC45 [6] (high-resolution aerial RGB images extracted from
Google Earth) — dense residential, forest, freeway, industrial area, lake,
meadow, rectangular farmland, and river.

– EuroSAT [13] (low-resolution multi-spectral images from the Sentinel-2A
satellite) — residential, forest, highway, industrial, sealake, pasture, annual
crop and permanent crop (two classes merged into one), river.

The problem to be solved is patch classification, with each patch having a sin-
gle label. The RESISC45 dataset is composed of images taken from 100 countries
and regions all over the world, throughout all seasons and all kinds of weather.



Constrained-HIDA 9

Meadow Forest

SeaLakePasture

Lake
Rectangular 
Farmland

RESISC45

EuroSAT

Fig. 4: Examples of issues that can arise during transfer learning between RE-
SISC45 and EuroSAT. Green arrows show which samples should be aligned, and
red arrows show which samples tend to be aligned, but should not.

The EuroSAT dataset covers 34 European countries and also consists of data
from throughout the year. Both datasets, therefore, have in-domain temporal
and geographic variability, making even the in-domain problem of classification
very difficult.

Transfer learning brings another level of difficulty, especially with the huge
domain shift that exists in the presented datasets. Figure 4 visualises some classes
that tend to be misaligned between domains. The Lake class in RESISC45 shows
the entire lake with the surrounding area, whereas in EuroSAT only a patch of
water is shown, making it more similar to meadow and forest which also present
uniform colours. In the following experiments, we show that a huge improve-
ment in performance can be achieved by introducing must-link and cannot-link
constraints between such misaligned patches.

One advantage of the proposed Constrained-HIDA approach is that informa-
tion in all channels can be used. The information provided by non-RGB channels
can be discriminative but is often neglected. For example, the multispectral Eu-
roSAT data contain, aside from the visible RGB bands, near-infrared (NIR),
short-wave infrared (SWIR) and red edge bands etc.

The datasets are split into the train, validation, and test sets with the pro-
portion of 60:20:20 while keeping the classes balanced in all sets. The test set was
set aside during development and only used for the final experiments presented
herein.

4.2 Implementation details

Constrained-HIDA is a convolutional architecture. (see Figure 5 for details). The
feature extractor for RESISC45 consists of two convolutional layers with 16 and
32 filters respectively. Each convolutional layer is followed by 4×4 max-pooling.
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Fig. 5: The architecture of the proposed Constrained-HIDA model, specifically
used for the case when the source dataset is RESISC45 and the target dataset
is EuroSAT.

The feature extractor for EuroSAT is the same, except that it has 2 × 2 max-
pooling after every convolutional layer. The shared invariant feature extractor
has two convolutional layers with 32 and 64 filters respectively, and one fully-
connected (FC) layer of 100 nodes. All of the kernels have size 5× 5. The class
discriminator has one FC layer with softmax activation. The domain critic (DC)
has an FC layer with 100 nodes followed by an FC layer with 1 node.

In each training step, the DC is trained for 10 iterations with a learning rate
of 10−3, the DC is then frozen and the rest of the model is trained for 1 iteration
with a learning rate of 10−4. The DC loss’ weight λ1 is 0.1, and the contrastive
loss weight λ2 is 0.3. The Adam optimiser is used.

The input data is standardised per channel so that each channel has a mean
of 0 and a standard deviation of 1. The following augmentation transformations
are used: flipping with a probability of 0.45, rotation with a probability of 0.75
for 90◦, 180◦, or 270◦, changing contrast with the probability of 0.33 by multi-
plying the values of the pixels with the coefficient ranging between 0.5 and 1.5,
changing brightness with the probability of 0.33 by adding the coefficient rang-
ing between −0.3 and 0.3 scaled by the mean of pixel values per channel before
standardisation, blurring with the probability of 0.33 with Gaussian filter with
σ parameter values ranging from 1.5 to 1.8, and finally adding Gaussian noise
with mean 0 and standard deviation between 10 and 15 with the probability
of 0.33. The batch size is 32, and in each iteration, half of the training batch
(16) comes from the source and the other half from the target domain. In every
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batch, there are always 4 pairs of source-target samples with a constraint, either
must-link or cannot-link. The model is trained for 40 epochs.

The convolutional architecture used for Constrained-HIDA is not rigorously
optimised but was found through initial experiments. The hyper-parameters re-
lated to the domain critic, as well as learning rates, optimiser, and loss weights,
are taken from the WDGRL method [23]. Data augmentation was chosen based
on remote sensing domain experience. Increasing batch size or percentage of
constrained pairs per batch did not improve performance further.

The code to reproduce the Constrained-HIDA experiments presented in this
article is available online2.

4.3 Comparison methods

To the best of our knowledge, there are no other HDA works on using constraints
instead of labels in the target domain. Our method is therefore compared with
HDA methods for image data in an unsupervised and semi-supervised setting.
The first comparison method is CycleGAN for HDA [28], which can be used
in both UDA and SSDA, a method tailored for RS and for data with different
spatial resolutions. We will denote unsupervised and semi-supervised variants
of the method as CycleGAN for U-HDA and CycleGAN for SS-HDA. We fur-
ther compare with an unsupervised version of our method without using any
constraints or any labels in the target domain (denoted U-HIDA), and with
a semi-supervised version that uses labels in the target domain, but not con-
straints nor contrastive loss (denoted SS-HIDA). Semi-supervised methods are
evaluated in the situation where 1.25% of labelled target data is available (5
labelled samples per class, 40 in total).

Our Constrained-HIDA is evaluated on a range of different amounts of con-
straints (40, 80, 160, 320, and 480 constrained pairs), where the ratio of must-link
and cannot-link constraints is 1 : 7. Constraints are generated by taking pairs
of samples and if their ground truth label is the same, a must-link constraint
is created between them, if their ground truth labels differ, a cannot-link con-
straint is instead added. This is repeated until the correct number and ratio of
constraints are found. Each constrained pair has one sample from the source and
one from the target domain, they are all therefore inter-domain. No intra-domain
constraints were used. Note that in semi-supervised DA comparison methods,
the existence of 5 labels per class in the target domain, with 8 classes and 400
samples per class in training sets of each domain, implies the existence of 128,000
inter-domain constraints, and 780 intra-domain constraints in the target domain
— a number far greater then what our method is using! For demonstration
purposes, we also show the results of our method with all the inter-domain con-
straints implied by 40 labels in the target domain, (i.e. 16,000 must-link and
112,000 cannot-link), without using any intra-domain constraints, and without
directly using any target labels for the training, relying solely on the contrastive
loss over constraints in the target domain.
2 https://github.com/mihailoobrenovic/Constrained-HIDA
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R → E E → R
CycleGAN for U-HDA 18.48 (8.00) 16.82 (5.74)
U-HIDA 13.61 (11.33) 17.77 (9.37)

Constrained-HIDA 40 constraints 35.52 (7.70) 33.29 (13.59)
Constrained-HIDA 80 constraints 39.09 (10.02) 40.54 (9.43)
Constrained-HIDA 160 constraints 48.59 (7.46) 49.00 (7.17)
Constrained-HIDA 320 constraints 64.68 (3.68) 56.13 (7.12)
Constrained-HIDA 480 constraints 65.27 (2.53) 59.37 (5.48)
Constrained-HIDA all constraints for 40 labels 69.34 (3.60) 63.71 (2.12)

CycleGAN for SS-HDA 40 labels 41.57 (9.20) 47.29 (1.53)
SS-HIDA 40 labels 66.14 (2.92) 62.68 (3.24)

Table 2: Accuracy of the proposed Constrained-HIDA model with different num-
bers of constraints, UDA methods are shown as lower baselines and SSDA meth-
ods are shown as upper baselines. Standard deviations are shown in parentheses.

4.4 Results

The overall accuracy of our and all the comparison methods with RESISC45 as
source and EuroSAT as target (R → E) and vice-versa (E → R) are shown in
Table 2.

For the R → E case, the results show that our Constrained-HIDA almost
doubles the performance of unsupervised CycleGAN for HDA with as few as 40
constraints, with even higher gains over the unsupervised version of the model
(U-HIDA). As more constraints are added, the better Constrained-HIDA per-
forms. With 160 constraints, it already gains 7% over semi-supervised CycleGAN
for HDA that uses 40 labels in the target domain. From 320 constraints and on,
the results become comparable to the semi-supervised version of our model SS-
HIDA.

For the E → R case, the findings are similar. Constrained-HIDA with 40
constraints has around 2 times stronger performance than the lower baselines.
With 160 constraints it already outperforms semi-supervised CycleGAN for HDA
by around 2%, with the gain growing as more constraints are added. When
using 480 constraints, the results of Constrained-HIDA become comparable to
SS-HIDA.

Constrained-HIDA using all of the inter-domain constraints implied by 40
labels in the target domain (i.e. 120,000 constraints) even outperforms SS-HIDA
trained with 40 target labels in both cases — by more than 3% in the R →
E case, and around 1% in the E → R case. This is a very interesting finding,
having in mind that the classifier in Constrained-HIDA is trained only on source
samples and that only the contrastive loss and Wasserstein loss were affected
by target samples, while the classifier of SS-HIDA was trained with all available
labelled data including from the target domain. This implies that it might be
more important to align the structure of the target domain with the source
domain than to use (a small number of) hard target labels.
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U-HIDA
Constrained-HIDA 

480 constraints 

Fig. 6: PaCMAP visualisation of U-HIDA and Constrained-HIDA features in the
R → E case.

It should be noted, however, that in the case of Constrained-HIDA using 320
and 480 constraints, there are 40 and 60 must-link constraints respectively. This
means that there are 40 and 60 target samples, each associated with a source
sample that is labelled. One could argue that this indirectly brings information
about the labels to the target domain. This information is however still weaker
than a label in our experiments. The target labels are used when training the
classifier in SSDA comparison methods and directly introduce the information
equivalent to a huge number of must-link and cannot-link constraints, both inter-
domain and intra-domain. On the other hand, in our experiments, Constrained-
HIDA only applies the contrastive loss to inter-domain constraints. Furthermore,
the numbers of 320 and 480 constraints still represent only 0.25%, and 0.375%
respectively of the total number of 128,000 constraints implied by 40 labels in
the target domains.

As shown in Figure 6, Constrained-HIDA learns better discriminative fea-
tures compared to U-HIDA. In the absence of constraints, U-HIDA tends to flip
classes, for example, many target samples of the crop class are matched with the
river class, a lot of forest class samples are matched with pasture etc. In contrast,
Constrained-HIDA better matches classes and the spread between the domains
is reduced such that the overlap is more consistent, explaining the increase in
performance observed in Table 2.

Interactive supervision can further reduce the need for constraints. If con-
straints are manually created with prior knowledge, on samples representing
classes that are known to be problematic, fewer constraints can be more ef-
fective. By identifying and adding constraints to a certain number of target
samples that are misclassified by unsupervised HIDA in the R → E case, 8
such constraints are sufficient for Constrained-HIDA to achieve an accuracy of
40.92%, and 80 gives 55.36%, which is 15% better than when using the same
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number of randomly chosen constraints, and almost 7% better than when using
160 randomly chosen constraints. This means that number of constraints can
be more than halved by carefully choosing them without affecting performance.
It should be noted, however, that in these experiments the ratio of must-link
and cannot-link constraints is 1 : 1. Still, these initial results show that carefully
chosen constraints can provide strong results with very little supervision and
that interactive supervision is a very interesting future research direction.

5 Conclusions

This article has proposed a novel approach to heterogeneous image domain adap-
tation using constraints named Constrained-HIDA. To the best of our knowl-
edge, this is the first such method using constraints instead of labels in a semi-
supervised setting. The results show that with a very small number of con-
straints, Constrained-HIDA strongly outperforms UDA methods, and has com-
parable results with SSDA methods, even outperforming them when using an
equivalent amount of information. This shows that replacing labels with con-
straints could reduce the need for supervised information in the target domain
and could facilitate the job of annotating experts for whom providing constraints
might be easier and more natural than providing hard labels.

In the future, Constrained-HIDA could be further improved by introducing
pseudo-labels or pseudo-constraints, with e.g. constrained clustering; this could
enrich the information about the target domain. The prospect of interactive
learning is another interesting direction, allowing the user to put constraints on
the examples misclassified by the model, in an iterative manner, could addi-
tionally decrease the number of constraints needed. The method could also be
evaluated in homogeneous DA, on domains coming from the same input space,
but with a huge domain shift.
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