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Abstract. In this text, we wish to provide the reader with a short guide to recent works on
the theory of dilatations in Commutative Algebra and Algebraic Geometry. These works fall
naturally into two categories: one emphasises foundational and theoretical aspects and the other
applications to existing theories.
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Introduction

What is the concept of algebraic dilatations about ?

Dilatation of rings is a basic construction of commutative algebra, like localization or tensor
product. It can be globalized so that it also make sense on schemes or algebraic spaces. In fact
dilatations generalize localizations.

Let A be a ring and let S be a multiplicative subset of A. Recall that the localization S−1A
is an A-algebra such that for any A-algebra A→ B such that the image of s is invertible for any
s ∈ S, then A→ B factors through A→ S−1A. Intuitively, S−1A is the A-algebra obtained from
A adding all fractions a

s with a ∈ A and s ∈ S. Formally, S−1A is made of classes of fractions
a
s where a ∈ A and s ∈ S (two representative a

s and b
t are identified if atr = bsr for some

r ∈ S), addition and multiplication are given by usual formulas. Now let us give for any element
s ∈ S an ideal Ms of A containing s. The dilatation of A relatively to the data S, {Ms}s∈S is an
A-algebra A′ obtained intuitively by adding to A only the fractions m

s with s ∈ S and m ∈Ms.
The dilatation A′ satisfies that for any s ∈ S, we have sA′ = MsA

′ (intuitively any m ∈ Ms

belongs to sA′, i.e. becomes a multiple of s, so that we have an element m
s such that m = sms ).

As a consequence of the construction, the elements s ∈ S become non-zero-divisor in A′ so that
m
s is well-defined (i.e. unique). It turns out that it is convenient, with dilatations of schemes in
mind, to make a bit more flexible the above framework, namely to remove the conditions that S
is multiplicative and that s ∈Ms, so we use the following definition.

Definition. Let A be a ring. Let I be an index set. A multi-center in A indexed by I is a set
of pairs {[Mi, ai]}i∈I where for each i, Mi is an ideal of A and ai is an element of A.

To each multi-center {[Mi, ai]}i∈I , one has the dilatation A[{Mi
ai
}i∈I ], it is an A-algebra. We

will define and study in details dilatations of rings in Section 1, in particular we will state formally
the universal property they enjoy. We will also see that A[{Mi

ai
}i∈I ] is generated, as A-algebra,

by {Mi
ai
}i∈I . We will also see that if Mi = A for all i, then A[{Mi

ai
}i∈I ] = S−1A where S is the

multiplicative subset generated by {ai}i∈I . Reciprocally, we will see that any sub-A-algebra of a
localization S−1A for a certain S is isomorphic to a dilatation of A.

Dilatations of schemes and algebraic spaces are obtained from dilatations of rings via glueing.
We introduce the following definition.

Definition. Let X be a scheme. Let I be an index set. A multi-center in A indexed by I is a
set of pairs {[Yi, Di]}i∈I such that Yi and Di are closed subschemes for each i and such that
locally, all Di are principal for i ∈ I.

Associated to each multi-center, one has the dilatation Bl
{Di
Yi

}
i∈IX, it is a scheme endowed

with a canonical affine morphism f : Bl
{Di
Yi

}
i∈IX → X. It satisfies, in a universal way, that

f−1(Di) is a cartier divisor (i.e. is locally defined by a non-zero-divisor) and that f−1(Di) =
f−1(Yi) for all i ∈ I. If #I = 1, we use the terminology mono-centered dilatation. We will study
several facets of this construction and show that it enjoys many wonderfull properties in Sections
2 and 3.

Where does this construction come from ?

As we saw in the previous section, dilatations are a basic construction which can be easily
encountered in specific situations. As a consequence it was used for a very long time. As the
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reader may well know, the theory of dilatations has deep and distinguished roots, even though
not formulated in the language which we use. Right from the start, we warn the reader that we
do not mean to, and probably could not, present a comprehensive historical account. As soon
as Cremona and Bertini started using quadratic transformations (or blowups) in the framework
of algebraic geometry over fields, “substitutions” of the form x′ = x and y′ = y/x started being
made by algebraic geometers, see for example equation (8) in [No1884, Section 11] and Noether’s
acknowledgement, at the start of [No1884, Section 12], that these manipulations come from
Cremona’s point of view. Examples of dilatations appear frequently in some works of Zariski and
Abhyankar, cf. [AZ55, Definition, p. 86] and [Za43, p499 proof of Th.4, case (b)]. Other forerunner
examples of dilatations play a central role in several independent and unrelated works later, cf.
[Da67], [Ner64, Section 25] and [Ar69, Section 4]. As far as we know, the terminology dilatations
emerged in [BLR90, §3.2], where a section is devoted to study dilatations of schemes over discrete
valuation rings systematically. In the context of schemes over a discrete valuation ring, we draw
the reader’s attention to [Ana73], [WW80] and [PY06]. The paper [KZ99] studies dilatations
(under the name affine modifications) systematically in the framework of algebraic geometry over
fields. Over two-dimensional base schemes dilatations also appear in [PZ13, p. 175]. Set aside
localizations, mono-centered dilatations have been the main focus of mathematicians in the past.
However, in the context of group schemes over discrete valuation rings, examples of multi-centered
dilatations of rings and schemes that are not localizations or mono-centered dilatations appeared
and were used in [SGA3, Exp. VIB Ex. 13.3], [PY06] and [DHdS18]. In recent times, the authors
of [Du05], [MRR20] and [Ma23d] have set out to accommodate all these constructions in a larger
and unified frame, namely for arbitrary schemes and algebraic spaces and arbitrary multi-center.
The paper [MRR20] introduces dilatations of arbitrary schemes in the mono-centered case and
provides a systematic treatment of mono-centered dilatations of general schemes. An equivalent
definition of mono-centered dilatations of general schemes, under the name affine modifications,
was introduced earlier in [Du05, Définition 2.9] under few assumptions. The paper [Ma23d]
introduces and studies dilatations of arbitrary rings, schemes and algebraic spaces for arbitrary
multi-centers. Allowing multi-centers also leads naturally to the formulation of combinatorial
isomorphisms on dilatations and gives birth to refined universal properties. Nevertheless, the
mono-centered case remains a fundamental case that is frequently the ’atom’ for some aspects
of the theory.

The first part (Sections 1-2-3) of this survey is devoted to theoretical and formal results on
dilatations of rings, schemes and group schemes following [Du05], [MRR20] and [Ma23d]. Sections
4-5-6-7 of the second part will deal with several concrete situations were specific kind of dilatations
play a role, also providing complementary inceptions on this construction. To finish, beyond
rings and schemes, the concept of dilatations makes sense for other structures and geometric
settings. Let us indicate some constructions already available. Some dilatation constructions in
the framework of complex analytic spaces were introduced in [Ka94], these are used and discussed
in Section 7. Dilatations also make sense for general algebraic spaces [Ma23d]. Similarly, for many
other structures than rings, dilatations also make sense (e.g. categories, monoids and semirings)
as noticed in [Ma23c]. It is possible that dilatations in other settings will be explored and find a
significant role since, at the end, these are a basic mathematical concept.

Terminology

Recall that dilatations have distinguished roots, as a consequence, several other terminologies
are used to call certains dilatations in literature. For examples the constructions named affine
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blowups, affine modifications, automatic blowups, formal blowups, Kaliman modifications, local-
izations and Néron blowups are examples of (eventually multi-centered) dilatations.

Some simple examples

We provided an intuition on dilatations of rings before. Let us now provide some simple
examples of dilatations of schemes. If S is a scheme, we denote by eS the trivial group scheme
over S, as scheme it is isomorphic to S. If G is a separated group scheme over S, we denote by
eG the trivial closed group scheme, eG is isomorphic to eS as group schemes over S.

(i) We consider, once given a prime number p, the multiplicative group scheme

G = Gm,Zp

over the ring Zp; its Hopf algebra is A = Zp[x, x−1] while the morphism ∆ : A→ A⊗Zp A
induced from multiplication G ×Zp G → G is defined by ∆(x) = x ⊗ x. Now, consider
the couple eG and G×Zp Zp/pr of closed subschemes of G for any r > 0 (pr denotes prZp).
These are cut out, respectively, by the ideals I = (x− 1) and (pr) of A.

(a) For any r > 0, the dilatation A′ of A centered at [eG, G×Zp Zp/pr], or at [I, (pr)], is the
sub-A-algebra of A[1/p] generated by all the elements p−rf , where f ∈ I. The dilatation
G′ := SpecA′ is a group scheme of finite type over Zp. The base change G′ ×Zp Zp/pr
is isomorphic to the additive group Ga over Zp/pr, while G′×Zp Qp is the multiplicative
group Gm over Qp. Furthermore, on the level of points, G′(Zp) = 1+ pr is a congruence
subgroup.

(b) The dilatation A′ of A centered at {[eG, G×Zp Zp/pr]}{r>0}, or at {[I, (pr)]}{r>0}, is the
sub-A-algebra of A[1/p] generated by all the elements p−rf , where f ∈ I and r > 0.
The dilatation G′ := SpecA′ is a group scheme over Zp, it is not of finite type. The
base change G′ ×Zp Zp/pr is isomorphic to the trivial group scheme over Zp/pr, while
G′ ×Zp Qp is the multiplicative group Gm over Qp. Furthermore, on the level of points,
G′(Zp) = {1}.

(ii) Let G be GL3 over Zp and let H be GL2 × eZp diagonally inside G and let eG ∼= (eZp)
3 be

the trivial closed subgroup of G. For any r > 0, let G ×Zp Zp/pr be the base change of G

to Z/prZ. The dilatation G′ = Bl
{G×ZpZp/p5

H ,
G⊗Zp/p2

eG

}
G is a group scheme over Zp. On the

level of points, we have

GL3(Zp) ⊃ G′(Zp) =

1 + p2 p2 p5

p2 1 + p2 p5

p5 p5 1 + p5


=


1 + a b e

c 1 + d f
g h 1 + k

∣∣∣∣∣∣a, b, c, d ∈ p2 e, f, g, h, k ∈ p5

 .

(iii) Let X = A1 = Spec(Z[T ]) be the affine line over Z, let 0 ⊂ A1 be the closed subscheme
defined by the ideal (T ) and let ∅ ⊂ A1 be the closed subscheme defined by the ideal
Z[T ]. Then the dilatation BlD∅ X identifies with the open subscheme Gm of A1, indeed

Z[T ][Z[T ]T ] ∼= Z[T, T−1]. This is an example of localization.

(iv) Let X = A2 = Spec(Z[A,B]) be the affine plane over Z, let D ⊂ A2 be the line defined by
the ideal (A) and let 0 ⊂ A2 be the origin defined by the ideal (A,B). Then BlD0 X identifies
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with Spec(Z[A,B,C]/(AC −B)). Indeed, one has an isomorphism (e.g. by Proposition 1.4)

Z[A,B][
(A,B)

A
] ∼= Z[A,B][

(B)

A
] ∼= Z[A,B,C]/AC = B.

The morphism BlD0 X → X is given by Z[A,B] → Z[A,B,C]/(AC − B), A,B 7→ A,B. At
the level of points

(
BlD0 X

)
(Z) is made of pairs (a, b) ∈ Z2 such that b is a multiple of a.

(v) More advanced examples of dilatations in contextual situations are available in the second
part of this survey.

What is the aim of this survey ?

Recall that we wish to provide the reader with a short guide to recent works on the theory of
dilatations. We do not mean to present a comprehensive account. We rather concentrate on the
contributions that ourselves were responsible for [Du05, DF18, DHdS18, Ma19t, HdS21, MRR20,
ADØ21, Ma23d] and those which were our starting points [Ar69, Ana73, And01, WW80, BLR90,
KZ99, Yu15, PY06, PZ13, HKØ16].

Part I is devoted to an exposition of general definitions and results around the concept
of algebraic dilatations introduced and proved in [MRR20] and [Ma23d]. Section 1 discusses
dilatations of commutative unital rings. Section 2 summarizes general results on dilatations of
schemes. Section 3 focuses on dilatations of group schemes.

Part II provides an overview on some applications of dilatations in various mathematical
contexts. In Section 4, we explain some recent applications of dilatations to the theory of affine
group schemes and their representation categories in the case where objects are defined over
a discrete valuation ring R. These were developed mainly in order to advance the study of
Tannakian categories defined over R and appearing in geometry, such as the case of group schemes
associated to D-modules [And01, dS09, DH18, DHdS18, HdS21] and principal bundles with finite
structure groups [HdS23]. After a brief introduction to Tannakian categories over R (Section 4.1),
we go on to explain how to filter these categories by smaller ones and produce in this way the
“Galois-Tannaka” group schemes 4.2. We show why Néron blowups are a fundamental tool for
studying these groups and explain what has been done so far in order to exhaust Galois-Tannaka
groups by means of Néron blowups, both in the case of mono-centered and multi-centered Néron
blowups (cf. Section 4.2 and Section 4.3). In Section 5, congruent isomorphisms, formulated
and stated using the language of dilatations, are discussed in relation with the Moy-Prasad
isomorphism, Bruhat-Tits buildings and representations of p-adic groups. Section 6 shows that
many level structures on moduli stacks of G-bundles are encoded in torsors under dilatations
and that this can be used to obtain integral models of shtukas. Section 7 discusses dilatations in
affine geometry and related progress in A1-homotopy theory.

All results stated in this paper are proved in indicated references. This survey is an expository
text and does not contain any new mathematical result. What is perhaps new is to summarize
some aspects of several independent works involving dilatations in a single text. We hope this
could be a source of inspiration for future works.

Some conventions and notations

(1) All rings are unital and commutative, unless otherwise mentioned.

(2) Let (M,+) be a monoid. A submonoid F is a face of M if whenever x+ y ∈ F , then both x
and y belong to F .
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(3) If R is a discrete valuation ring with field of fractions K, then, for each R-scheme, we call
X ⊗R K the generic fibre of X.

(4) If A is a ring, then A-mod is the category of finitely presented A-modules.

(5) If G is a group scheme over a noetherian ring R, or an abstract group, we denote by RepR(G)
the category of all R–modules of finite type affording a representation of G as explained in
[Ja03].

Part I. Algebraic dilatations

In this part, we introduce formally dilatations of rings and schemes. Locally, dilatations of
schemes will be studied through dilatations of rings.

1. Dilatations of rings

We summarily present basic results on dilatations of rings following the more general path given
in [Ma23d]. Let A be a ring. A center in A is a pair [M,a] consisting of an ideal M ⊂ A and an
element a ∈ A. A multi-center is a family of center indexed by some set. Let I be an index set
and let {[Mi, ai]}i∈I be a multi-center. For i ∈ I, we put Li = Mi + (ai), an ideal of A. Let NI
be the monoid

⊕
i∈I N. If ν = (ν1, . . . , νi, . . .) ∈ NI we put Lν = Lν11 · · ·L

νi
i · · · (product of ideals

of A) and aν = aν11 · · · a
νi
i · · · (product of elements of A). We also put aNI = {aν |ν ∈ NI}.

Definition and Proposition 1.1 [Ma23d]. The dilatation of A with multi-center {[Mi, ai]}i∈I
is the unital commutative ring A[

{
Mi
ai

}
i∈I ] defined as follows:

• The underlying set of A[
{
Mi
ai

}
i∈I ] is the set of equivalence classes of symbols m

aν where
ν ∈ NI and m ∈ Lν under the equivalence relation

m

aν
≡ p

aλ
⇔ ∃β ∈ NI such that maβ+λ = paβ+ν in A.

From now on, we abuse notation and denote a class by any of its representative m
aν if no confusion

is likely.

• The addition law is given by m
aν + p

aβ
= maβ+paν

aβ+ν .

• The multiplication law is given by m
aν ×

p
aβ

= mp
aν+β .

• The additive neutral element is 0
1 and the multiplicative neutral element is 1

1 .

From now on, we also use the notation A[Ma ] to denote A[
{
Mi
ai

}
i∈I ]. We have a canonical

morphism of rings A→ A[Ma ] given by a 7→ a
1 .

The element a
1 of A[Ma ] will be denoted by a if no confusion is likely.

Fact 1.2 [Ma23d]. (i) Let {Ni}i∈I be ideals in A such that Ni + (ai) = Li for all i ∈ I. Then
we have identifications of A-algebras A[

{
Mi
ai

}
i∈I ] = A[

{
Ni
ai

}
i∈I ] = A[

{
Li
ai

}
i∈I ].

(ii) Dilatations of rings generalize entirely localizations of rings. Indeed, let A be a ring and let
S be a multiplicative subset of A. Then S−1A = A[

{
A
s

}
s∈S ].

(iii) Any sub-A-algebra of a localization S−1A for a subset S ⊂ A can be obtained as a multi-
centered dilatation.
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(iv) Note that we did not used substraction to define dilatations of rings. In fact Definition 1.1
makes sense for arbitrary unital commutative semirings, cf. [Ma23d, §2] or more generally
for categories (e.g. monoids) cf. [Ma23c].

This construction enjoys the following properties, cf. [Ma23d, §2]. If #I = 1, most results
appear in [StP, Tag 052P].

Proposition 1.3 [Ma23d]. The following assertions hold.

(i) As A-algebra, A[Ma ] is generated by
{
Li
ai

}
i∈I . Since Li =Mi + (ai), this implies that A[Ma ]

is generated by
{
Mi
ai

}
i∈I .

(ii) If A is a domain and ai ̸= 0 for all i, then A[Ma ] is a domain.

(iii) If A is reduced, then A[Ma ] is reduced.

(iv) The following assertions are equivalent.

(a) There exists ν ∈ NI such that aν = 0 in A.
(b) The ring A[Ma ] equals to the zero ring.

(v) Let ν be in NI . The image of aν in A[Ma ] is a non-zero-divisor.

(vi) Let f : A→ B be a morphism of rings. Let {[Ni, bi]}i∈I be centers of B such that f(Mi) ⊂ Ni

and f(ai) = bi for all i ∈ I. Then we have a canonical morphism of A-algebras

ϕ : A[
{
Mi
ai

}
i∈I ]→ B[

{
Ni
bi

}
i∈I ] .

(vii) Let c be a non-zero-divisor element in A. Then c
1 is a non-zero-divisor in A[Ma ].

(viii) Let K ⊂ I put J = I \K. Then we have a canonical morphism of A-algebras

φ : A[
{
Mi
ai

}
i∈K ] −→ A[

{
Mi
ai

}
i∈I ].

Moreover

(a) if Mi ⊂ (ai) for all i ∈ J , then φ is surjective, and
(b) if ai is a non-zero-divisor in A for all i ∈ J , then φ is injective.

(ix) Let K ⊂ I. Then we have a canonical isomorphism of A[
{
Mi
ai

}
i∈K ]-algebras

A[
{
Mi
ai

}
i∈I ] = A[

{
Mi
ai

}
i∈K ][

{A[{Mi
ai

}
i∈I

]
Mj
1

aj
1

}
j∈I\K ],

where A[
{
Mi
ai

}
i∈I ]

Mj

1 is the ideal of A[
{
Mi
ai

}
i∈I ] generated by

Mj

1 ⊂ A[
{
Mi
ai

}
i∈I ].

(x) Assume that ai = aj =: b for all i, j ∈ I, then

A[
{
Mi
ai

}
i∈I ] = A[

∑
i∈I Mi

b ]

(xi) Let ν ∈ NI . We have LνA[Ma ] = aνA[Ma ].

(xii) (Universal property) If χ : A → B is a morphism of rings such that χ(ai) is a non-zero-
divisor and generates χ(Li)B for all i ∈ I, then there exists a unique morphism χ′ of
A-algebras A[

{
Mi
ai

}
i∈I ] → B. The morphism χ′ sends l

aν (ν ∈ NI , l ∈ Lν) to the unique
element b ∈ B such that χ(aν)b = χ(l).

(xiii) Assume that I = {1, . . . , k} is finite. Then we have a canonical identification of A-algebras

A[
{
Mi
ai

}
i∈I ] = A[

∑
i∈I(Mi·

∏
j∈I\{i} aj)

a1···ak ].

(xiv) Write I = colimJ⊂IJ as a filtered colimit of sets. We have a canonical identification of
A-algebras

A[
{
Mi
ai

}
i∈I ] = colimJ⊂IA[

{Mj

ai

}
i∈J ].
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(xv) Let f : A→ B be an A-algebra. PutNi = f(Mi)B and bi = f(ai) for i ∈ I. Then B[
{
Ni
bi

}
i∈I ]

is the quotient of B⊗AA[
{
Mi
ai

}
i∈I ] by the ideal Tb of elements annihilated by some element

in bNI := {bν |ν ∈ NI}. If moreover f : A → B is flat, then Tb = 0 and we have a canonical
isomorphism

B[{Ni
bi
}i∈I ] = B ⊗A A[{Mi

ai
}i∈I ].

(xvi) Let f : R → A be a morphism of rings and let {ri}i∈I ⊂ R. Let R′ = R[
{
R
ri

}
i∈I ]; this

is a localization of R and hence R → R′ is a flat morphism. Let A′ = A ⊗R R′, M ′
i =

Mi ⊗R R′ ⊂ A′. Then, if ai := f(ri), the dilatation A[
{
Mi
ai

}
i∈I ] is isomorphic to the A-

subalgebra of A′ = A⊗R R′ generated by {Mi ⊗ r−1
i }i∈I and A.

We finish with an important description of dilatations in a particular case, cf. [Ma23d, Propo-
sition 5.5] and [StP, Tag 0BIQ].

Proposition 1.4. Let A be a ring. Let a, g1, . . . , gn be a H1-regular sequence in A (cf. [StP,
Tag 062E] for H1-regularity). Let d1, . . . , dn be positive integers. The dilatation algebra identifies
with a quotient of a polynomial algebra as follows

A[ (g1)
ad1

, . . . , (gn)
adn

] = A[x1, . . . , xn]/(g1 − ad1x1, . . . , gn − adnxn).

2. Dilatations of schemes

This section is an introduction to dilatations of schemes, the main references are [MRR20] and
[Ma23d]. Dilatations of schemes involve operations on closed subschemes that we recall at the
beginning of this section. We suggest readers to be familiar with §2.1 before reading other sub-
sections of Section 2. Note that [Ma23d] deals with general algebraic spaces, in fact most results
of Section 2 extend to this setting.

2.1 Definitions

Let X be a scheme. Let Clo(X) be the set of closed subschemes of X. Recall that Clo(X)
corresponds to quasi-coherent ideals of OX . Let IQCoh(OX) denote the set of quasi-coherent
ideals of OX . It is clear that (IQCoh(OX),+,×, 0,OX) is a semiring. So we obtain a semiring
structure on Clo(X), usually denoted by (Clo(X),∩,+, X, ∅). For clarity, we now recall directly
operations on Clo(X). Given two closed subschemes Y1, Y2 given by ideals J1,J2, their sum
Y1+Y2 is defined as the closed subscheme given by the ideal J1J2. Moreover, if n ∈ N, we denote
by nY1 the n-th multiple of Y1. The set of locally principal closed subschemes of X (cf. [StP,
Tag 01WR]), denoted Pri(X), forms a submonoid of (Clo(X),+). Effective Cartier divisors of
X [StP, Tag 01WR], denoted Car(X), form a submonoid of (Pri(X),+). Note that Car(X) is
a face of Pri(X). We have an other monoid structure on Clo(X) given by intersection, this law
is denoted ∩. The operation ∩ corresponds to the sum of quasi-coherent sheaves of ideals . The
set Clo(X) endowed with ∩,+ is a semiring whose neutral element for + is ∅ and whose neutral
element for ∩ is X. Let C ∈ Car(X), a non-zero-divisor (for +) in the semiring Clo(X). Let
Y, Y ′ ∈ Clo(X). If C + Y is a closed subscheme of C + Y ′, then Y is a closed subscheme of Y ′.
Moreover if C + Y = C + Y ′, then Y = Y ′. Let f : X ′ → X be a morphism of schemes, then f
induces a morphism of semirings Clo(f) : Clo(X) → Clo(X ′), Y 7→ Y ×X X ′, moreover Clo(f)
restricted to (Pri(X),+) factors through (Pri(X ′),+), this morphism of monoids is denoted
Pri(f). In general the image of the map Pri(f)|Car(X) is not included in Car(X ′). Let Y1, Y2 ∈
Clo(X), we write Y1 ⊂ Y2 if Y1 is a closed subscheme of Y2. We obtain a poset (Clo(X),⊂).
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Let Y1, Y2, Y3 ∈ Clo(X), if Y1 ⊂ Y2 and Y1 ⊂ Y3 then Y1 ⊂ Y2 ∩ Y3. Let Y1, Y2 ∈ Clo(X), then
(Y1 ∩ Y2) ⊂ Y1 and Y1 ⊂ (Y1 + Y2). Finally, if Y = {Ye}e∈E is a subset of Clo(X) and if ν ∈ NE ,
we put Y ν = {νeYe}e∈E and if moreover ν ∈ NE , we put νY =

∑
e∈E νeYe.

Definition 2.1 [MRR20, §2.3] [Ma23d]. Let D = {Di}i∈I be a subset of Clo(X). Let SchD-reg
X

be the full subcategory of schemes f : T → X over X such that T ×X Di is an effective Cartier
divisor of T for each i.

If T ′ → T is flat and T → X is an object in SchD-reg
X , so is the composition T ′ → T → X. In

particular, the category SchD-reg
X can be equipped with the fpqc/fppf/étale/Zariski Grothendieck

topology so that the notion of sheaves is well-defined.

Fact 2.2 [Ma23d]. Let D = {Di}i∈I be a subset of Clo(X).

(i) Let f : T → X be an object in SchD-reg
X . Then for any ν ∈ NI , the scheme T ×X νD is an

effective Cartier divisor of T , namely ν(T ×X D).

(ii) Assume that #I is finite, then SchD-reg
X equals Sch

∑
i∈I Di

X .

Definition 2.3 [Ma23d]. A multi-center in X is a set {[Yi, Di]}i∈I such that

(i) Yi and Di belong to Clo(X),

(ii) there exists an affine open covering {Uγ → X}γ∈Γ of X such that Di|Uγ is principal for all
i ∈ I and γ ∈ Γ (in particular Di belongs to Pri(X) for all i).

In other words a multi-center {[Yi, Di]}i∈I is a set of pairs of closed subschemes such that locally
each Di is principal.

Remark 2.4. Let {Yi, Di}i∈I such that Yi ∈ Clo(X) and Di ∈ Pri(X) for any i ∈ I. Assume
that I is finite, then {[Yi, Di]}i∈I is a multi-center in X, i.e. the second condition in Definition
2.3 is satisfied.

We now fix a multi-center {[Yi, Di]}i∈I in X. Denote by Mi, respectively Ji, the quasi-
coherent sheaf of ideals of OX defining Yi, respectively Di. We put Zi = Yi∩Di and Li =Mi+Ji
so that Zi is defined by Li. We put Y = {Yi}i∈I ,D = {Di}i∈I and Z = {Zi}i∈I . We now introduce
dilatations OX -algebras by glueing.

Definition and Proposition 2.5. The dilatation of OX with multi-center {[Mi,Ji]}i∈I is the
quasi-coherent OX -algebra OX

[{
Mi
Ji

}
i∈I

]
obtained by glueing as follows. The quasi-coherent

OX -algebra OX
[{

Mi
Ji

}
i∈I

]
is characterized by the fact that its restriction, on any open sub-

scheme U ⊂ X such that U is an affine scheme and each Di is principal on U and generated by
aiU , is given by (

OX
[{Mi

Ji

}
i∈I

])∣∣
U

=
˜

Γ(U,OX)
[{Γ(U,Mi)

aiU

}
i∈I

]
where ˜ is the associated sheaf of algebras on U .

Definition 2.6 [Ma23d]. The dilatation of X with multi-center {[Yi, Di]}i∈I is the X-affine
scheme

BlDY X
def
= SpecX

(
OX
[{Mi

Ji

}
i∈I

])
.

The terminologies affine blowups and affine modifications are also used.
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Remark 2.7. In the mono-centered case, this definition is the one of [MRR20]. If moreover D
is a Cartier divisor, one has another equivalent definition (cf. Proposition 2.14) that goes back
to [KZ99] and [Du05].

Remark 2.8. We always have BlDY X = BlDZX.

Notation 2.9. We will also use the notation Bl
{Di

Yi

}
i∈IX and Bl

{Di}i∈I

{Yi}i∈I
X to denote BlDY X. If

I = {i} is a singleton we also use the notation BlDi
Yi
X. If K ⊂ I, we sometimes use the notation

Bl
{Di}i∈K ,{Di}i∈I\K
{Yi}i∈K ,{Yi}i∈I\K

X. If I = {1, . . . , k}, we use the notation BlD1,...,Dk
Y1,...,Yk

X. Etc.

Definition 2.10. We say that a morphism f : X ′ → X is a dilatation morphism if f is equal to

Bl
{Di

Yi

}
i∈IX → X for some multi-center {[Yi, Di]}i∈I .

Fact 2.11. [Du05, Ma23d] The dilatation morphism Bl
{Di

∅
}
i∈IX → X is an open immersion.

In other words, if Yi is the empty closed subscheme defined by the ideal OX for all i ∈ I, then
BlDY X identifies with an open subscheme of X. In this case, we say that Bl

{Di

∅
}
i∈IX → X is a

localization.

2.2 Exceptional divisors

We proceed with the notation from § 2.1.

Proposition 2.12 [MRR20, Ma23d]. As closed subschemes of BlDY X, one has, for all ν ∈ NI ,

BlDY X ×X νZ = BlDY X ×X νD,

which is an effective Cartier divisor on BlDY X.

2.3 Relation to affine projecting cone

We proceed with the notation from § 2.1 and assume that {Di}i∈I belong to Car(X). In this
case, we can also realize BlDY X as a closed subscheme of the multi-centered affine projecting cone
associated to X,Z and D.

Definition 2.13. The affine projecting cone OX-algebra with multi-center {[Zi = V (Li), Di =
V (Ji)]}i∈I is

CJ
LOX

def
=
⊕
ν∈NI

Lν ⊗ J −ν .

The affine projecting cone of X with multi-center {[Zi, Di]}i∈I is

CDZX
def
= Spec

(
CJ
LOX

)
.

Proposition 2.14 [KZ99, Du05, MRR20, Ma23d]. The dilatation BlDZX is the closed subscheme
of the affine projecting cone CDZX defined by the equations {ϱi − 1}i∈I , where for all i ∈ I,
ϱi ∈ CJ

LOX is the image of 1 ∈ OX under the map

OX ∼= Ji ⊗ J −1
i ⊂ Li ⊗ J −1

i ⊂ CJ
LOX .

2.4 Description of the exceptional divisor in the mono-centered case

We proceed with the notation from § 2.1 and assume I = {i} is a singleton and we ommit the
subscripts i in notation. We saw in Lemma 2.12 that the preimage of the center BlDZX ×X Z =
BlDZX ×X D is an effective Cartier divisor in BlDZX. In order to describe it following [MRR20],

10
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as before we denote by L and J the sheaves of ideals of Z and D in OX . Also we let CZ/D =
L/(L2 + J ) and NZ/D = C∨Z/D be the conormal and normal sheaves of Z in D.

Proposition 2.15 [MRR20, Proposition 2.9]. Assume that X is a scheme. Assume that D ⊂ X
is an effective Cartier divisor, and Z ⊂ D is a regular immersion. Write JZ := J |Z .

(1) The exceptional divisor BlDZX ×X Z → Z is an affine bundle (i.e. a torsor under a vector
bundle), Zariski locally over Z isomorphic to V(CZ/D ⊗ J −1

Z )→ Z.

(2) If H1(Z,NZ/D ⊗ JZ) = 0 (for example if Z is affine), then BlDZX ×X Z → Z is globally

isomorphic to V(CZ/D ⊗ J −1
Z )→ Z.

(3) If Z is a transversal intersection in the sense that there is a cartesian square of closed
subschemes whose vertical maps are regular immersions

W X

Z D

□

then BlDZX ×X Z → Z is globally and canonically isomorphic to V(CZ/D ⊗ J −1
Z )→ Z.

2.5 Universal property

We proceed with the notation from § 2.1. As BlDY X → X defines an object in SchD-reg
X by

Proposition 2.12, the contravariant functor

SchD-reg
X → Sets, (T → X) 7→ HomX-Schemes

(
T,BlDY X

)
(2.1)

together with idBlDY X
determines BlDY X → X uniquely up to unique isomorphism. The next

proposition gives the universal property of dilatations.

Proposition 2.16 [MRR20, Ma23d]. The dilatation BlDY X → X represents the contravariant
functor SchD-reg

X → Sets given by

(f : T → X) 7−→

{
{∗}, if f |T×XDi factors through Yi ⊂ X for i ∈ I;
∅, else.

(2.2)

Proposition 2.17 [Ma23d]. Put f : BlDY X → X. Then the morphism of monoids Clo(f)|Car(X)

factors through Car(BlDY X). In other words, any effective Cartier divisor C ⊂ X is defined for
f , i.e. the fiber product C ×X BlDY X ⊂ BlDY X is an effective cartier divisor.

2.6 Dilatations or affine blowups

We proceed with the notation from § 2.1 and assume I = {i} is a singleton and we ommit the
subscripts i in notation.

Proposition 2.18 [MRR20]. The dilatation BlDZX is the open subscheme of the blowup BlZX =
Proj(BlIOX) defined by the complement of V+(J ) where J is the sheaf of ideals generated by
J ⊂ I, where I is the degree 1 part of BlIOX .

For this reason dilatations are also called affine blowups. A similar description holds in the
multi-centered case, cf [Ma23d].

11
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2.7 Combinatorial and arithmetic relations

We proceed with the notation from § 2.1.

Proposition 2.19 [Ma23d]. Let J be a subset of I and put K = I \ J . Then

Bl
{Di

Yi

}
i∈IX = Bl

{Dk×XBl
{Di

Yi

}
i∈J

X

Yk×XBl
{Di

Yi

}
i∈J

X

}
k∈K

Bl
{Di

Yi

}
i∈JX.

In particular, there is a unique X-morphism

Bl
{Di

Yi

}
i∈IX → Bl

{Di

Yi

}
i∈JX.

Proposition 2.20 [Ma23d]. Write I = colimJ⊂IJ as a filtered colimit of sets where transition
maps are given by inclusions of subsets. We have a canonical identification

Bl
{Di

Yi

}
i∈IX = limJ⊂I Bl

{Di

Yi

}
i∈JX.

Proposition 2.21 [Ma23d]. Assume that #I = k is finite. We fix an arbitrary bijection I =
{1, . . . , k}. We have a canonical isomorphism of X-schemes

Bl
{Di}i∈I

{Yi}i∈I
X ∼= Bl

(Bl··· )×XDk

(Bl··· )×XYk

(
· · ·Bl(Bl··· )×XD3

(Bl··· )×XY3

(
Bl

(Bl
D1
Y1
X)×XD2

(Bl
D1
Y1
X)×XY2

(
BlD1
Y1
X
)))

.

Proposition 2.22 [Ma23d]. Assume that #I = k is finite. We fix an arbitrary bijection I =
{1, . . . , k}. We have a canonical isomorphism of X-schemes

Bl
{Di}i∈I

{Yi}i∈I
X ∼= BlD1+...+Dk⋂

i∈I(Yi+D1+...+Di−1+Di+1+...+Dk)
X.

2.8 Functoriality

We proceed with the notation from § 2.1. Let X ′ and {[Y ′
i , D

′
i]}i∈I be another datum as in § 2.1.

As usual, put Z ′
i = Y ′

i ∩ D′
i. A morphism f : X ′ → X such that, for all i ∈ I, its restriction

to D′
i (resp. Z

′
i) factors through Di (resp. Zi), and such that f−1(Di) = D′

i, induces a unique

morphism BlD
′

Y ′X ′ → BlDY X such that the following diagram of schemes commutes

BlD
′

Y ′X ′ BlDY X

X ′ X.

2.9 Base change

We proceed with the notation from § 2.1. Let X ′ → X be a map of schemes, and denote by
Y ′
i , Z

′
i, D

′
i ⊂ X ′ the preimage of Yi, Zi, Di ⊂ X. Then D′

i ⊂ X ′ is locally principal for any i

so that the dilatation BlD
′

Y ′X ′ → X ′ is well-defined. By § 2.8 there is a canonical morphism of
X ′-schemes

BlD
′

Y ′X ′ −→ BlDY X ×X X ′. (2.3)

Lemma 2.23 [MRR20, Ma23d]. If BlDY X ×X X ′ → X ′ is an object of SchD-reg
X′ , then (2.3) is an

isomorphism.

Corollary 2.24 [MRR20, Ma23d]. If the morphism X ′ → X is flat and satisfies a property P
which is stable under base change, then BlD

′
Y ′X ′ → BlDY X is flat and satisfies P.

12
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2.10 Iterated multi-centered dilatations

We proceed with the notation from § 2.1. Let ν, θ ∈ NI such that θ ⩽ ν, i.e. θi ⩽ νi for all i ∈ I.

Proposition 2.25 [Ma23d]. There is a unique X-morphism

φν,θ : Bl
Dν

Y X −→ BlD
θ

Y X.

Assume now moreover that ν, θ ∈ NI ⊂ NI .We will prove that, under some assumptions, φν,θ
is a dilatation morphism with explicit descriptions. We need the following observation.

Proposition 2.26 [MRR20, Ma23d]. Assume that we have a commutative diagram of schemes

B BlDY X

X

f ′

f

where the right-hand side morphism is the dilatation map. Assume that f is a closed immersion.
Then f ′ is a closed immersion.

We now assume that Zi ⊂ Yi is a Cartier divisor inclusion for all i ∈ I. Let Di be the canonical
diagram of closed immersions

Yi BlνiDi
Yi

X

Zi Di

□

obtained by Proposition 2.26. Let fi be the canonical morphism (e.g. cf. 2.19 or 2.25)

BlD
ν

Y X → BlνiDi
Yi

X.

We denote by Yi ×Bl
νiDi
Yi

X
BlD

ν

Y X the fiber product obtained via the arrows given by fi and Di.

We use similarly the notation Di ×Bl
νiDi
Yi

X
BlD

ν

Y X.

Proposition 2.27 [PY06, §7.2] [MRR20, Ma23d]. Recall that θ ⩽ ν. Put γ = ν − θ. Put
K = {i ∈ I|γi > 0}. We have an identification

BlD
ν

Y X = Bl

{γiDi×
Bl

θiDi
Yi

X
BlD

θ

Y X}i∈K

{Yi×
Bl

θiDi
Yi

X
BlD

θ
Y X}i∈K

BlD
θ

Y X.

In particular the unique X-morphism

φν,θ : Bl
Dν

Y X −→ BlD
θ

Y X

of Proposition 2.25 is a dilatation map.

It is now natural to introduce the following terminology.

Definition 2.28. For any ν ∈ Nk, let us consider

BlD
ν

Y X = Bl
{νiDi

Yi

}
i∈IX

and call it the ν-th iterated dilatation of X with multi-center {Yi, Di}i∈I .

13
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2.11 Some flatness and smoothness results

We proceed with the notation from § 2.1 and assume I = {i} is a singleton and we ommit the
subscripts i in notation. We assume further that there exists a scheme S under X together with
a locally principal closed subscheme S0 ⊂ S fitting into a commutative diagram of schemes

Z D X

S0 S,

(2.4)

where the square is cartesian, that is D → X0 := X ×S S0 is an isomorphism.

Proposition 2.29 [MRR20]. Assume that S0 is an effective Cartier divisor on S.

(1) If Z ⊂ D is regular, then BlDZX → X is of finite presentation.

(2) If Z ⊂ D is regular, the fibers of BlDZX ×S S0 → S0 are connected (resp. irreducible,
geometrically connected, geometrically irreducible) if and only if the fibers of Z → S0 are.

(3) If X → S is flat and if moreover one of the following holds:

(i) Z ⊂ D is regular, Z → S0 is flat and S,X are locally noetherian,
(ii) Z ⊂ D is regular, Z → S0 is flat and X → S is locally of finite presentation,
(iii) the local rings of S are valuation rings,

then BlDZX → S is flat.

(4) If both X → S, Z → S0 are smooth, then BlDZX → S is smooth.

Remark 2.30. Complementary smoothness and flatness results for multi-centered dilatations
can be found in [Ma23d, §6].

2.12 Remarks

Dilatations commute with algebraic attractors [Ma23a, Proposition 13.1].

3. Dilatations of group schemes or Néron blowups

One of the key properties allowed by dilatations is that it preserves the structure of group schemes
in many cases. Dilatations of group schemes are also called Néron blowups and we also often use
this terminology.

3.1 Definitions of multi-centered Néron blowups

Let S be a scheme and G → S a group scheme. Let C = {Ci}i∈I be a set of locally principal
closed subschemes of S. Put G|Ci = G ×S Ci and G|C = {G|Ci}. Let Hi ⊂ G|Ci be a closed
subgroup scheme over Ci for all i ∈ I and let H = {Hi}. The multi-centered dilatation

G := Bl
G|C
H G −→ G

is called the Néron blowup of G with multi-center H,G|C . We also use the notation BlCHG to
denote G. In the case I has a single element, we shall refer to BlCHG as mono-centred Néron
blowups By Proposition 2.12 the structural morphism G → S defines an object in SchC-reg

S .

Proposition 3.1 [MRR20, Ma23d]. Let G → S be the above multi-centered Néron blowup.

14



A survey on algebraic dilatations

(1) The S-scheme G represents the contravariant functor SchC-reg
S → Sets

T 7−→
{
T → G :

T |Ci → G|Ci factors through
Hi ⊂ G|Ci for all i

}
.

(2) Let T → S be an object in SchC-reg
S , then as subsets of G(T )

G(T ) =
⋂
i∈I

(
BlCi
Hi
G
)
(T ).

(3) The map G → G is affine. Its restriction over Ci factors as Gi → Hi ⊂ G|Ci for all i

(4) If the Néron blowup G → S is flat, then it is equipped with the structure of a group scheme
such that G → G is a morphism of S-group schemes.

Remark 3.2. We saw that in favorable cases, dilatations preserve group scheme structures. In
fact dilatations preserve similarly monoid scheme structures and Lie algebra schemes structures,
or more generally structures defined by products, cf. [Ma23d, §7] for details.

Remark 3.3. Dilatations commute with the formation of Lie algebra schemes in a natural sense

Lie(BlG|C
H G) ∼= Bl

{Lie(G)×SCi

Lie(Hi)

}
i∈ILie(G)

cf. [Ma23d, §7] for precise flatness assumptions.

3.2 Mono-centered Néron blowups

We proceed with the notation from §3.1 and now deal with the mono-centered case, so now k = 1.
We put S0 = C1 and H = H1. We also put G0 = G×S S0, H0 = H ×S S0 and K0 = K ×S S0.
Proposition 3.4 [Ma23d]. Assume that S0 is a Cartier divisor in S and G → S is flat. Let
η : K → G be a morphism of group schemes over S such that K → S is flat. Assume that H ⊂ G
is a closed subgroup scheme over S such that H → S is flat and BlS0

H G → S is flat (and in
particular a group scheme). Assume that K0 commutes with H0 in the sense that the morphism
K0×S0H0 → G0, (k, h) 7→ η(k)hη(k)−1 equals the composition morphismK0×S0H0 → H0 ⊂ G0,
(k, h) 7→ h. Then K normalizes BlS0

H G, more precisely the solid composition map

K ×S BlS0
H G K ×S G G

BlS0
H G

Id×Bl k,g 7→η(k)gη(k)−1

Bl

factors uniquely through BlS0
H G.

Theorem 3.5 [WW80, MRR20]. Assume that G → S is flat, locally finitely presented and
H → S0 is flat, regularly immersed in G0. Let G → G be the dilatation BlS0

H G with exceptional
divisor G0 := G ×S S0. Let J be the ideal sheaf of G0 in G and JH := J |H . Let V be the
restriction of the normal bundle V(CH/G0

⊗ J −1
H )→ H along the unit section e0 : S0 → H.

(1) Locally over S0, there is an exact sequence of S0-group schemes 1→ V → G0 → H → 1.

(2) Assume given a lifting of H to a flat S-subgroup scheme of G. Then there is globally an
exact, canonically split sequence 1→ V → G0 → H → 1.

(3) If G → S is smooth, separated and G → G is the dilatation of the unit section of G, there
is a canonical isomorphism of smooth S0-group schemes G0

∼−→ Lie(G0/S0)⊗N−1
S0/S

where
NS0/S is the normal bundle of S0 in S.
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Remark 3.6. In the situation of Theorem 3.5 (2), the group H acts by conjugation on V =
V(e∗0CH/G0

⊗ J −1
S0

). It is expected that this additive action is linear, and is in fact none other
than the “adjoint” representation of H on its normal bundle as in [SGA3, Exp. I, Prop. 6.8.6].
When the base scheme is the spectrum of a discrete valuation ring this is proved in [DHdS18,
Prop. 2.7].

Assume now that j : S0 ↪→ S is an effective Cartier divisor, that G → S is a flat, locally
finitely presented group scheme and that H ⊂ G0 := G×S S0 is a flat, locally finitely presented
closed S0-subgroup scheme. In this context, there is another viewpoint on the dilatation G of G
in H, namely as the kernel of a certain map of syntomic sheaves.

To explain this, let f : G0 → G0/H be the morphism to the fppf quotient sheaf, which by
Artin’s theorem ([Ar74, Cor. 6.3] and [StP, 04S6]) is representable by an algebraic space. By the
structure theorem for algebraic group schemes (see [SGA3, Exp. VIIB, Cor. 5.5.1]) the morphisms
G → S and H → S0 are syntomic. Since f : G0 → G0/H makes G0 an H-torsor, it follows that
f is syntomic also.

Proposition 3.7 [MRR20, Lemma 3.8]. Let Ssyn be the small syntomic site of S. Let η : G →
j∗j

∗G be the adjunction map in the category of sheaves on Ssyn and consider the composition
v = (j∗f) ◦ η:

G j∗j
∗G = j∗G0 j∗(G0/H).

η j∗f

Then the dilatation G → G is the kernel of v. More precisely, we have an exact sequence of
sheaves of pointed sets in Ssyn:

1 G G j∗(G0/H) 1.v

If G → S and H → S0 are smooth, then the sequence is exact as a sequence of sheaves on the
small étale site of S.

As a corollary, one has the useful and typical following result.

Corollary 3.8. [MRR20] Let O be a ring and π ⊂ O an invertible ideal such that (O, π) is
a henselian pair. Let G be a smooth, separated O-group scheme and G → G the dilatation of
the trivial subgroup over O/π. If either O is local or G is affine, then the exact sequence of
Proposition 3.7 induces an exact sequence of groups:

1 −→ G(O) −→ G(O) −→ G(O/π) −→ 1.

Part II. Some applications

4. Models of group schemes, representation categories and Tannakian groups

In several mathematical theories, one finds the structure of a category with a tensor product,
and one of the main goals of categorical Tannakian theory is to realize the latter categories as
representations of group schemes. If we deal with categories over a field, and this is a somewhat
well-known area with [DM82] being a fundamental reference, dilatations have not played a role.
In the case we deal with categories which are linear over a discrete valuation ring, a Dedekind
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domain, or more complicated rings, the outputs are much scarcer and the main reference is the
beautiful, yet arid, monograph [S72]. But in this situation, dilatations have played a role.

Following [dS09], N. D. Duong and P. H. Hai [DH18] went into technical aspects of [S72] and
produced a more contemporaneous text to study tensor categories over Dedekind domain. This
prompted further study [DHdS18, HdS21]; in these papers, the authors begin to look at Néron
blowups (in the sense of Section 3) and the resulting categories systematically. It is also useful to
mention here the paper [CK10], where the idea of looking at representation categories of Néron
blowups already appears.

In this section we fix a discrete valuation ring R with uniformizer π, residue field k and
fraction field K. We put S = Spec(R) and Si = Spec(R/(πi+1)) for i ∈ N.

4.1 Group schemes from categories

Let T be a neutral Tannakian category over R in the sense of [DH18, Definition 1.2.5]. The
reader having encountered only (neutral) Tannakian categories over fields [DM82, Section 2]
should note that the distinctive property of T is a weakening of the existence of “duals” [DM82,
Definition 1.7]. This is to be replaced by the property that every object is a quotient of an “object
having a dual.” That this property holds for representation categories of group schemes is [Se68,
Proposition 3]. (For a higher dimensional bases, see [Th87, Lema 2.5].) But we face a non-trivial
requirement: for example, RepW (Fp)

(Fp) fails to satisfy it [HdS21, Example 4.7].

Once this definition of neutral Tannakian category is given, the main theorem of [DM82,
Theorem 2.11] has his analogue in the present context: If ω : T → R-mod is a faithful, R–linear
and exact tensor functor, then there exists an affine and flat group scheme ΠT over R and an
equivalence

ω : T −→ RepR(ΠT )

such that composing ω with the forgetful functor RepR(ΠT ) → R-mod renders us ω back. See
[S72, II.4.1.1] and [DH18, Theorem 1.2.2].

Let us present some examples of categories to which the theory can be applied.

Example 4.1. Let Γ be an abstract group and suppose that R = kJπK. Then, the category of
R[Γ]-modules which are of finite type over R together with the forgetful functor is a neutral
Tannakian category [HdS21, 4.1].

Example 4.2. Let X be a smooth and connected scheme over R, DX/R the ring of differential
operators [EGA, IV.16.8], and T + the category of DX/R-modules which, as OX–modules, are
coherent. Using the fibre-by-fibre flatness criterion and [BO78], one proves that an object E ∈ T +

is locally free if and only if it is R-flat.

Let now T be the full subcategory of T + having{
M ∈ T + :

There exists E ∈ T + which
is R-flat and a surjection E →M

}
as objects. Once we give ourselves an R-point x0 ∈ X(R), it follows that

T −→ R-mod, E 7−→ (global sections of) x∗0(E)

defines a neutral Tannakian category. For more details, see [And01] and [DHdS18].

Example 4.3. We assume that R is Henselian and Japanese, e.g. R is complete. Let X be an
irreducible, proper and flat R-scheme with geometrically reduced fibres. Let x0 ∈ X(R). Given
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a coherent sheaf E on X, we say that E is trivialized by a proper morphism if there exists a
surjective and proper morphism ψ : Y → X such that ψ∗E “comes from S = SpecR”, by which
we mean that ψ∗E is the pull-back of a module via the structural morphism Y → S. Let T + be
the full subcategory of the category of coherent modules on X having as objects those sheaves
which are trivialized by a proper morphism. Proceeding along the lines of Example 4.2, it is
possible to construct a smaller full subcategory T of T + such that, endowing T with the tensor
product of sheaves, the functor

T −→ R-mod, E 7−→ (global sections of) x∗0(E)

defines a neutral Tannakian category. Details are in [HdS23]. This is the analogue theory of Nori’s
theory for the fundamental group scheme [Nor76] in the relative setting, and one objective is to
show that the group scheme associated to T is pro-finite. See [HdS23, Theorem 8.8].

4.2 Galois-Tannaka group schemes

One obvious strategy to study Tannakian categories is to filter them by categories “generated”
by a single object, just as in studying Galois groups it is fundamental to study finite extensions.
Let ω : T → R-mod be as in the previous section so that T is equivalent to RepR(Π) for some
affine and flat group scheme Π. We shall take this equivalence as an equality, but we warn the
reader that the structure of Π should be considered as being very complicated (just as is that of
an absolute Galois group).

Definition 4.4. Let M ∈ T be an object possessing a dual M∨ and for each couple of non-
negative integers a, b, define Ta,bM as M⊗a ⊗M∨⊗b. Then, ⟨M⟩⊗ is the full subcategory of T
having as objects those which are quotients of subobjects of elements of the form

Ta1,b1M ⊕ · · · ⊕Tar,brM,

for varying r, a1, . . . , ar, b1, . . . , br. The Tannakian group scheme associated to ⟨M⟩⊗ via ω shall
will be called here the (full) Galois-Tannaka group (scheme) of M .

As we concentrate on a neutral Tannakian category, it is instructive to note that the splicing
of T by various ⟨M⟩⊗ amounts to looking at various “images” of Π. Before entering this topic,
recall that, given a base field F and a morphism φ : G′ → G of affine group schemes over F , the
closed image Imφ [EGA, I.9.5] is a closed subgroup scheme of G such that the natural morphism
G′ → Imφ is faithfully flat [Wa79, Theorem on 15.1]. In this case, Imφ enjoys both “desirable
properties” of and image.

Definition 4.5. Let ρ : Π→ G be a morphism of flat and affine group schemes over R. Define
the restricted image of ρ, denoted Imρ, as the affine scheme associated to the algebra

Bρ = Image of O(G)→ O(Π).

(In other words, Imρ is the “closed” image of ρ [EGA, I.9.5].) Define its full image Im′
ρ as being

the affine scheme associated to

B′
ρ = {f ∈ K ⊗O(Π) : πmf ∈ Bρ, for some m ⩾ 0}. (§ )

It is not difficult to see that Imρ and Im′
ρ are affine group schemes. With these definitions, ρ

factors as

Π
ψ−→ Im′

ρ
u−→ Imρ

ι−→ G, (†)

18
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where ι is a closed immersion and u induces an isomorphism between generic fibres. A funda-
mental result [DH18, Theorem 4.1.1] now assures that ψ is faithfully flat, so that the the terms
“images” are justified and the factorization in (†) is called the diptych of ρ.

In addition, if

ρK : Π⊗K −→ G⊗K
stands for the morphism obtained from ρ by base-change to K, we have

Im′
ρ ⊗K = Imρ ⊗K = Im(ρK).

Proposition 4.6 [DHdS18, Proposition 4.10]. Let M be a finite and free R-module affording
a representation of Π and let ρ : Π → GL(M) be the associated homomorphism. Then the
obvious functor RepR(Im

′
ρ) → RepR(Π) defines an equivalence between RepR(Im

′
ρ) and ⟨M⟩⊗.

Put differently, Im′
ρ is the Galois-Tannaka group of M (in RepR(Π)).

Remark 4.7. Let Rep◦R(Imρ) be the full subcategory of RepR(Imρ) consisting of objects having
a dual; it is possible to show that Rep◦R(Imρ) is equivalent to a full subcategory of ⟨M⟩⊗. On
the other hand, the functor RepR(Imρ)→ RepR(Π) may easily fail to be full.

From now on, we give ourselves a representation ρ : Π→ GL(M) as in Proposition 4.6. It is
at this point that the theory over R parts from the theory over a field in a significant way. Indeed,
in the case of a base-field, Galois-Tannaka group schemes are known to be of finite type [DM82,
Proposition 2.20]. This is not unconditionally true over R since in order to construct Im′

ρ, it was
required to “saturate” the ring Bρ in (§ ). On the other hand, the morphism Imρ → GL(M) is a
closed immersion and Imρ is of finite type.

Definition 4.8. A model of a group scheme of finite type G over K is a flat group scheme G
over R such that G ⊗R K ∼= G, as K-group schemes. We often identify G and the generic fibre
G ⊗R K. A morphism of models G → G′ of G is a morphism G → G′ of group schemes over R
which induces the identity on G once unravelled the proper identifications.

Remark 4.9. The definition of model used here differs from the one used in [StP, Tag 0C2R]
and [WW80] namely, we do not assume our models to be of finite type over R.

With this terminology, Imρ and Im′
ρ are models of Im(ρK). A well-known result of Waterhouse-

Weisfeler about the relations between models is the following.

Theorem 4.10 [WW80, Theorem 1.4], [DHdS18, Theorem 2.11]. Let v : G′ → G be a morphism
of flat S-group schemes such that v is an isomorphism on generic fibres. Then v is a composite
of mono-centered Néron blowups (along the divisor defined by π). In other words, a morphism
of models of finite type is a composite of mono-centered Néron blowups. If G and G′ are of finite
type, then the number of Néron blowups is finite.

More precisely: Define v0 = v and G0 = G. Suppose that vn : G′ → Gn is obtained and put

Gn+1 = BlGn⊗k
Imvn⊗k

(Gn).

(Recall that k is the residue field.) Letting vn+1 : G′ → Gn+1 be the morphism deduced from
the universal property of BlGn⊗k

Imvn⊗k
(Gn) (cf. Proposition 3.1), then

lim←−
n

vn : G′ −→ lim←−
n

Gn

is an isomorphism. In particular, if for some n ∈ N the homomorphism vn ⊗ k is faithfully flat,
then G′ ≃ Gn.
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As was mentioned before, it is possible that Im′
ρ fails to be of finite type and hence the number

of Néron blowups proposed by Theorem 4.10 to describe u : Im′
ρ → Imρ may be infinite. But in

some cases, it does happen that the number of Néron blowups is finite and a condition for this
situation is described in Theorem 4.10. At this point, we remind the reader that in the situations
we have in mind, the group scheme Π is usually extremely complicated and the determination of
the image of a morphism Π⊗k → G⊗k, so that it is possible to apply the last claim in Theorem
4.10, can only be achieved on the side of RepR(Π).

It then becomes relevant to determine faithful representations of Néron blowups. (Here, we
say that a representation is faithful if the morphism to the associated general linear group is a
closed immersion. This is not universally adopted.) The next result explains how to proceed in
certain cases.

Theorem 4.11 [DHdS18, Corollary 3.6]. Let G be an affine and flat group scheme of finite type
over S. Let M be a finite and free R-module affording a faithful representation of G. Given
m ∈M , let

H0 = stabilizer of m⊗ 1 ∈M ⊗ k
in G⊗ k. Let G′ = BlG⊗k

H0
(G). Then, letting 1 = R stand for the trivial representation of G′, the

obvious map 1→M ⊗ k determined by 1 7→ v ⊗ 1 is G′-equivariant and the fibered product

M ′ :=M ×
M⊗k

1 (¶)

now affords a faithful representation of G′.

Let us illustrate the above result with a simple example showing how to compute a Galois-
Tannaka group.

Example 4.12. Let k be of characteristic zero and T be the category of representations of the
abstract group Z on finite R-modules. It is not difficult to see that T is neutral Tannakian [HdS21,
Corollary 4.5]. Let Z act on M = R by γ · r = (1 + π)γr and write ρ : Π→ GL(M)(≃ Gm,R) for
the associated morphism of group schemes. It is not difficult to see that Imρ = Gm,R and we wish
to compute Im′

ρ. As mentioned above, the construction (§ ) is of little use. On the other hand, we
know that Π will act trivially onM⊗k because Z does. We then need to perform the “dilatation”
M ′ of M as in (¶), which is a faithful representation of the Néron blowup BlGm⊗k

{e} (Gm). The

elements m1 := (π, 0) and m2 := (1, 1) obviously form a basis for M ′ and hence the resulting
representation of Z is defined by

γ 7−→
(
1 + π 1
0 1

)γ
.

If ρ′ : Π → GL(M ′)(≃ GL2) stands for the associated representation of Π, we can say that(
1 1
0 1

)
∈ GL2(k) belongs to the image of ρ′ ⊗ k and therefore Im′

ρ ≃ BlGm⊗k
{e} (Gm) because

BlGm⊗k
{e} (Gm)⊗ ≃ Ga,k, and any element of k \ {0} generates a dense subgroup.

On the other hand, when the number of Néron blowups envisaged by Theorem 4.10 is infinite,
a general principle behind [DHdS18, HdS21] is that the Galois-Tannaka groups can be obtained
from group schemes of finite type via certain special types of (what we now call) multi-centered
Néron blowups. This is treated in the next section.
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4.3 Néron blowups of formal subgroup schemes

Multi-centered dilatations having divisors which are supported on the same space have been
studied more closely. For an affine group scheme G over R, we shall write Ĝ for the completion
G/G0

of G along its closed fiber [EGA, I.10].

Definition 4.13 [DHdS18, Definition 5.6]. Let G → S be an affine flat group scheme of finite
type. For each i ∈ N, let Gi be the Si-group scheme G×S Si, and let Hi → Si be a closed, Si–flat,
subgroup-scheme of Gi. Assume, in addition, that the natural base-change morphism

Hi+1 ×Si+1 Si −→ Gi+1 ×Si+1 Si = Gi

defines an isomorphism Hi+1 ×Si+1 Si ≃ Hi of group schemes. Said differently, the family {Hi}
induces a formal closed subgroup scheme H of Ĝ. We define the Néron blowup of G along H, call

it BlĜHG, as being Bl
{Gi}
{Hi}G→ G.

Remark 4.14. If the formal scheme H is “algebraizable”, meaning that it comes from a closed
and flat subgroup scheme H ⊂ G, this is mentioned in [PY06, § 7.2].

Example 4.15. Let p be a prime number, R = Zp and G = Ga,R. It then follows that the
completion of G along its closed fibre is Spf Zp⟨x⟩, where Zp⟨x⟩ is the subring of ZpJxK consisting
of power series

∑
n anx

n such that lim an = 0. Let H be the closed formal subscheme of Ĝ

determined by the ideal (x) ⊂ Zp⟨x⟩. Then, it is not difficult to see that BlĜHG is the group

scheme determined by the Hopf subalgbra A = {P ∈ Qp[x] : P (0) ∈ Zp}. Note that BlĜHG⊗ Fp
is the trivial group scheme, while BlĜHG⊗Qp is Ga,Qp . In particular, the dimension of the generic

and special fibres is distinct, even though BlĜHG is itself flat over Zp. Note, on the other hand,
that the Zp-module A contains a copy of Qp and hence fails to be projective over Zp. This
seemingly harmless property is the cause of complications in the category of representations
[HdS21, Proposition 6.19] as the inexistence of intersections of subrepresentations.

Example 4.16 [HdS21, 4.3]. Let R = kJπK, where k is a field of characteristic zero and let
G = Ga,R ×R Gm,R. Letting x stand for “the” coordinate of Ga,R and y for “the” coordinate of
Gm,R, we define

eπx =

∞∑
i=0

πi

i!
xi;

this is an element of Ô(G). It is not difficult to see that y − eπx cuts out a closed and formal

subgroup scheme of Ĝ, call it H, and hence we obtain a model BlĜH → G. Note that H is not

algebraizable. Differently from the situation in Exemple 4.15, the R-module O(BlĜH ) is projective.

One important consequence of the procedure of taking formal blowups is the following. It
says that, in some contexts, all the information concerning a model of a group scheme can be
encoded in a formal Néron blowup (Theorem 4.17).

Theorem 4.17 [HdS21, Corollary 3.3]. Suppose that the R is complete and of residual character-
istic zero. Let G → G be a morphism of affine and flat R-group schemes inducing an isomorphism
on the generic fibres, and suppose in addition that G is of finite type. Then, there exists a group
scheme G′ over R, flat and of finite type, and a morphism of group schemes G′ → G which is an
isomorphism on generic fibres, a closed and formal subgroup scheme H′ of Ĝ′, and an isomorphism

G ∼−→ BlĜ
′

H′G′.
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Remark 4.18. Under the assumptions of Theorem 4.17, Theorems 4.10 and 4.17 together say
that any morphism of models G′ → G with G of finite type over R is obtained as a composite
of multi-centered Néron blowups, and more precisely as a formal Néron blowup composed by
several mono-centered Néron blowups.

5. Congruent isomorphisms and relations with Bruhat-Tits buildings, the
Moy-Prasad isomorphism and admissible representations of p-adic groups

In this section we report on congruent isomorphisms. Let (O, π) be a henselian pair where π ⊂ O
is an invertible ideal. Let us start with the following result proved in [MRR20].

Theorem 5.1 [MRR20]. (Congruent isomorphism) Let r, s be integers such that 0 ⩽ r/2 ⩽ s ⩽ r.
Let G be a smooth, separated O-group scheme. Let Gr be the r-th iterated dilatation of the unit

section (i.e. Gr = Bl
O/πr

eG G) and gr be its Lie algebra. If O is local or G is affine, there is a
canonical and functorial isomorphism of groups:

Gs(O)/Gr(O)
∼−→ gs(O)/gr(O). (⋆)

Remark 5.2. We comment on works prior to Theorem 5.1.

(i) In the case of an affine, smooth group scheme over a discrete valuation ring, the isomorphism
of Theorem 5.1 appears without proof in [Yu15, proof of Lemma 2.8].

(ii) The proof of Theorem 5.1 relies on Proposition 2.15 and Theorem 3.5 whose proofs (given in
[MRR20, Prop. 2.9] and [MRR20, Th. 3.5]) basically consist in playing and computing with
quasi-coherent ideals. These computations on quasi-coherent ideals in [MRR20] were partly
motivated by related computations on ideals done in the affine case in [Ma19t, Appendix A]
to understand the congruent isomorphism. The statement of [MRR20, Th. 3.5] is moreover
partly inspired by [WW80, Th. 1.5, Th. 1.7].

(iii) If G = Gm/Zp, isomorphism (⋆) follows from the multiplicative structure of Zp cf. e.g.
[He1913], [Ha50] and [Ha80, Chap. 15]. Similar isomorphisms for matrix groups over non-
Archimedean local fields were used in [Ho77, p. 442 line 1], [Mo91, 2.13], [BK93, p. 22],
[Sec04, p. 337] and many other references to study admissible representations of p-adic
classical groups. In the matrix case, the filtrations involved are defined using matrix theoretic
descriptions and avoiding scheme theoretic tools. For general reductive groups over non-
Archimedean local fields, such kind of isomorphisms were introduced and used in [PR84,
§ 2], [MP94, § 2], [MP96], [Ad98, § 1], [Yu01, § 1] to study admissible representations. In the
reductive case, the filtrations involved are the Moy-Prasad filtrations [MP94], [MP96] and
the isomorphism is called the Moy-Prasad isomorphism. These filtrations are defined for
points in the Bruhat-Tits building using the associated valued root datum [BT72] [BT84].
The Moy-Prasad isomorphim in these references was defined using somehow ad hoc formulas
and the valued root datum, in particular avoiding the congruent isomorphism. However it
is known that one has to modify the original Moy-Prasad filtrations to ensure the validity
of the Moy-Prasad isomorphism in full generality, cf. [Yu15, §0.3] and [KP22, §13].

If G = GL2/Zp, Gn(Zp) =
(
1 + pn pn

pn 1 + pn

)
⊂ GL2(Zp) and gn(Zp) =

(
pn pn

pn pn

)
⊂M2(Zp)

for any n > 0. The isomorphism (⋆) gives us, for pairs (r, s) such that 0 < r
2 ⩽ s ⩽ r, isomor-

22



A survey on algebraic dilatations

phisms (
1 + ps ps

ps 1 + ps

)
/

(
1 + pr pr

pr 1 + pr

)
∼=
(
ps ps

ps ps

)
/

(
pr pr

pr pr

)
. (∗)

These maps are given by [1 +M ] 7→ [M ]. Using the formula [1 +M ] 7→ [M ], it is elementary to
check that we have other isomorphisms of abstract groups(

1 + p3 p3

p3 1 + p3

)
/

(
1 + p5 p6

p6 1 + p5

)
∼=
(
p3 p3

p3 p3

)
/

(
p5 p6

p6 p5

)
, (∗∗)(

1 + p3 p9

p3 1 + p3

)
/

(
1 + p6 p9

p6 1 + p6

)
∼=
(
p3 p9

p3 p3

)
/

(
p6 p9

p6 p6

)
. (∗ ∗ ∗)

These isomorphisms are obtained as follows from the point of view of dilatations.

Theorem 5.3 [Ma23d]. (Multi-centered congruent isomorphism) Let G be a separated and
smooth group scheme over S. Let H0 ⊂ H1 ⊂ . . . ⊂ Hk be closed subgroup schemes of G such
that Hi is smooth over S for 0 ⩽ i ⩽ d and H0 = eG. Let s0, s1, . . . , sk and r0, r1, . . . , rk be in N
such that

(i) si ⩾ s0 and ri ⩾ r0 for all i ∈ {0, . . . , k},
(ii) ri ⩾ si and ri − si ⩽ s0 for all i ∈ {0, . . . , k}.

Assume that G is affine or O is local. Then we have a canonical isomorphism of groups

Bls0, s1, ...,skH0,H1,...,Hk
G/Blr0, r1, ...,rkH0,H1,...,Hk

G ∼= Lie(Bls0, s1, ...,skH0,H1,...,Hk
G)/Lie(Blr0, r1, ...,rkH0,H1,...,Hk

G)

where Blt0, ...,tkH0,...,Hk
G denotes Bl

O/πt0 ,...,O/πtk

H0, ... ,Hk
G for any t0, . . . , tk ∈ N.

Now let G be GL2/Zp. Let eG ⊂ G be the trivial subgroup. Let T be the diagonal split torus
in G. Let B be the lower triangular Borel in G over Zp.

(i) The isomorphism (∗∗) above is given by Theorem 5.3 with (O, π) = (Zp, p), H0 = eG,
H1 = T , s0 = 3, s1 = 3, r0 = 5 and r1 = 6.

(ii) The isomorphism (∗ ∗ ∗) above is given by Theorem 5.3 with (O, π) = (Zp, p), H0 = eG,
H1 = B, s0 = 3, s1 = 9, r0 = 6 and r1 = 9.

Remark 5.4. We comment Theorem 5.3.

(i) Theorem 5.3 corresponds to [Ma23d, Corollary 8.3], a slightly more general result is given
by [Ma23d, Theorem 8.1].

(ii) The proof of Theorem 5.3 given in [Ma23d] relies on Theorem 5.1 and the study of multi-
centered dilatations.

(iii) Note that [Yu01, Lemma 1.3] provides a comparable ”multi-centered” isomorphism, in the
framework of reductive groups over non-Archimedean local field.

Recall that dilatations of schemes over discrete valuation rings are used in Yu’s approach
[Yu15] on Bruhat-Tits theory for reductive groups over henselian discrete valuation field with
perfect residue field. We refer to the monograph by Kaletha and Prasad [KP22] that include
among other things a detailled exposition of [Yu15]. The congruent isomorphism (Theorem 5.1)
and its proof (relying on several results of [MRR20]) are now used as foundation to prove the
Moy-Prasad isomorphism for reductive groups mentioned in Remark 5.2, cf. [KP22, Theorem
13.5.1 and its proof, Proposition A.5.19 (3) and its proof]. As a consequence, dilatations and
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congruent isomorphisms are now part of the foundation to study admissible representations of
reductive p-adic groups. Furthermore, other connections between dilatations and groups used
to study admissible representations can be found in [Yu15, §10] and [Ma23d, Example 1.4].
Reciprocally, the problem of constructing supercuspidal representations of p-adic groups (cf. e.g.
[Ma19o, Remark/Conclusion], [Ma19t, MY22]), or more generally types in the sense of [BK98],
could continue to be a source of inspiration to expend the theory of dilatations.

Remark 5.5. As we explained before, the book [KP22] provides a carefully written new approach
to Bruhat-Tits theory in the case of discrete valuations. This beautiful monograph uses the theory
of dilatations to deal with integral models whereas the original Bruhat-Tits theory [BT84] did
not. Let us quote [KP22, Introduction]:

“Next we turn to the construction of integral models [...]. Instead of using the approach of
Bruhat–Tits via schematic root data, we employ a simpler and more direct method due to

Jiu-Kang Yu [Yu15], based on the systematic use of Néron dilatations.”

The book [KP22] offers an appendix on dilatations. Though [KP22, Appendix A.5] takes into
account the treatment of dilatations in [MRR20], it restricts to the framework of discrete valua-
tions. Originally, Bruhat-Tits theory [BT84] deals also with non discrete valuations, it is natural
to ask whether the modern and general approach to dilatations of schemes initiated in [MRR20]
could help to provide a more conceptual treatment (in the spirit of [Yu15] and [KP22]) of some
parts of [BT84]. Bruhat-Tits theory and dilatations over non discrete valuations were used in
[RTW10] and [Ma22] to study Berkovich’s point of view [Be90, Chap. 5] on Bruhat-Tits buildings
of reductive groups over discrete and non-discrete valuations (cf. e.g. [RTW10, 1.3.4] for precise
assumptions).

6. Torsors, level structures and shtukas

In this subsection, we explain that many level structures on moduli stacks of G-bundles are
encoded in torsors under Néron blowups of G following [MRR20]. Assume that X is a smooth,
projective, geometrically irreducible curve over a field k with a Cartier divisor N ⊂ X, that
G→ X is a smooth, affine group scheme and that H → N is a smooth closed subgroup scheme
of G|N . In this case, the Néron blowup G → X is a smooth, affine group scheme. Let BunG
(resp. BunG) denote the moduli stack of G-torsors (resp. G-torsors) on X. This is a quasi-
separated, smooth algebraic stack locally of finite type over k (cf. e.g. [He10, Prop. 1] or [AH19,
Thm. 2.5]). Pushforward of torsors along G → G induces a morphism BunG → BunG, E 7→
E ×G G. We also consider the stack Bun(G,H,N) of G-torsors on X with level-(H,N)-structures,
cf. [MRR20, Definition 4.5]. Its k-points parametrize pairs (E , β) consisting of a G-torsor E → X
and a section β of the fppf quotient (E|N/H)→ N , i.e., β is a reduction of E|N to an H-torsor.

Proposition 6.1 [MRR20]. There is an equivalence of k-stacks

BunG
∼=−→ Bun(G,H,N), E 7−→ (E ×G G, βcan),

where βcan denotes the canonical reduction induced from the factorization G|N → H ⊂ G|N .

Thus, many level structures are encoded in torsors under Néron blowups. This construction is
also compatible with the adelic viewpoint as follows. Let |X| ⊂ X be the set of closed points, and
let η ∈ X be the generic point. We denote by F = κ(η) the function field of X. For each x ∈ |X|,
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we let Ox be the completed local ring at x with fraction field Fx and residue field κ(x) = Ox/mx.
Let A :=

d′
x∈|X| Fx be the ring of adeles with subring of integral elements O =

d
x∈|X|Ox.

Proposition 6.2. Assume either that k is a finite field and G → X has connected fibers, or
that k is a separably closed field. The Néron blowup G → X is smooth, affine with connected
fibers, and there is a commutative diagram of groupoids

BunG(k)
⊔
γ Gγ(F )

∖(
Gγ(A)/G(O)

)
BunG(k)

⊔
γ Gγ(F )

∖(
Gγ(A)/G(O)

)
,

≃

≃

identifying the vertical maps as the level maps.

Now assume that k is a finite field. As a consequence of Proposition 6.1 one naturally ob-
tains integral models for moduli stacks of G-shtukas on X with level structures over N via an

isomorphism ShtG,I•
∼=−→ Sht(G,H,N),I• (cf. [MRR20, §4.2.2] for precise definitions and details).

7. The “topology”of dilatations of affine schemes

7.1 Constructing smooth complex affine varieties with controlled topology

Dilatations have played an important role in complex affine algebraic geometry during the nineties
in connection to the construction and study of exotic complex affine spaces [KZ99, Za00], that is,
smooth algebraic C-varieties X of dimension n whose analytifications Xan are homeomorphic to
the Euclidean space R2n endowed with its standard structure of topological manifold but which
are not isomorphic to the affine space AnC as C-varieties.

In this context, dilatations appeared under the name affine modifications and were used as a
powerful tool to produce from a given smooth complex affine variety X a new smooth complex
affine variety X ′ = BlDZX for which the homology or homotopy type of the underlying topological
manifold of the analytification of X ′ can determined under suitable hypotheses in terms of those
of X and of the center {[Z,D]} of the dilatation.

The study of the strong topology of affine modifications was initiated in this context mainly
by Kaliman through an analytic counter part of the notion of dilatation:

Definition 7.1 [Ka94]. Given a triple (M,H,C) consisting of a complex analytic manifold M ,
a closed submanifold C of M of codimension at least 2 and a complex analytic hypersurface H
of M containing C in its smooth locus, the Kaliman modification M along H with center at C
is the complex analytic manifold defined as the complement M ′ of the proper transform H ′ of
H in the blow-up σC : M̂ →M of M with center at C.

In the case where (M,H,C) is the analytification of a triple (X,D,Z) consisting of a smooth
algebraic C-variety X, a smooth algebraic sub-variety Z of X of codimenion at least two and
of a reduced effective Cartier divisor D on X containing Z in its regular locus, the Kaliman
modification of (M,H,C) coincides with the analytification of the dilatation X ′ = BlDZX of X
with center {[Z,D]} of Section 2.

Kaliman and Zaidenberg [KZ99] developed a series of tools to describe the topology of the
analytications of affine modifications of smooth affine C-varieties along principal divisors D with
non-necessarily smooth centers. One of these provides in particular a control on the preservation
of the topology of the analytification under affine modifications:
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Theorem 7.2 [KZ99, Proposition 3.1 and Theorem 3.1]. Let X be a smooth affine C-variety and
let {[Z,D]} be a center on X consisting of closed sub-scheme Z of codimension at least 2 and of
a principal effective divisor D containing Z as a closed subscheme. Let σ : X̃ = BlDZ (X)→ X be
the dilatation of X with center {[Z,D]} and let E be the exceptional divisor of σ.

Assume that the following conditions are satisfied:

(i) The C-variety X̃ = BlDZ (X) is smooth;

(ii) The divisors E and D are irreducible, E = σ∗D, and the analytifications of Ered and Dred

are topological manifolds.

Then the following properties hold:

(a) The homomorphism σan∗ : π1(X̃
an)→ π1(X

an) induced by σan is an isomorphism;

(b) The homomorphism σan∗ : H∗(X̃
an;Z)→ H∗(X

an;Z) induced by σan is an isomorphism if
and only if the homomorphism σ|anE,∗ : H∗(E

an
red;Z)→ H∗(D

an
red,Z) is.

Corollary 7.3. In the setting of Theorem 7.2, assume that Xan is a contractible smooth
manifold, that Zan

red is a topological manifold and that the homomorphism

jan∗ : H∗(Z
an
red;Z)→ H∗(D

an
red;Z)

induced by the closed immersion j : Z ↪→ D is an isomorphisms. Then the analytification of
X̃ = BlDZ (X) is a contractible smooth manifold.

Having the flexibility to use as centers or divisors of modifications schemes which are either
non-reduced or whose analytifications are not necessarily smooth manifolds but only topological
manifolds is particularly relevant for applications to the construction smooth C-varieties with
contractible analytifications, as illustrated by the following examples.

Example 7.4 The tom Dieck - Petrie surfaces. Let p, q ⩾ 2 be a pair of relatively prime integers
and let Cp,q ⊂ A2

C = Spec(C[x, y]) be an irreducible rational cuspidal curve with equation
xp−yq = 0. The underlying topological space of Can

p,q is a contractible real topological surface, and

hence, Corollary 7.3 applies to conclude that the analytification of the dilatation Sp,q = Bl
Cp,q

(1,1)A
2
C

of A2
C along the principal Cartier divisorD = Cp,q with center at the closed point Z = (1, 1) ∈ Cp,q

is a smooth contractible real 4-manifold. The smooth affine surface Sp,q, which can be described
explicitly as the hypersurface in A3

C = Spec(C[x, y, z]) with equation

(xz + 1)p − (yz + 1)q

z
= 1,

is not isomorphic to A2
C since, for instance, it has non negative logarithmic Kodaira dimension

[Za00, Example 2.4]. Moreover, the underlying real 4-manifold of San
p,q is an example of a con-

tractible 4-manifold with non-trivial fundamental group at infinity, hence non-homeomorphic to
the standard euclidean space R4.

Example 7.5 Some Koras-Russell threefolds. Let again p, q ⩾ 2 be a pair of relative prime
integers and consider for every n ⩾ 2 the smooth hypersurface Xp,q,n in A4

C = Spec(C[x, y, z, w])
with equation

xny + zp + wq + x = 0.

The restriction σp,q,n : Xp,q,n → A3
C of the projection to the coordinates x, z and w expresses

Xp,q,n as the dilatation of A3
k along the principal divisor Dn = divxn and with center at the

non-reduced condimension closed sub-scheme Z = Zp,q,n with defining ideal

Ip,q,n = (zp + wq + x, xn) ⊂ C[x, z, w].
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The analytification of Zred is a topological manifold homeomorphic to the underlying topological
space of the curve Can

p,q of the previous example. Thus, Corollary 7.3 applies to conclude that
Xan
p,q,n is a contractible real 6-manifold, hence, by a result of Dimca–Ramanujam, is diffeomorphic

to the standard euclidean space R6, see [Za00, Theorem 3.2].

The interest in these affine threefolds Xp,q,n was motivated in the nineties by their appearance
in the course of the study of the linearization problem for actions of the multiplicative group
Gm,C on A3

C by Koras and Russell [KR97]. One crucial question at that time was to decide
whether these threefolds were isomorphic to A3

C or not. The fact that none of them is isomorphic
to A3

C was finally established by Makar-Limanov [ML96] by commutative algebra techniques.
An interesting by-product of his proof is that the dilatation morphism σp,q,n : Xp,q,n → A3

C is
equivariant with respect to the natural action of the group of C-automorphism of Xp,q,n, more
precisely, σp,q,n induces an isomorphism

σ∗p,q,n : AutC(A3
C, {[Zp,q,n, Dn]})→ AutC(Xp,q,n)

between the subgroup AutC(A3
C, {[Zp,q,n, Dn]}) of AutC(A3

C) consisting of C-automorphisms pre-
serving the divisor and the center of the dilatation σp,q,n and the group AutC(Xp,q,n), see [MJ11].

7.2 Deformation to the normal cone

A very natural class of dilatations which plays a fundamental role in intersection theory is given
by the affine version of the deformation space D(X,Y ) of a closed immersion Y ↪→ X of schemes
of finite type over a fixed base scheme S to its normal cone, [Fu98], [Ro96, § 10]. Indeed, D(X,Y )
is simply the dilatation of X ×S A1

S with divisor D = X ×S {0}S , where {0}S denotes the zero
section, and center Z = Y ×S {0}S . In the affine setting, say X = Spec(A) and Y = Spec(A/I)
for some ideal I ⊂ A, D(X,Y ) is the spectrum of the sub-algebra A[t]-algebra

A[
(I, t)

t
] ∼=

∑
n

Int−n ⊂ A[t, t−1].

The composition f : D(X,Y )→ A1
S of the dilatation morphism σ : D(X,Y )→ X×SA1

S with the
projection p2 : X×SA1

S → A1
S is a flat morphism restricting to the trivial bundle X×S (A1

S\{0}S)
over A1

S \ {0}S and whose fiber over {0}S equals the normal cone NY/X = Spec(
⊕

n⩾0 I
n/In+1)

of the closed embedding Y ↪→ X (see Proposition 2.15). For regular immersions Y ↪→ X between
smooth schemes of dimension n and m over a field k, the deformation space D(X,Y ) étale locally
looks like the deformation space

Spec(k[x1, . . . , xm][t][u1, . . . , um−n]/(tui − xi)i=1,...,m−n) ∼= Am+1
k

of the immersion of Ank as the linear subspace {x1 = . . . = xm−n = 0} of Amk = Spec(k[x1, . . . , xm]).

Deformation spaces of closed immersions between smooth affine C-varieties provide an endless
source of smooth affine C-varieties whose analytifications are contractible smooth manifolds:

Example 7.6. Given a smooth affine C-varietyX such thatXan is contractible and a smooth sub-
variety Y ⊂ X such that the induced inclusion Y an ⊂ Xan is a topological homotopy equivalence,
Theorem 7.2 implies that the analytification of the deformation space D(X,Y ) is a contractible
smooth manifold.

For instance, the deformation spaces D(A3
C, Sp,q) ⊂ A5

C of the tom Dieck - Petrie surfaces
Sp,q of Example 7.4 are smooth affine C-varieties of dimension 4 whose analytifications are all
diffeomorphic to R8. In the same way, for every Koras-Russell threefold Xp,q,n ⊂ A4

C in Example
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7.5, the deformation space

D(A4
C, Xp,q,n) ∼= {tu = xny + zp + wq + x} ⊂ A6

C

is a smooth affine C-variety whose analytification is diffeomorphic to R10. It is not known whether
these deformation spaces are algebraically isomorphic to affine spaces.

More general versions of Kaliman and Zaidenberg techniques allow to fully describe the singu-
lar homology of the analytification of the deformation space D(AnC, Z) of a smooth hypersurface
Z = Z(p) = Spec(C[x1, . . . , xn]/(p)) of AnC in terms of that of the analytification of Z, namely

Proposition 7.7 [KZ99, Proposition 4.1]. For a smooth hypersurface Z ⊂ AnC, D(AnC, Z)an
is simply connected and the inclusion NZ/An

C
↪→ D(AnC, Z) induces an isomorphism of reduced

homology groups H̃∗(D(AnC, Z)an;Z) ∼= H̃∗−2(Z
an;Z). In particular, D(AnC, Z)an has the reduced

homology type of the S2-suspension of Zan.

7.3 Contractible affine varieties in motivic A1-homotopy theory

The possibility to import Kaliman and Zaidenberg techniques in the framewok of Morel-Voevodsky
A1-homotopy theory of schemes [MV99] has focused quite a lot of attention recently, especially in
the direction of the construction of A1-contractible smooth affine varieties, motivated in part by
possible applications to the Zariski Cancellation Problem, see [AØ21] and the reference therein
for a survey.

Very informally, one views in this context smooth schemes over a fixed base field k as analogous
to topological manifolds, with the affine line A1

k playing the role of the unit interval, and consider
the corresponding homotopy category. More rigorously, the A1-homotopy category HA1(k) of
k-schemes is defined as the left Bousfield localization of the injective Nisnevich-local model
structure on the category of simplicial presheaves of sets on the category Smk of smooth k-
schemes, with respect to the class of maps generated by projections from the affine line X×kA1

k →
X . Isomorphisms in the homotopy category HA1(k) are called A1-weak equivalences, and a smooth
k-scheme X is called A1-contractible if the structure morphism X → Spec(k) is an isomorphism
in HA1(k).

The affine space Ank is by definition A1-contractible. Since the analytification of an A1-
contractible smooth C-variety is a contractible smooth manifold, smooth algebraic C-varieties
with contractible analytifications provided conversely a first natural framework to seek for in-
teresting A1-contractible affine varieties non isomorphic to affine spaces. A first step in this
direction was accomplished by Hoyois, Krishna and Østvær [HKØ16, Theorem 4.2] who used the
underlying geometry associated to the dilatations morphisms σp,q,n : Xp,q,n → A3

C to verify that
the Koras-Russell threefolds of Example 7.5 were A1-contractible possibly up to a finite number
of P1-suspensions, in the sense that for some n ⩾ 0, the suspension (Xp,q,n, o) ∧ (P1)∧n is an
A1-contractible object in HA1(C), where here, Xp,q,n ⊂ A4

C is considered as a pointed smooth
C-scheme with distinguished point o = (0, 0, 0, 0).

These first constructions motivated a more systematic study to obtain A1-homotopic ana-
logues of Kaliman and Zaidenberg’s topological comparison results for affine modifications. The
best counterparts of Theorem 7.2 and Corollary 7.3 available so far are the following:

Theorem 7.8 [DPØ19, Theorem 2.17]. Let (X,D,Z) be a triple in Smk where D is a Cartier
divisor on X and Z ⊂ D is a closed subscheme and let σ : X̃ = BlZDX→ X be the dilatation of
X along D with center at Z. Assume that the following conditions are satisfied:
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(i) The supports of D and of the exceptional divisor E of σ are irreducible;

(ii) The closed immersion Z ↪→ D is an A1-weak equivalence.

Then there is a naturally induced A1-weak equivalence Σsσ : ΣsX̃ → ΣsX between the simplicial
1-suspensions of X̃ and X respectively.

In particular, if X is A1-contractible then ΣsX̃ is A1-contractible. Moreover, a stronger con-
clusion holds in the reverse direction: if X̃ is A1-contractible then X is A1-contractible.

Corollary 7.9. Let i : Y ↪→ X be a closed immersion between A1-contractible smooth k-
schemes. Then the simplicial 1-suspension ΣsD(X,Y ) of the deformation space D(Y,X) of Y in
X is A1-contractible.

In contrast with the results of subsection 7.1 which can be applied to possibly singular
triples (X,D,Z), Theorem 7.8 and its corollary fundamentally depend on smoothness hypotheses.
In particular, Theorem 7.8 is not applicable to tom Dieck -Petrie surfaces and Koras-Russell
threefolds over C and their natural generalization over other fields. It was nevertheless verified in
[DF18] by different geometric methods that over any base field k of characteristic zero, the Koras-
Russell threefoldsXp,q,n = {xny+zp+wq+x = 0} are indeed all A1-contractible. These provide in
turn when combined with Theorem 7.8 and Corollary 7.9 the building blocks for the construction
of many other new examples of smooth affine k-varieties whose simplicial 1-suspensions are A1-
contractible, among which some can be further verified by additional methods to be genuinely
A1-contractible, see [DPØ19, Section 4].

A more detailed re-reading of the notion of deformation to the normal cone of a closed im-
mersion Y ↪→ X between smooth k-schemes gives rise to a notion of “parametrized” deformation
space over a smooth base k-scheme W , which is defined as a dilatation of the scheme Y ×k W
with appropriate center, see [ADØ21, Construction 2.1.2]. This leads to the following counterpart
and extension of Proposition 7.7 in the A1-homotopic framework:

Theorem 7.10 [ADØ21, Theorem 2]. Let X be a smooth k-scheme, let π : X → Ank be a smooth
morphism with a section s. Assume that π|π−1(An

k\{0}) : π−1(Ank \ {0}) → π−1(Ank \ {0}) is an

A1-weak equivalence. Then there exists an induced pointed A1-weak equivalence

(X, s(0)) ∼ (P1)∧n ∧ (π−1(0), s(0)).

In particular, the deformation space D(X,Y ) of a closed immersion (Y, ⋆) ↪→ (X, ⋆) between
pointed smooth k-schemes is A1-weakly equivalent to P1 ∧ (Y, ⋆).

Example 7.11. LetQ2n ⊂ A2n+1
k = Spec(k[u1, . . . , un, v1, . . . , vn, z]) be the smooth 2n-dimensional

split quadric with equation
∑n

i=1 uivi = z(z + 1). The projection π = pru1,...,u,n : Q2n → An+1
k is

a smooth morphism restricting to a Zariski locally trivial An-bundle over Ank \ {0}, hence to an
A1-weak equivalence over Ank \ {0}, and having the morphism

s : Ank → Q2n, (u1, . . . , un) 7→ (u1, . . . , un, 0, . . . , 0, 0)

as a natural section. On the other hand, π−1(0) is A1-weakly equivalent to the disjoint union
of s(0) and of the point p = (0, . . . , 0 . . . ,−1). Theorem 7.10 thus renders the conclusion that
(Q2n, s(0)) is A1-weakly equivalent to (P1)∧n ∧ (p⊔ s(0)) ∼ (P1)∧n. In particular Q2n provides a
smooth k-scheme model of the motivic sphere (P1)∧n = Sn ∧G∧n

m,k.
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donnée radicielle valuée, Inst. Hautes Études Sci. Publ. Math. 60 (1984), 197–376. 22, 24

CK10 N. Csima and R. Kottwitz, Comodules for Some simple O-forms of Gm. Michigan Math. J. 59
(2010), 179–188. 17

Da67 E. Davis: Ideals of the principal class, R-sequences and a certain monoidal transformation.
Pacific J. Math. 20 (1967), 197–205. 3

DH18 N. D. Duong and P. H. Hai, Tannakian duality over Dedekind ring and applications, Math. Z.
288 (2018), 1103–1142. 5, 17, 19

DM82 P. Deligne and J. S. Milne, Tannakian categories. In Lecture Notes in Mathematics, 900,
Springer-Verlag, Berlin-New York, 1982. 16, 17, 19

DHdS18 N. D.Duong, P. H.Hai, J. P. dos Santos: On the structure of affine flat group schemes over
discrete valuation rings, I. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 18 (2018), no. 3, 977–1032.
3, 5, 16, 17, 19, 20, 21

Du05 A. Dubouloz: Quelques remarques sur la notion de modification affine.
https://arxiv.org/abs/math/0503142, 2005. 3, 5, 10

30



A survey on algebraic dilatations

DF18 A. Dubouloz, J. Fasel: Families of A1-contractible affine threefolds. Algebr. Geom. 5 (2018),
no. 1, 1–14. 5, 29

DPØ19 A. Dubouloz, S. Pauli, P. Østvær: A1-contractibility of affine modifications. Internat. J.
Math. 30 (2019), no. 14. 28, 29

Fu98 W. Fulton, Intersection theory, Second edition. Ergebnisse der Mathematik und ihrer Gren-
zgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and
Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], 2. Springer-Verlag,
Berlin, 1998. 27
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Ner64 A.Néron:Modèles minimaux des variétés abéliennes sur les corps locaux et globaux, Inst. Hautes
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