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Introduction

Supervised deep learning (DL) models are heavily dependent on the existence of the large-scale labelled datasets. The process of obtaining the reference data is however often very slow and expensive. This is especially the case in the field of remote sensing (RS), where acquiring the labels requires collecting data in the field from locations that may be complicated to reach due to inaccessibility, natural disasters, armed conflicts etc. Furthermore, the existing reference data may not be reusable for images taken at a later date due to constant changes of the Earth's surface, such as seasonal and climate changes, deforestation, growth of urban area etc. Since satellites generate huge amount of data on a daily basis, these limitations put the pace of producing reference data far behind the speed of acquiring new data.

Most of the time, existing trained supervised DL models cannot be applied to other dataset as they often generalise poorly. If the conditions during data acquisition differ, there will be a domain shift -a difference between probability distributions -between the datasets. Domain adaptation (DA) techniques can help with overcoming this problem. Typically, DA involves learning a model on one data distribution (named source domain, typically labelled), and applying it to another, different but related data distribution (called target domain typically unlabelled or scarcely labelled) by reducing the shift between domains. Alternatively, both domains can be given to one model at training time, yet with the labels present exclusively or primarily in the source domain.

When there is a small amount of labelled data in a mainly unlabelled target domain, semi-supervised domain adaptation (SSDA) can be employed, and methods for SSDA are specifically developed to take advantage of existing target labels. When there are no labels at all in the target domain, unsupervised domain adaptation (UDA) methods are used. These methods often try to compensate for the absence of supervision in the target domain by using pseudo-labels. Another possible way to incorporate certain knowledge about the target domain, rarely addressed in DA so far, is using the constraints.

Constrained clustering is a type of learning where knowledge is provided in the form of constraints rather than labels. The motivation for developing such methods was to improve upon the performance of unsupervised models by providing alternative knowledge about the problem domain in the absence of exact hard labels. Constraints are most often given between the pairs of samples in the form of must-link and cannot-link constraints. There is a growing base of constrained clustering literature, the paradigm is gaining in popularity due to the fact that it does not require classes to be defined (since constraints only act upon pairs of samples) and offers a much weaker form of supervision than labelled samples. It is much easier for an expert to express their preference that two samples should be grouped together (or not), rather than defining absolute labels. This is particularly useful when samples are hard to interpret and interactive, iterative approaches are preferable.

Constraints can be very helpful in DA, especially in situations when there is a huge domain shift. Though existing DA methods are very successful in the field of computer vision (CV), most of them assume RGB images in both domains (homogeneous DA). In remote sensing, however, a variety of sensors are used (Figure 1), capturing images of different modalities, with:

different spatial resolution different, non-corresponding channels (referred to as bands in RS), and possibly different numbers of bands.

The domains in RS therefore may not lay in the same space and may have a different dimensionality, increasing still the effective 'domain shift'. Homogeneous DA approaches cannot be applied to such heterogeneous domains. Instead, heterogeneous domain adaptation (HDA) methods are used. HDA methods show good performance in semi-supervised settings when a small amount of labelled data is also available in the target domain. The results are, however, much more limited in unsupervised HDA. The problem of class flipping occurs frequently, and it is difficult for the algorithms to associate the same-class samples between domains with such a huge domain shift without any supervision. Many works, therefore, state that a presence of at least a small amount of reference data is required to perform HDA [START_REF] Shu | Weakly-shared deep transfer networks for heterogeneous-domain knowledge propagation[END_REF][START_REF] Chen | Transfer neural trees for heterogeneous domain adaptation[END_REF].

In this work, we offer a new approach to HDA by introducing constraints to the learning process to reduce the labelling requirement. We hypothesise that HDA methods may greatly benefit from just a few constraints to avoid incorrectly matching classes between domains and that hard labels are not necessary to overcome the problem of large domain shifts. We present a novel method named Constrained-HIDA, a heterogeneous image domain adaptation model for the task of patch classification, in which the knowledge of the target domain is provided in the form of constraints. Constrained-HIDA extracts domain invariant features from two heterogeneous domains, where samples are forced to respect the constraints in the learned representation space through the use of contrastive loss. We show that by using a very small number of constraints, our method can match the performance of semi-supervised HDA methods, thus reducing greatly the amount of information from the target domain needed. Interactive supervision can make the method even more efficient, by assigning constraints to the samples that are known to be difficult to solve. The results show that in this manner less constraints can be used without affecting the performance.

The developed Constrained-HIDA method could be very beneficial to the RS community since the domain adaptation problem is exacerbated by large domain shifts due to the use of different modalities, e.g. RGB, multispectral, hyperspectral, SAR, LiDAR, panchromatic data etc. The field of application, however, is not limited to RS; different sensors having the same point of view can be found in robotics (depth images, radar), in medical imaging (e.g. CT and MRI) etc. Another benefit is facilitating the labelling process, Hsu et al. state that in many cases, it may be an easier task for a human to provide pair-wise relationships rather than directly assigning class labels [START_REF] Hsu | Neural network-based clustering using pairwise constraints[END_REF]. This article is organised as follows: in Section 2, a review of related existing work is given, followed by a description of the proposed Constrained-HIDA model in Section 3. Experimental setup and results are shown in Section 4. Finally, the concluding remarks are given and future work is discussed in Section 5.

Literature Review

The emergence of Generative Adversarial Networks (GANs) inspired numerous homogeneous domain adaptation techniques for computer vision. Some of these models aim to extract domain invariant features such as DANN [START_REF] Ganin | Domain-adversarial training of neural networks[END_REF][START_REF] Ganin | Unsupervised domain adaptation by backpropagation[END_REF] (derived from the original GAN [START_REF] Goodfellow | Generative adversarial nets[END_REF]), WDGRL [START_REF] Shen | Wasserstein distance guided representation learning for domain adaptation[END_REF] (derived from Wasserstein GAN [START_REF] Arjovsky | Wasserstein generative adversarial networks[END_REF]), DSN [START_REF] Bousmalis | Domain separation networks[END_REF], etc. Others like CyCADA [START_REF] Hoffman | CyCADA: Cycle-consistent adversarial domain adaptation[END_REF] aim to translate data between domains and are mostly based on image-to-image GAN architectures [START_REF] Zhu | Unpaired image-to-image translation using cycle-consistent adversarial networks[END_REF]. It is known, however, that these UDA methods do not scale well to the semi-supervised setting [START_REF] Saito | Semi-supervised domain adaptation via minimax entropy[END_REF]. Methods that specifically aim to use few target labels easily outperform UDA methods [START_REF] Saito | Semi-supervised domain adaptation via minimax entropy[END_REF], motivating the need for specific SSDA algorithms. When target labels are not available at all, many UDA methods fall back on pseudolabelling [START_REF] Sohn | Fixmatch: Simplifying semi-supervised learning with consistency and confidence[END_REF][START_REF] Liu | Cycle self-training for domain adaptation[END_REF].

In many cases, even if there are no hard, explicit labels, some background knowledge about the domain is available. This knowledge can be incorporated in the form of instance-level constraints. In constrained clustering, constraints on the pairs of data samples are used to guide the clustering. These constraints can be in the form of must-link or cannot-link, which state that the pair should or should not belong to the same cluster [START_REF] Wagstaff | Constrained k-means clustering with background knowledge[END_REF]. Zhang et al. propose the deep constrained clustering framework [START_REF] Zhang | A framework for deep constrained clustering[END_REF] which takes advantage of the benefits of deep learning to learn embedding features and clustering in an end-to-end manner.

Contrastive loss is often used with pair-wise constraints, for example in face recognition [START_REF] Chopra | Learning a similarity metric discriminatively, with application to face verification[END_REF]. Its simple formula pushes must-link pairs closer in latent space, and cannot-link pairs farther apart. Contrastive learning is therefore a natural choice when learning features for constrained clustering. Hsu et al. used contrastive KL loss on logits of their neural network for constrained clustering [START_REF] Hsu | Neural network-based clustering using pairwise constraints[END_REF]. An example of the contrastive loss being used together with clustering in DA is the Contrastive Adaptation Network (CAN) [START_REF] Kang | Contrastive adaptation network for unsupervised domain adaptation[END_REF].

Constraints found their application in homogeneous DA. Liu et al. [START_REF] Liu | Structure-preserved unsupervised domain adaptation[END_REF] pose the problem of unsupervised DA as semi-supervised constrained clustering with target labels missing. The source labels are used to create partition-level constraints. This is especially useful for preserving the structure of domains in multi-source DA. This work, however, does not explore how to use knowledge or preserve the structure in the target domain. Another interesting UDA work is assigning pairwise pseudo-constraints to samples in the target domain to facilitate the clustering process [START_REF] Li | Cross-domain adaptive clustering for semi-supervised domain adaptation[END_REF]. In SSDA, soft constraints are used to help tackle the problem of imbalanced classes in medical images [START_REF] Harada | Cluster-guided semi-supervised domain adaptation for imbalanced medical image classification[END_REF]. The constraints included, however, are based on labels in the target domain that are already used by the algorithm, with the sole purpose of preserving the structure, and they do not introduce any new knowledge about the target domain.

Heterogeneous domain adaptation is much less present in the literature than homogeneous DA. Most of the heterogeneous DA methods for CV are designed to work with tabular data and focus on adapting between vectorial features extracted from the images of different sizes, such as between SURF and DeCAF [START_REF] Li | Heterogeneous domain adaptation through progressive alignment[END_REF][START_REF] Wang | Heterogeneous domain adaptation network based on autoencoder[END_REF] and DeCAF and ImageNet features [START_REF] Titouan | CO-Optimal Transport[END_REF], or to adapt from image to text data [START_REF] Shu | Weakly-shared deep transfer networks for heterogeneous-domain knowledge propagation[END_REF][START_REF] Chen | Transfer neural trees for heterogeneous domain adaptation[END_REF].

The HDA methods applicable to raw-image data of different modalities such as the ones that exist in RS are less frequent. Adversarial Discriminative Domain Adaptation (ADDA) [START_REF] Tzeng | Adversarial discriminative domain adaptation[END_REF] is evaluated on RGB and depth images, but the limitation of the model is that it assumes the same number of channels in the domains. This is also true for Benjdira et al.'s contribution to RS [START_REF] Benjdira | Unsupervised domain adaptation using generative adversarial networks for semantic segmentation of aerial images[END_REF], which can be applied to different sensors, but the number of bands must remain the same. Another model for RS by Benjdira et al. [START_REF] Benjdira | Data-efficient domain adaptation for semantic segmentation of aerial imagery using generative adversarial networks[END_REF] can work with a different number of channels, but it is designed for semantic segmentation, and it requires the existence of labelled segmentation masks in the target domain to be used as an intermediate space during the translation process. This approach, therefore, does not extend to classification.

CycleGAN for HDA [START_REF] Voreiter | A Cycle GAN approach for heterogeneous domain adaptation in land use classification[END_REF] is a patch classification approach based on imageto-image translation, it is a variant of CycleGAN in which a metric loss, classification loss, and a super-resolution capability are introduced. It is designed to handle RS data of different resolutions, but it may be possible to apply it to domains with different numbers of channels1 Another work on patch classification of RS data explores the potential of learning domain invariant features in HDA [START_REF] Obrenovic | Sshida: Semi-supervised heterogeneous image domain adaptation[END_REF]. The paradigm of extracting domain-invariant features is a natural choice for our Constrained-HIDA, as applying the contrastive loss on the constraints is straightforward in the learned common latent feature space.

To the best of our knowledge, there are no other works on using the constraints in HDA, thus making Constrained-HIDA the first such method.

Methodology

In this section, the Constrained-HIDA model will be described. Constrained-HIDA extracts deep domain-invariant features from two heterogeneous domains. The learning of a common latent space of invariant features is guided by crossentropy loss on available (source domain) labels for class discrimination, Wasserstein loss is used to reduce the distance between domains, and contrastive loss on constraints helps to preserve the correct local structure of domains.

Let X s = x s i n s i=1 be a labelled source dataset of n s samples from the domain D s following the data distribution P x s with labels y s i , and let X t = x t j n t j=1 be an unlabelled target dataset of n t samples from the domain D t following the data distribution P x t . Constrained-HIDA is able to work with heterogeneous domains, i.e. x s ∈ X s , x t ∈ X t , X s ̸ = X t where the dimensions d s and d t of spaces X s and X t may or may not differ.

A certain amount of domain knowledge is given in the form of pairwise constraints of two types -must-link and cannot-link. These constraints can be attached to two samples coming from the same domain or from different domains. In this paper, the focus is on the case where there are only inter-domain constraints. The set of constrained samples X c is usually a small fraction of the whole dataset X = X s ∪ X t . Let C = be a set of must-link constraints C = i , where C = i = (x i1 , x i2 ) ∈ C = implies that x i1 and x i2 should belong to the same cluster/class, and let C ̸ = be a set of cannot-link constraints, where

C ̸ = j = (x j1 , x j2 ) ∈ C ̸ = implies that x j1 and x j2 should belong to the different cluster/class, C = , C ̸ = ⊂ X s × X t , C = ∩ C ̸ = = ∅.
Constrained-HIDA's architecture is presented in Figure 2 and consists of 5 neural network components: 3 feature extractors, a domain critic, and a class discriminator, with the addition of contrastive loss over constraints on extracted features. To work with the data coming from two different spaces, possibly of different input sizes, two different input branches are needed. Therefore, Constrained-HIDA has two separate feature extractors -F E s : X s → R d1 and F E t : X t → R d1 -these have the task of bringing the data to a feature space of the same sizeg s = F E s (x s ) and g t = F E t (x t ). Furthermore, another invariant feature extractor F E i : R d1 → R d2 is employed to model the similarity of the data domains and to extract domain invariant featuresh s = F E i (g s ) and h t = F E i (g t ).

Wasserstein distance is used to measure the distance between domains. This metric is calculated by solving the optimal transport between two probability distributions µ and ν. Since this is computationally expensive, the domain critic DC : R d2 → R is trained to approximate it instead [START_REF] Arjovsky | Wasserstein generative adversarial networks[END_REF][START_REF] Shen | Wasserstein distance guided representation learning for domain adaptation[END_REF], accelerating the training process. The loss of this component is defined such that

L wd (h s , h t ) = 1 n s n s i=1 DC(h s i ) - 1 n t n t j=1 DC(h t j ). (1) 
In order to calculate the empirical Wasserstein distance, Eq. ( 1) needs to be maximised, therefore the domain critic component is trained by solving

max θ dc (L wd -γL grad ), (2) 
where θ dc are the domain critic's weights and γL grad is a regularisation term enforcing the Lipschitz constraint. When training our domain critic [START_REF] Shen | Wasserstein distance guided representation learning for domain adaptation[END_REF], this regularisation term amounts to L grad ( ĥ) = ∇ ĥDC ( ĥ)

2 -1 2 , (3) 
where ĥ is the union of source and target representation pointsh s and h tand the points sampled from the straight lines between coupled points of h s and h t . This way, we are sufficiently close to enforcing the norm of 1 on the entire space of the two domains [START_REF] Gulrajani | Improved training of Wasserstein GANs[END_REF].

The class discriminator C : R d2 → R c (where c is the number of classes) is trained on the extracted features of the labelled source samples (h s , y s ) (and does not use the unlabelled target data). If labels y s are one-hot encoded, the cross-entropy classification loss is used, such that

L c (h s , y s ) = - 1 n s n s i=1 c k=1 y s i,k log C(h s i ). (4) 
Contrastive loss is applied to the extracted features of the constrained pairs of samples. Let I = be an indicator function equal to one when the pair (x i , x j ) is under must-link constraint, or equal to zero otherwise. Let also I ̸ = be an indicator function for cannot-link constraints. The contrastive loss is defined such that

L con = i,j I = (x i , x j )||h i -h j || 2 2 + I ̸ = (x i , x j ) max 0, m -||h i -h j || 2 2 ( 5 
)
where h i , h j are the extracted features of samples x i , x j , and m is a threshold that prevents the cannot-link loss from moving towards infinity, i.e. the features of samples under a cannot-link constraint are limited to be a distance of m apart. If we denote the feature extractor's weights as θ f e and the class discriminator's weights as θ c , the final min-max adversarial optimisation problem to be solved is

min θ f e ,θc L c + λ 1 max θ wd L wd -γL grad + λ 2 L con . (6) 
where λ 1 and λ 2 are the weights of the contrastive loss and Wasserstein loss respectively.

4 Experimental results

Data

The proposed approach is evaluated on the following eight corresponding classes from two heterogeneous remote sensing datasets (details given in Table 1 and examples of classes given in Figure 3):

-NWPU-RESISC45 [START_REF] Cheng | Remote sensing image scene classification: Benchmark and state of the art[END_REF] (high-resolution aerial RGB images extracted from Google Earth) -dense residential, forest, freeway, industrial area, lake, meadow, rectangular farmland, and river. -EuroSAT [START_REF] Helber | EuroSAT: A novel dataset and deep learning benchmark for land use and land cover classification[END_REF] (low-resolution multi-spectral images from the Sentinel-2A satellite) -residential, forest, highway, industrial, sealake, pasture, annual crop and permanent crop (two classes merged into one), river.

The problem to be solved is patch classification, with each patch having a single label. The RESISC45 dataset is composed of images taken from 100 countries and regions all over the world, throughout all seasons and all kinds of weather. The EuroSAT dataset covers 34 European countries and also consists of data from throughout the year. Both datasets, therefore, have in-domain temporal and geographic variability, making even the in-domain problem of classification very difficult.

Transfer learning brings another level of difficulty, especially with the huge domain shift that exists in the presented datasets. Figure 4 visualises some classes that tend to be misaligned between domains. The Lake class in RESISC45 shows the entire lake with the surrounding area, whereas in EuroSAT only a patch of water is shown, making it more similar to meadow and forest which also present uniform colours. In the following experiments, we show that a huge improvement in performance can be achieved by introducing must-link and cannot-link constraints between such misaligned patches.

One advantage of the proposed Constrained-HIDA approach is that information in all channels can be used. The information provided by non-RGB channels can be discriminative but is often neglected. For example, the multispectral Eu-roSAT data contain, aside from the visible RGB bands, near-infrared (NIR), short-wave infrared (SWIR) and red edge bands etc.

The datasets are split into the train, validation, and test sets with the proportion of 60:20:20 while keeping the classes balanced in all sets. The test set was set aside during development and only used for the final experiments presented herein.

Implementation details

Constrained-HIDA is a convolutional architecture. (see Figure 5 for details). The feature extractor for RESISC45 consists of two convolutional layers with 16 and 32 filters respectively. Each convolutional layer is followed by 4 × 4 max-pooling. The feature extractor for EuroSAT is the same, except that it has 2 × 2 maxpooling after every convolutional layer. The shared invariant feature extractor has two convolutional layers with 32 and 64 filters respectively, and one fullyconnected (FC) layer of 100 nodes. All of the kernels have size 5 × 5. The class discriminator has one FC layer with softmax activation. The domain critic (DC) has an FC layer with 100 nodes followed by an FC layer with 1 node.

In each training step, the DC is trained for 10 iterations with a learning rate of 10 -3 , the DC is then frozen and the rest of the model is trained for 1 iteration with a learning rate of 10 -4 . The DC loss' weight λ 1 is 0.1, and the contrastive loss weight λ 2 is 0.3. The Adam optimiser is used.

The input data is standardised per channel so that each channel has a mean of 0 and a standard deviation of 1. The following augmentation transformations are used: flipping with a probability of 0.45, rotation with a probability of 0.75 for 90 • , 180 • , or 270 • , changing contrast with the probability of 0.33 by multiplying the values of the pixels with the coefficient ranging between 0.5 and 1.5, changing brightness with the probability of 0.33 by adding the coefficient ranging between -0.3 and 0.3 scaled by the mean of pixel values per channel before standardisation, blurring with the probability of 0.33 with Gaussian filter with σ parameter values ranging from 1.5 to 1.8, and finally adding Gaussian noise with mean 0 and standard deviation between 10 and 15 with the probability of 0.33. The batch size is 32, and in each iteration, half of the training batch (16) comes from the source and the other half from the target domain. In every batch, there are always 4 pairs of source-target samples with a constraint, either must-link or cannot-link. The model is trained for 40 epochs.

The convolutional architecture used for Constrained-HIDA is not rigorously optimised but was found through initial experiments. The hyper-parameters related to the domain critic, as well as learning rates, optimiser, and loss weights, are taken from the WDGRL method [START_REF] Shen | Wasserstein distance guided representation learning for domain adaptation[END_REF]. Data augmentation was chosen based on remote sensing domain experience. Increasing batch size or percentage of constrained pairs per batch did not improve performance further.

The code to reproduce the Constrained-HIDA experiments presented in this article is available online2 .

Comparison methods

To the best of our knowledge, there are no other HDA works on using constraints instead of labels in the target domain. Our method is therefore compared with HDA methods for image data in an unsupervised and semi-supervised setting. The first comparison method is CycleGAN for HDA [START_REF] Voreiter | A Cycle GAN approach for heterogeneous domain adaptation in land use classification[END_REF], which can be used in both UDA and SSDA, a method tailored for RS and for data with different spatial resolutions. We will denote unsupervised and semi-supervised variants of the method as CycleGAN for U-HDA and CycleGAN for SS-HDA. We further compare with an unsupervised version of our method without using any constraints or any labels in the target domain (denoted U-HIDA), and with a semi-supervised version that uses labels in the target domain, but not constraints nor contrastive loss (denoted SS-HIDA). Semi-supervised methods are evaluated in the situation where 1.25% of labelled target data is available (5 labelled samples per class, 40 in total).

Our Constrained-HIDA is evaluated on a range of different amounts of constraints (40, 80, 160, 320, and 480 constrained pairs), where the ratio of must-link and cannot-link constraints is 1 : 7. Constraints are generated by taking pairs of samples and if their ground truth label is the same, a must-link constraint is created between them, if their ground truth labels differ, a cannot-link constraint is instead added. This is repeated until the correct number and ratio of constraints are found. Each constrained pair has one sample from the source and one from the target domain, they are all therefore inter-domain. No intra-domain constraints were used. Note that in semi-supervised DA comparison methods, the existence of 5 labels per class in the target domain, with 8 classes and 400 samples per class in training sets of each domain, implies the existence of 128,000 inter-domain constraints, and 780 intra-domain constraints in the target domain -a number far greater then what our method is using! For demonstration purposes, we also show the results of our method with all the inter-domain constraints implied by 40 labels in the target domain, (i.e. 16,000 must-link and 112,000 cannot-link), without using any intra-domain constraints, and without directly using any target labels for the training, relying solely on the contrastive loss over constraints in the target domain. 

Results

The overall accuracy of our and all the comparison methods with RESISC45 as source and EuroSAT as target (R → E) and vice-versa (E → R) are shown in Table 2.

For the R → E case, the results show that our Constrained-HIDA almost doubles the performance of unsupervised CycleGAN for HDA with as few as 40 constraints, with even higher gains over the unsupervised version of the model (U-HIDA). As more constraints are added, the better Constrained-HIDA performs. With 160 constraints, it already gains 7% over semi-supervised CycleGAN for HDA that uses 40 labels in the target domain. From 320 constraints and on, the results become comparable to the semi-supervised version of our model SS-HIDA.

For the E → R case, the findings are similar. Constrained-HIDA with 40 constraints has around 2 times stronger performance than the lower baselines. With 160 constraints it already outperforms semi-supervised CycleGAN for HDA by around 2%, with the gain growing as more constraints are added. When using 480 constraints, the results of Constrained-HIDA become comparable to SS-HIDA.

Constrained-HIDA using all of the inter-domain constraints implied by 40 labels in the target domain (i.e. 120,000 constraints) even outperforms SS-HIDA trained with 40 target labels in both cases -by more than 3% in the R → E case, and around 1% in the E → R case. This is a very interesting finding, having in mind that the classifier in Constrained-HIDA is trained only on source samples and that only the contrastive loss and Wasserstein loss were affected by target samples, while the classifier of SS-HIDA was trained with all available labelled data including from the target domain. This implies that it might be more important to align the structure of the target domain with the source domain than to use (a small number of) hard target labels. It should be noted, however, that in the case of Constrained-HIDA using 320 and 480 constraints, there are 40 and 60 must-link constraints respectively. This means that there are 40 and 60 target samples, each associated with a source sample that is labelled. One could argue that this indirectly brings information about the labels to the target domain. This information is however still weaker than a label in our experiments. The target labels are used when training the classifier in SSDA comparison methods and directly introduce the information equivalent to a huge number of must-link and cannot-link constraints, both interdomain and intra-domain. On the other hand, in our experiments, Constrained-HIDA only applies the contrastive loss to inter-domain constraints. Furthermore, the numbers of 320 and 480 constraints still represent only 0.25%, and 0.375% respectively of the total number of 128,000 constraints implied by 40 labels in the target domains.

As shown in Figure 6, Constrained-HIDA learns better discriminative features compared to U-HIDA. In the absence of constraints, U-HIDA tends to flip classes, for example, many target samples of the crop class are matched with the river class, a lot of forest class samples are matched with pasture etc. In contrast, Constrained-HIDA better matches classes and the spread between the domains is reduced such that the overlap is more consistent, explaining the increase in performance observed in Table 2.

Interactive supervision can further reduce the need for constraints. If constraints are manually created with prior knowledge, on samples representing classes that are known to be problematic, fewer constraints can be more effective. By identifying and adding constraints to a certain number of target samples that are misclassified by unsupervised HIDA in the R → E case, 8 such constraints are sufficient for Constrained-HIDA to achieve an accuracy of 40.92%, and 80 gives 55.36%, which is 15% better than when using the same number of randomly chosen constraints, and almost 7% better than when using 160 randomly chosen constraints. This means that number of constraints can be more than halved by carefully choosing them without affecting performance. It should be noted, however, that in these experiments the ratio of must-link and cannot-link constraints is 1 : 1. Still, these initial results show that carefully chosen constraints can provide strong results with very little supervision and that interactive supervision is a very interesting future research direction.

Conclusions

This article has proposed a novel approach to heterogeneous image domain adaptation using constraints named Constrained-HIDA. To the best of our knowledge, this is the first such method using constraints instead of labels in a semisupervised setting. The results show that with a very small number of constraints, Constrained-HIDA strongly outperforms UDA methods, and has comparable results with SSDA methods, even outperforming them when using an equivalent amount of information. This shows that replacing labels with constraints could reduce the need for supervised information in the target domain and could facilitate the job of annotating experts for whom providing constraints might be easier and more natural than providing hard labels.

In the future, Constrained-HIDA could be further improved by introducing pseudo-labels or pseudo-constraints, with e.g. constrained clustering; this could enrich the information about the target domain. The prospect of interactive learning is another interesting direction, allowing the user to put constraints on the examples misclassified by the model, in an iterative manner, could additionally decrease the number of constraints needed. The method could also be evaluated in homogeneous DA, on domains coming from the same input space, but with a huge domain shift.

Fig. 1 :

 1 Fig. 1: Different sensors in remote sensing. Images taken from Maxar Open Data Program, Sentinel-1, WorldView-2, EuroSAT and Indian Pines datasets.

Fig. 2 :

 2 Fig. 2: Overview of the proposed method. Features of the labelled source domain samples are shown in blue, with triangles and squares representing different classes, features of the unlabelled target domain samples are shown as red circles. Must-link constraints force samples to move towards each other (green arrows), and cannot-link constraints force samples to move apart (orange arrow).

Fig. 3 :

 3 Fig. 3: Examples of chosen corresponding classes from RESISC45 and EuroSAT datasets. For EuroSAT, the RGB version of the dataset is shown.

Fig. 4 :

 4 Fig. 4: Examples of issues that can arise during transfer learning between RE-SISC45 and EuroSAT. Green arrows show which samples should be aligned, and red arrows show which samples tend to be aligned, but should not.

Fig. 5 :

 5 Fig. 5: The architecture of the proposed Constrained-HIDA model, specifically used for the case when the source dataset is RESISC45 and the target dataset is EuroSAT.

Fig. 6 :

 6 Fig. 6: PaCMAP visualisation of U-HIDA and Constrained-HIDA features in the R → E case.

Table 1 :

 1 Characteristics of NWPU-RESISC45 and EuroSAT datasets.

	Name Source Image Size # Patches Classes Resolution
	RESISC45 Aerial 256 × 256 × 3	31,500	45	0.2 m-30 m
	EuroSAT Satellite 64 × 64 × 13	27,000	10	10 m
	River	Forest	Rectangular Farmland	Dense Residential	Industrial Area	Freeway	Lake	Meadow
	RESISC45							
	EuroSAT							
	River	Forest	Crop	Residential	Industrial	Highway	Sealake	Pasture

Table 2 :

 2 Accuracy of the proposed Constrained-HIDA model with different numbers of constraints, UDA methods are shown as lower baselines and SSDA methods are shown as upper baselines. Standard deviations are shown in parentheses.

It is not clear in the original article[START_REF] Voreiter | A Cycle GAN approach for heterogeneous domain adaptation in land use classification[END_REF] if the method was evaluated on the same or different numbers of channels.

https://github.com/mihailoobrenovic/Constrained-HIDA
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